## Article

Title:

## COMPOSITUM 1 (COM1) contributes to the architectural simplification of barley inflorescence via cell wall-mediated and meristem identity signals

## Authors:

N. Poursarebani ${ }^{1}$, C. Trautewig ${ }^{1}$, M. Melzer ${ }^{1}$, T. Nussbaumer ${ }^{3,4}$, U. Lundqvist ${ }^{5}$, T. Rutten ${ }^{1}$, T. Schmutzer $^{1,2}$, R. Brandt ${ }^{1}$, A. Himmelbach ${ }^{1}$, L. Altschmied ${ }^{1}$, R. Koppolu ${ }^{1}$, H. M. Youssef ${ }^{1,2,6}$, M. Dalmais $^{7}$, A. Bendahmane ${ }^{7}$, N. Stein ${ }^{1}$, Z. Xin ${ }^{8}$, T. Schnurbusch ${ }^{1,2}$

## Affiliations:

${ }^{1}$ Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3 OT Gatersleben, D-06466 Seeland, Germany
${ }^{2}$ Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
${ }^{3}$ Technical University of Munich and Helmholtz Center Munich, Institute of Environmental Medicine, UNIKA-T, Neusäßer Str. 47, 86156 Augsburg, Germany
${ }^{4}$ Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health, Institute of Network Biology (INET), 85764 Neuherberg, Germany
${ }^{5}$ Nordic Genetic Resource Center (NordGen), Smedjevägen 3, Box P.O. 41, SE-230 53 Alnarp, Sweden
${ }^{6}$ Faculty of Agriculture, Cairo University, Giza, Egypt
${ }^{7}$ INRAE, CNRS, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, 91405 Orsay, France
${ }^{8}$ USDA-ARS, Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, Lubbock, TX 79415, USA
*Corresponding authors. Email: Poursarebani@ ipk-gatersleben.de (NP); Schnurbusch@ipkgatersleben.de (TS)


#### Abstract

:

Grasses have varying inflorescence shapes; however, little is known about the genetic mechanisms specifying such shapes among tribes. We identified the grass-specific TCP transcription factor COMPOSITUM 1 (COM1) expressed in inflorescence meristematic boundaries of different grasses. COM1 specifies branch-inhibition in Triticeae (barley) versus branch-formation in nonTriticeae grasses. Analyses of cell size, cell walls and transcripts revealed barley COM1 regulates cell growth, affecting cell wall properties and signaling specifically in meristematic boundaries to establish identity of adjacent meristems. COM1 acts upstream of the boundary gene Liguleless 1 and confers meristem identity independent of the COM2 pathway. Furthermore, COM1 is subject to purifying natural selection, thereby contributing to specification of the spike inflorescence shape. This meristem identity module has conceptual implications for both inflorescence evolution and molecular breeding in Triticeae.


## Main Text:

The grass family (Poaceae), one of the largest angiosperm families, has evolved a striking diversity of inflorescence morphologies bearing complex structures such as branches and specialized spikelets ${ }^{1}$. These structural features are key for sorting the grass family into tribes ${ }^{1}$. Current grass inflorescences are proposed to originate from a primitive ancestral shape exhibiting "a relatively small panicle-like branching system made up of primary and secondary paracladia (branches), each one standing single at the nodes" ${ }^{2}$ (Fig. 1A). This ancestral panicle-like inflorescence is also known as a compound spike ${ }^{3-5}$. Several independent or combined diversification processes throughout the evolutionary history of the grass family have resulted in the broad diversity of today's grass inflorescences ${ }^{2,3,6}$. Some tribes, e.g. Oryzeae (rice) and Andropogoneae (maize and sorghum), still display ancestral and complex compound shapes, keeping true-lateral long primary and secondary branches. Other grasses, such as Brachypodium distachyon, show lower inflorescence complexity with branch length and number reduced to lateral, small pedicels ending in only one multi-floretted spikelet (Fig. 1A-C). Inflorescences within the tribe Triticeae, e.g. barley (Hordeum vulgare L.), probably evolved from the ancestral compound spike into the typical unbranched spike (Fig. 1D). The spike displays the least-complex inflorescence shape due to the sessile nature of spikelets and reduction in rachis internodes ${ }^{2,7}$. Architectural variation is often manifested through subtle modifications of transcriptional programs during critical transitional windows of inflorescence meristem (IM) maturation 7,8 or functional divergence of key transcriptional regulators and/or other genes ${ }^{9,10}$. Identification of key genetic determinants is crucial for better understanding and explaining both the origin of grass inflorescence diversity and grass developmental gene evolution. Inflorescence developmental patterning controls pollination,
grain set and grain number, and is thus highly relevant to agronomy as a target of natural and human selection.

## Results

## Atypical for Triticeae-barley com1.a mutant forms a branched inflorescence

To provide insight into the inflorescence architecture of Triticeae, we conducted a detailed phenotypic inspection of an induced barley mutant displaying non-canonical, i.e. branched, spike morphology. Barley (and other Triticeae) wild-type (Wt) unbranched spikes are typically composed of sessile, single-flowered spikelets arranged in a regular distichous fashion of two opposite rows directly attached to the main axis (Fig. 1E). The Compositum-Barley com1.a (compositum 1.a) is an induced mutant with a branched spike introgressed into the two-rowed $c v$. Bowman (BW) (Supplementary Fig. 1). The BW near isogenic line (NIL) of the coml.a allele, BW-NIL(com 1.a), is a backcross (BC6)-derived EMS/neutron-induced mutant from $c v$. Foma ${ }^{11}$ ]. The inflorescence in this mutant develops a ramified or branched architecture, resembling an ancestral compound spike ( $\mathbf{F i g} . \mathbf{1 E}-\mathbf{I}$ ), but lacks an organ called pulvinus. The pulvinus is present at the axil of lateral long branches in panicles and compound spikes of non-Triticeae grass species, defining branch angle extent. We observed differences in spike shape between BW and com1.a during early spike differentiation at the triple mound (TM) to early glume primordium (GP; in which the mutant central spikelet meristem (SM) is elongated; Fig. 1J) stage, becoming more apparent during later reproductive stages of late glume primordium onwards (Fig. 1K-N). At GP, predominantly in the basal part of the spike, meristems of the central spikelet positions undergo apparent floral reversion, displaying branch- or IM-like meristems (Fig. 1N). Instead of generating florets, the meristem potentially grows indefinitely and functions as an indeterminate spikelet multimer in the form of a primary branch-like structure (Fig. 1M-N). Such branch-like structure s
occasionally replace other spikelet-related organs, such as the rachilla primordium (RP, the spikelet axis) or glumes (Fig. 1M-N). The coml branching phenotype resembles that of the previously described compositum 2 mutant, com 2 , in which formation of branch-like structures results from lack of SM identity (in Supplementary Fig. 4 of ${ }^{12}$.

## COM1 restricts palea cell size by thickening their cell walls

Besides the branch phenotype, com1.a exhibits a deviation in adaxial palea morphology, having a flat plane (Fig. 1O) versus the conventional distinct infolding observed in BW (Fig. 1P), $c v$. Foma, and wild barley (H. vulgare subsp. spontaneum). This deviation was visible in all paleae independent of their position along the spike. Histological analyses using cross sections of paleae middle-areas (Fig. 1O) revealed distinct features of com1.a in which sclerenchymtous cells, in particular, were expanded in size and numbers (Fig. 1Q-R). Cell expansion is thought to be tightly linked to cell wall extensibility ${ }^{13,14}$. We used transmission electron microscopy (TEM) to verify whether com1.a palea cells had altered cell wall features. Notably, mutant palea cells had clearly thinner cell wall structures, thus fewer mechanical obstructions for cell expansion, indicating that COM1 functions as a regulator of cell growth via cell wall modifications (Fig. 1S-Z and Supplementary Fig. 2). Moreover, mutant paleae generally formed three vascular bundles (VB) (Fig. 1Q) compared with two VBs in BW (Fig. 1R). By analogy to changes in palea cell walls, such alterations might also explain the rescission of SM identity, providing that COM1 similarly affects cell wall integrity in meristematic cells, e.g. SM cells or boundary cells (cells separating IM from SMs) (see below).

COM1 encodes a TCP transcription factor that inhibits inflorescence branching independent of COM2

To investigate the genetic basis of the com1.a phenotype, we constructed a genetic map by screening $\sim 6,000$ gametes for recombination events in an $\mathrm{F}_{2}$ population (Bowman $\times$ coml.a) followed by further analysis of $\mathrm{F}_{3}$ families (Supplementary Fig. 1C-F, Supplementary Table 1, 2 and 3) (Supplementary Note). This delimited a $\sim 1.4 \mathrm{Mb}$ interval carrying eight genes, one of which is a predicted transcription factor (HORVU 5Hr1G061270) entirely absent in com1.a, likely due to an induced deletion (Fig. 2A). The remaining seven genes either were not expressed or not differentially regulated between Wt and com1.a mutant (see below, the transcriptome analysis) (Fig1. A). To validate our candidate gene, we sequenced it in a barley TILLING population and in a set of 20 induced barley spike-branching mutants. We identified five branched mutants (Mut.3906, int-h.42, int-h.43, int-h. 44 and com1.j) missing the same transcription factor as com1.a (Supplementary Fig. 3, Supplementary Table 1 and 4) and six TILLING mutants with nonsynonymous amino acid substitutions (Fig. 2B; Supplementary Figs. 4-5; Supplementary Table 4). Mut. 3906 was used for confirming allelism with coml.a (Supplementary Note). Together, these data confirmed unambiguously that the transcriptional regulator was responsible for the spike-branching phenotype in com1.a. Annotation analysis of the COM1 protein showed that it belongs to the plant-specific TCP (Teosinte branched1 (TB1)/Cycloidea/Proliferating Cell Factor) transcription factor family; COM1 contains 273 amino acids and features one basic helix-loophelix TCP domain (Fig. 2B). Proteins of the TCP family fall into two classes, with COM1 belonging to class II, subclass CYC/TB1 ${ }^{15,16}$.

We detected a higher phenotypic penetrance for spike-branching in com 1.a (96.3\%) compared to com2.g (78\%). Double mutant (DM) plants outperformed either single mutant in grain number per spike, and supernumerary spikelet and branch production. Moreover, DM plants showed additional floral reversion in lateral spikelet positions (Supplementary Fig. 6; Supplementary Note), further indicating that the two loci act independently/additively in branch inhibition in barley.

## Barley COM1 function evolved under purifying natural selection and affects boundary

 signalingWe next asked whether COM1 has experienced functional conservation or divergence within the grasses and whether its sequence composition supports possible functional alteration. We used the comprehensive phylogenetic analyses available for grass TCPs ${ }^{16}$ and the references therein) as a starting point for our own COM1-specific phylogenic analyses. We identified first-and second-best (closest) homologs ( FBH and SBH ) of COM1 from sequenced grass genomes, including rice, maize, sorghum, hexaploid wheat and Brachypodium distachyon, as well as Arabidopsis thaliana (Fig. 2C). The homolog of maize TB1, obtained from the aforementioned grasses, was added as an out-group to the phylogeny. Our phylogenetic analysis confirmed that COM1 is restricted to grasses (Fig. 2C) ${ }^{17-19}$. The FBHs of COM1 in maize and rice were reported previously as ZmBAD1/WAB1 and OsREP1/DBOP (60.3\% and $65.5 \%$ sequence similarity to COM1), respectively ${ }^{17-20}$. Except for maize, none of the COM1 FBHs showed a duplicated copy (no inparalogs resulting from within-genome duplication after a speciation, ${ }^{21}$ (Supplementary Fig. 7AB)). Instead, COM1 seems to be an out-paralog ${ }^{21}$ of SBH including the sorghum gene SbMSD1 ( $44.1 \%$ sequence similarity to COM1 $)^{22}$. Functional characterization of COM1 homologs is only available for maize and rice (Table 1) ${ }^{17-19}$.

Maize $B A D 1 / W A B 1$ transcripts are mainly detected at the IM-to-BM (branch meristem) boundary region as well as between pulvinus and lateral branches (in Fig. 3J of ${ }^{18}$ ). Consequently, loss-offunction badl/wabl mutants display organ fusion (a known boundary formation defect) resulting in reduced branch number (from 5.8 in Wt to 1.3 in mutant siblings) and angle size, and more upright tassel branches ${ }^{17,18}$. This gene was dubbed a boundary formation gene promoting lateral meristem (e.g. branch) and axillary organ (e.g. pulvinus) formation in Wt maize ${ }^{17,18}$.

Our TILLING analysis for the BAD1/WAB1 ortholog in sorghum revealed one mutant (ARS180 line; A144T) with both upright tassel branches ( $10.95^{\circ}$ in Wt vs. $5.2^{\circ}$ in mutant, $P \leq 0.001$; Fig. 3, Supplementary Table 5) and reduced primary branch number per node (5.4 in Wt vs. 4.2 in mutant, $P \leq 0.05$; Supplementary Table 5). These data suggest a similar positive role of sorghum BAD1/WAB1 in pulvinus development and branch initiation/formation, revealing functional conservation of the protein between sorghum and maize. Moreover, we detected no obvious change in sorghum palea morphology except one additional vascular bundle, similar to maize (Table 1). The rice homolog of COM1, OsREP1/DBOP, shows a major effect in promoting palea identity, growth and development, with no effect on branch angle or branch initiation ${ }^{19,20}$. Loss-of-function mutants display smaller paleae due to less differentiation and severely reduced size of palea cells; a clear contrast to palea defects in barley (Table 1). Our TILLING analysis of COM1 homologs in Brachypodium distachyon ( $B d$ ) identified several mutants. Phenotypic investigation of two lines (5446: Q116* and 8373: S146N) (Supplementary Table 4, Supplementary Note) revealed similar phenotypes to the aforementioned non-Triticeae species (Table 1) (Fig. 3F-P). Similarly, we observed a palea defect (Fig. 3G) but histological analyses revealed no changes in cell expansion, except the formation of one additional vascular bundle in each mutant (Fig. 3L-M). We also observed a reduction in branch angle because of smaller or absent pulvini; however, the number of lateral branches was not altered in either Brachypodium mutants (Fig. 30-Q). In conclusion, COM1 homologs within non-Triticeae grasses primarily promote boundary formation and cell differentiation (as in rice palea)/proliferation (as seen for pulvinus) (Table 1) but also contribute to formation of lateral axillary organs, e.g. branch or pulvinus, creating more complex inflorescence structures.

To better understand the contrasting COM1 function of branch-inhibition in barley versus branchformation in non-Triticeae grasses, we analyzed barley COM1 expression using qRT-PCR and
semi-qPCR (Fig. 4A-C) followed by mRNA in-situ hybridization (Fig. 4D-G). Barley COM1 transcripts were detected in paleae (Fig. 4C, F-G), VB of the rachis (Fig. 4E), and importantly at the base of forming SMs throughout the boundary region separating SMs from IM (IM-to-SM boundary) and between lateral and central SMs (Fig. 4E-F), similar to non-Triticeae grass species, e.g. maize. This expression pattern suggests involvement of barley COM1 in specification of the spikelet meristematic boundary. However, since central and lateral spikelets do not fuse into each other or to the IM (as long branches do in maize or sorghum), barley COM1 may not be involved in boundary formation per se. In combination with our cell wall analysis in palea cells, this implies that barley COM1 may be involved in formation of meristem identity signals released from the boundary region through thickened cell walls encompassing boundary cells; thus, COM1 affects boundary signaling via cell wall modifications ${ }^{23}$. Recently acquired protein motifs specific to Triticeae COM1 may support this functional modification (Fig. 2D Motifs 7, 13, 15 and 17 and

## Supplementary Fig. 8).

We checked whether natural selection has acted upon barley COM1 sequence composition and function, and consequently formation of unbranched spikes in barley. Re-sequencing of the barley COM1 coding sequence in a panel of 146 diverse barley landraces and 90 wild barleys 24,25 (Supplementary Table 6) revealed very little natural sequence variation (site diversity of $\mathrm{pi}=$ 0.0006). Eleven SNPs resulted in a simple 12-haplotype network (Supplementary Fig. 9) comprising only two main haplotypes, neither of the 12 showed mutant spike or palea phenotypes (Supplementary Fig. 9). This suggests that barley COM1 underwent purifying natural selection most likely for maintaining inflorescence shape.

Putative transcriptional regulation for barley spike

To further examine the molecular basis of COM1 branch inhibition within the barley spike, we performed qRT-PCR to locate COM1 relative to other previously known spike architecture genes (Fig. 5A, black arrows). We localized COM1 downstream of VRS4 (HvRA2; orthologous to maize RAMOSA2), the main regulator of row type and branch inhibition ${ }^{7,12}$ (Supplementary Fig. 10). COM2 transcript levels in immature spikes of com1.a were slightly lower only during later stages of development (Supplementary Fig. 10F).

We performed comparative RNA-seq using mRNAs from immature spikes of BW and coml.a as well as the mutant progenitor, $c v$. Foma, when spike patterning begins to differ between genotypes, plus two subsequent stages (Figs. 1 and 5B; Online Materials). Differentially expressed (DE) genes were identified in comparisons of com1.a versus BW and mutant versus $c v$. Foma. We found 83 genes (Log2 FoldChanges; LFC $\mid \geq 0.5$; adjusted $P<0.05$ ) DE in at least one stage in both comparisons (Fig. 5; Supplementary Figs. 11-12; Supplementary Source Data 1): 18 and 65 genes up- and downregulated in BW-NIL(com 1.a), respectively.

Among significantly downregulated genes across all three stages (Fig. 5B), we detected one SQUAMOSA PROMOTER-BINDING-LIKE 8 gene (SPL8, HORVU2Hr1G111620) homologous to the boundary gene LIGULELESS 1 in maize (LG1; ZmSPL4), rice OsLG1 (OsSPL8) and hexaploid wheat TaLG1 (TaSPL8) ${ }^{26}$. Similar to the known maize module $\left(R A 2 \rightarrow W A B 1 / B A D 1 \rightarrow L G 1 ;{ }^{17,18}\right.$, we found that $V R S 4 / H \nu R A 2 \rightarrow C O M 1 \rightarrow H v L G 1$ regulation appears to be maintained in barley. Transcriptome analysis of leaf tissues in a wheat liguleless 1 mutant revealed TaSPL8 as a cell wall-related gene ${ }^{26}$. Notably, no spike-branching phenotype was reported for this erected-leaf liguleless mutant, most likely due to genetic redundancy.

Among other significantly downregulated genes in coml.a, we found important genes associated with cell wall properties and integrity (Fig. 5D). These include HORVU5Hr1G006430, a leucinerich repeat receptor kinase (LRR-RLK), and HORVU3Hr1G030260 belonging to the cytochrome

P450 superfamily. LRR-RLKs and CYP450s are involved in lignin deposition to cell walls upon cellulose biosynthesis inhibition and during lignin biosynthesis per se, respectively ${ }^{27,28}$. Other cell wall-related genes include two genes encoding xyloglucan endotransglucosylase/hydrolase (XTH) 25 (HORVU7Hr1G098280 and HORVU7Hr1G098260) and barley Low Silicon Influx 1 (HvLSII; HORVU6Hr1G075850) ${ }^{29}$, both downregulated in the mutant. These cell wall-related genes may support COM1 involvement in regulation of cell wall mechanics of palea cells and the IM-to-SM boundary, and indirectly, putative signaling required for acquiring SM identity.

## Discussion

Here we report that barley COM1 affects cell growth through regulation of cell wall properties specifically in palea and IM-to-SM boundary cells; the latter provide identity signals to barley SMs ${ }^{30}$. Signaling to the SM to establish its identity is a key genetic switch by which barley inflorescences acquire spike architecture, not seen in non-Triticeae grasses. COM1 is present only in grasses, with no true Arabidopsis ortholog; intriguingly, we observed functional modification of COM1 between barley and non-Triticeae grass species. The modification in COM1 function was clear by comparing mutant versus wild type inflorescence phenotypes across grass species, and was further elucidated by our analysis at the cellular/molecular level. At the phenotypic level, barley COM1 inhibits spike-branching to simplify floral architecture; whereas in non-Triticeae COM1 homologs promote formation of lateral branches (e.g. up to $60 \%$ more branches in maize when compared to mutants ${ }^{18}$ ) to sustain the ancestral inflorescence complexity.

At the cellular level in non-Triticeae grasses, COM1 has evolved as a boundary formation factor, its putative ancestral role (Fig. 5C-D). Consequently, loss-of-function of COM1 homologs result in lack of boundaries and subsequent organ fusion, e.g. BM into IM as demonstrated by a
low number of lateral branches in maize mutants. Notably, this loss of function did not change the overall inflorescence architecture in non-Triticeae grasses. Barley coml loss-of-function, however, increases branch formation/extension mostly from SMs, a clear deviation from the canonical spike form. As barley COM1 displayed a similar boundary mRNA expression as seen in maize, we presume that barley COM1 functions through boundary signaling ${ }^{30}$, thereby affecting the identity of adjacent SMs . The formation of boundary regions in barley coml mutants (no organ fusion) via pathway(s) independent of COM1 (Fig. 5E-F), and thus separation of meristematic zones in this mutant, implies that barley IM-to-SM boundary cells fail to deliver proper identity-defining signals to SMs. This signaling failure may perturb transcriptional programs required to establish identity in barley SMs ; such meristems eventually revert back to IM-like meristems forming a branch-like structure (Fig. 5F). The function of the boundary, and boundary-expressed genes (e.g., maize RAMOSA1-3), as a signaling center for adjacent meristems, e.g. SMs, has been proposed in grasses, yet features of these signals remain unknown ${ }^{30}$. Signals associated with COM1 might include micromechanical forces derived from formation of rigid cell walls enclosing boundary cells. Involvement of COM1 in printing such mechanical regulation is supported by our anatomical analysis of palea cell walls and further confirmed by our transcriptome analysis of immature barley spike samples. $H \nu L G 1, H \nu L S I$ and genes encoding one LRR-RLK, one CYP450 and two XTHs were among the most downregulated in the mutant and involved in defining cell wall properties ${ }^{26-28,31}$. The contribution of boundary cell wall mechanics in guiding organogenesis within reproductive tissues has been well described in dicot species ${ }^{32}$.

Such functional modification usually includes constraints on expression patterns, protein sequence/structure or participation in molecular networks, often assumed to be associated with gene duplication ${ }^{21}$. Notably, COM1 shows no sign of duplication within the barley genome and
as mentioned above displays a similar expression pattern to maize ${ }^{17,18}$. Thus, COM1's functional modification and implication in boundary-derived signaling seem to be associated with its protein sequence (Fig. 2D) and the respective downstream molecular networks. Furthermore, COM1's role in regulating floral complexity-levels in grasses fits well with the view that TCP transcription factors are growth regulators and evolutionary architects of plant forms that create diversity ${ }^{33}$. They influence the final architecture of plants in response to endogenous and/or external conditions. Thus, the barley floral reductionism (from compound spike to spike form; Fig. 1A-D) contributed by COM1, might be a response to the ecological expansion of the Triticeae into more temperate climates ${ }^{3}$.

In summary, our findings enabled identification of a barley SM identity module, VRS4 (HvRA2) $\rightarrow$ COM1 $\rightarrow$ HvLG1, which works independently of COM2 and inhibits spike-branching via boundary-defined signals (Fig. 5A and Supplementary Fig. 12). Our model of branch-inhibition in barley spikes opens a new window into grass inflorescence evolution and molecular crop breeding, and the elevated grain number per spike in coml.a/com $2 . g$ double mutants supports this notion

## Methods

## Barley Plant material

The Nordic Genetic Resource center, the National Small Grains Collection (US Department of Agriculture), and the IPK gene bank were inquired to access 'Compositum-Barley' mutants (Supplementary Table 4). Bowman near isogenic line carrying coml.a allele ((i.e., BWNIL(coml.a); syn. BW189 or CIho 11333)), its two-rowed progenitor Foma and Wt barley cv. Bowman were used for phenotypic descriptions, whole genome shotgun sequencing (WGS) (see
below) as well as SEM analysis. Plant material used to generate mapping populations is reported in the corresponding section for genetic mapping. For haplotype analysis, a core collection including of 146 diverse barley landraces and 90 diverse wild barleys were sequenced ${ }^{24,25}$ (Supplementary Table 6).

## Plant phenotyping

Barley; For phenotyping the mapping population, barley BW-NIL(com1.a), Bowman and the corresponding segregating populations ( $\mathrm{F}_{2}$ and $\mathrm{F}_{3}$ ) were grown side by side under greenhouse conditions at the IPK. For a plant to be assigned as a branched spike mutant, spike shape at all tillers was visually inspected for presence of at least one extra spikelet at any rachis node. Grain related characters such as weight, number, etc. were also measured at harvest for the two parental lines of the mapping population. In case of phenotyping of the barley TILLING population (see below and the Supplementary Table 4), other induced mutants (Supplementary Table 4) as well as the BW-NIL(com1.a) / BW-NIL(com2.g) double mutants (see below), visual phenotyping for variation in palea structure was also applied in addition to the aforementioned phenotyping approach used for spike branching in $\mathrm{F}_{2}$ and $\mathrm{F}_{3}$ progenies. In case of TILLING, from the six mutants for which the spike-branching phenotype was observed at M4, only three (carrying mutation inside the protein domain; M4.15104, M4.4406, and M4.2598) were subjected for further study at M5 generation. For which, one M4 plant was selected from which 16 M5 plants were grown and phenotyped.

Brachypodium distachyon: An already published TILLING population and the corresponding Wt accession Bd21-3 were used for phenotyping ${ }^{34}$. That included measurement of branch angle, as proxy for pulvinus size, spikelet number per spike, floret number per spikelet and palea structure.

Hence, per M4 plants, only homozygous M5 plants either with mutant genotype aa (3 to 4 plants) or wild type bb (3 to 4 plants) were selected. Per M5 plants, 10 M6 plants were grown under greenhouse conditions at the IPK and used for measurement. Thus, 30 to 40 plants per group and for each plant angles of basal spikelets in main tillers were considered for measurement. To this end, spikes were first imaged and then imported to the ImageJ tool (https://imagej.nih.gov/ij/index.html) for angle measurement. In case of original wild type Bd213, five plants were grown and measured. The same set of plants and the corresponding spike images were used to calculate number of spikelets per spike and number of floret per spikelet. In case of palea phenotyping: paleae were visually inspected across all spikes per plant. We detected plants with paleae being sensitive to exogenous finger-pressure, and thus such plants were scored as mutants. A gentle finger-pressure led the mutant paleae to crash from the middle longitude-line so that a scissors-like structure was formed (Fig. 3G). The crashing was not evident in Wt plants even with severe exogenous hand-pressure.

Sorghum: An already published TILLING population and the corresponding Wt accession BTx623 were used for phenotyping ${ }^{35}$. To measure primary branch number and angle, 5 to 8 plants, either M5 or M6 generations, per family including a Wt sorghum family cv. BTx623 were grown under greenhouse conditions at the IPK. Average branch number per panicle, e.g. per plant, was calculated by counting all branches that originated per each rachis node (Supplementary Table 5). The Average branch number per family was then used to compare with the same value obtained from Wt family BTx623. To measure the branch angle, for each plant 3 to 4 basal nodes per panicle were separately photographed. Each node contained at least 1 and up to 5 lateral branches. To cover angles of each individual branch per node, each node was photographed multiple time. Images
were then imported to ImageJ for angle measurement as described for Brachypodium (see above). Spikelet organs of palea and glume as well as overall grain set were also visually inspected for any visible alteration.

## Marker development

Bowman near isogenic line BW-NIL(com1.a) and two-rowed progenitor of com1.a, cv. Foma, were survey sequenced using WGS approach (see below). These sequence information were compared against already available WGS of Bowmann ${ }^{36}$, as present in Supplementary Fig. 1. Polymorphisms e.g. SNPs detected from this comparison (named as Next Generation Sequencing based markers (NGS-based markers)) between the two parental lines were converted to restriction enzyme based CAPS (http//nc2.neb.com/NEBcutter2/) markers to derive a restriction based genetic marker as previously described ${ }^{12}$. The developed genetic markers (Supplementary Table 1) were used to screen the corresponding mapping population.

## Genetic mapping and map-based cloning of com1.a

com1.a was initially proposed to be located in chromosome 5HL with unknown genetic position ${ }^{11}$. A barley $\mathrm{F}_{2}$ mapping population was developed by crossing Bowman introgression line BW NIL(com1.a) and barley cv. Bowman. For initial mapping 180 individuals were analyzed and genotyped using the aforementioned NGS based markers. The pattern of segregation between mutant and $\mathrm{Wt} \mathrm{F}_{2}$ plants fitted a 3:1 ratio typical for a monogenic recessive gene. Linkage analysis of segregation data was carried out using maximum likelihood algorithm of Joinmap 4.0. Kosambi mapping function was used to convert recombination fractions into map distances. The linkage
mapping was further followed by a high-resolution genetic mapping in which almost 6,000 gametes were screened with the flanking markers NGS045 and NGS049. For narrowing down the com1.a genetic interval; the identified recombinants (a set of 109) were used. From 109, a set $15 \mathrm{~F}_{2}$ were labeled (Supplementary Table 2-3) to becritical recombinants for precisely defining the com1.a genetic interval. From each of the 15 critical plants, $16 \mathrm{~F}_{3}$ progenies were evaluated for their phenotypes and marker genotypes at the com1.a candidate gene. (Supplementary Table 2 and S3). Based on $\mathrm{F}_{2}$ high-resolution mapping and $\mathrm{F}_{3}$ genetic analysis described, two tightly linked markers, NGS084 and NGS094, were taken to harvest the available barley genome BAC sequence data (data not shown). A single BAC contig spanning 1.4 Mb of the minimal tiling path (MTP) was identified. Genes in this region were utilized for marker development and further genetic mapping that resulted in identification of a $\sim 380 \mathrm{~kb}$ region deleted in the mutant BW-NIL(com 1.a). The deleted fragment contains a single gene, i.e., comi.a.

## Allelism test of com1 mutants.

Mut. 3906 mutant (Supplementary Table 4) was crossed with BW-NIL(com1.a) to test for allelism. The resultant $\mathrm{F}_{1}$ plants showed a mutant spike phenotype confirming its allelism with com1. All alleles showed phenotypic similarities with coml and mutations in the COM1 gene sequences.

## Double-mutant analysis

Double mutants (DM) were generated by crossing mutant BW-NIL(com1.a) to BW-NIL(com2.g), followed by selfing of the $\mathrm{F}_{1}$ progeny. All obtained $183 \mathrm{~F}_{2}$ plants were subsequently genotyped
(Supplementary Table 1). In case of com2.g mutation detection, a primer pair (Com2Bw_Sfil_FR; Supplementary Table 1) spanning the A300C haplotype (that differentiate the Wt Bowman allele A from com2.g mutant C allele at position 300bp ${ }^{12}$ were used for sequencing and to classify $\mathrm{F}_{2}$ genotypes for the com 2 locus. Thus, genotypic classes include C 300 C allele as homozygous mutant, AA as Wt and CA as heterozygous. In case of com1.a, a presence/absence marker was used (Supplementary Table 1), where absence of the COM1 gene was considered as homozygous com1.a mutant. A total number of five plants were recovered as homozygous double mutants (from $183 \mathrm{~F}_{2}$ plants) (Supplementary Note) that were used for generating $\mathrm{F}_{3}$ plants used in subsequent DM phenotypic analysis (Supplementary Fig. 6). Two DM F3 families, each consisting of 20 plants along with 20 plants from each of the single mutants and 20 wild type cv . Bowman plants, were grown and used for phenotyping (Supplementary Fig. 5 and 6).

## TILLING analysis

Barley: For identifying further mutant alleles of COM1 in barley TILLING populations including EMS (Ethyl methanesulfonate) treated population of cv . Barke consisting 10279 individuals were screened ${ }^{37}$. A primer combination (Supplementary Table 1) was used to amplify the coding region of the COM1 gene. The amplicon was subjected to standard procedures using the AdvanCETM TILLING kit as described in ${ }^{12}$. Amplified products were digested with dsDNA cleavage kit followed by analysis via mutation discovery kit and gel-dsDNA reagent kit. These were performed on the AdvanCETM FS96 system according to manufacturer's guidelines (advancedanalytical, IA, USA). The amplified ORF was also re-sequenced by Sanger sequencing using primers listed in Supplementary Table 1.

Brachypodium distachyon: Mutation detection screenings were performed in the TILLING collection of chemically induced Brachypodium mutants, described in ${ }^{34}$. TILLING by NGS consists to sequence 500 bp PCR fragments libraries prepared from 2600 individual genomic DNA pooled in two dimensions. A dual indexing system, one placed on the 5'adaptater, and the second one on the 3'adaptater, added by a two-step PCR (for primer sequence; see Supplementary Table 1) allow a direct identification of the sequence identities. The first PCR amplification is a standard PCR with target-specific primers carrying Illumina's tail (Supplementary Table 1) and 10 ng of Brachypodium genomic DNA. Two microliter of the first PCR product served as a template for the second PCR amplification, with a combination of Illumina indexed primers (Supplementary Table 1). The sequencing step of PCR fragments was done on an Illumina Miseq personal sequencer using the MiSeq Reagent Kit v3 (Illumina ${ }^{\circledR}$ ) followed by quality control processes for libraries using the PippinHT system from SAGE Sciences for libraries purification, and the Bioanalyzer ${ }^{\mathrm{TM}}$ system from Agilent ${ }^{\circledR}$. To identify induced mutations, a bioinformatic pipeline, called "Sentinel" was used to analyze the data sequences (IDDN.FR.001.240004.000.R.P.2016.000.10000). Prediction of the impact of each mutation (Supplementary Table 4) was made with SIFT software as described in in ${ }^{34}$. The amplified ORF was also re-sequenced by Sanger sequencing using primers listed in Supplementary Table 1.

Sorghum: A pedigreed sorghum mutant library was established in the inbred line BTx623, which was used to produce the sorghum reference genome. This mutant library consists of 6400 M 4 seed pools derived from EMS-treated sorghum seeds by single seed descent. Whole genome sequencing of a set of 256 lines uncovered 1.8 million canonical EMS-induced mutations ${ }^{34}$. We searched the sorghum ortholog of the barley COM1 in the aforementioned sequence database to identity plants carrying mutation. To confirm the mutations, the amplified ORF was also re-sequenced by Sanger sequencing using primers listed in Supplementary Table 1.

## Haplotype and network analysis

Genomic DNA from a core collection including 146 landrace and intermedium barley accessions as well as 90 wild barley (Supplementary Table 6) was PCR-amplified using specific primers to amplify full coding sequence of the barley COM1 gene. Amplified fragments were used for direct PCR sequencing (Sanger method; BigDye Terminator v3.1 cycle sequencing kit; Applied Biosystems). A capillary-based ABI3730xl sequencing system (Applied Biosystems) at the sequencing facility of IPK was used to separate the fluorescently terminated extension products. Sequence assembly was performed using Sequencher 5.2.2.3. Visual inspection of sequence chromatograms was carried out using Sequencher to detect the corresponding SNPs. Network analysis of the nucleotide haplotypes was carried out using TCS v1.21 software (http://darwin.uvigo.es/software/tcs.html ) ${ }^{38}$.

## RNA extraction, sequencing and data analysis

RNA Extraction; For the RNA-seq study, immature spike tissues were collected from BWNIL(com1.a) and WT progenitor Bowman and the donor cultivar Foma. Plants were grown under phytochamber conditions of 12 h light $\left(12{ }^{\circ} \mathrm{C}\right)$ and 12 h dark $\left(8^{\circ} \mathrm{C}\right)$. Tissues were always collected at the same time slot (14:00 to 17:00) during the day at three different developmental stages including TM and GP, and pooled stages of LP+SP. Three biological replicated were applied that resulted in 27 individual tissue samples. The TRIzol method (Invitrogen) was applied to extract total RNA from immature spike tissues followed by removal of genomic DNA contamination using RNAse-free DNAse (Invitrogen). RNA integrity and quantities were analyzed via Agilent 2100 Bioanalyzer (Agilent Technologies) and Qubit (Invitrogen), respectively.

Preparation and sequencing of mRNA-Seq libraries: SENSE mRNA-Seq libraries (27 $=3$ reps $/ 3$ stages $/ 3$ genotype) were prepared from $2 \mu$ g total RNA according to the protocol provided by the manufacturer (Lexogen GmbH, Vienna, Austria). Libraries were pooled in an equimolar manner and analysed electrophoretially using the Agilent 4200 TapeStation System (Agilent Technologies, Inc., Santa Clara, CA, USA). Quantification of libraries and sequencing (rapid run, paired-end sequencing, $2 \times 100$ cycles, on-board clustering) using the Illumina HiSeq2500 device (Illumina, San Diego, California, USA) were as described previously ${ }^{39}$.

## Analysis of the RNAseqdata:

The reads from all three biological replicates were pooled per stage and each pool was independently mapped to barley pseudomolecules 36, (160404_barley_pseudomolecules_masked.fasta) using TopHAT2 40. Gene expression was estimated as read counts for each gene locus with the help of featureCounts ${ }^{41}$ using the gene annotation file Hv_IBSC_PGSB_r1_HighConf.gtf and fragment per million (FPM) values were extracted from the BWA-aligned reads using Salmon ${ }^{42}$. Genes that showed FPM of 0 across all 45 samples were excluded from expression levels calculations. Expression levels were normalized by TMM method and $p$-values were calculated by an exact negative binomial test along with the genespecific variations estimated by empirical Bayes method in edgeR ${ }^{43}$. The Benjamini-Hochberg method was applied on the $p$-values to calculate $q$-values and to control the false discovery rate (FDR). Differentially expressed genes (DEGs) were defined as $q$-value $<0.05, \log 2$ fold change $>$ 1 or $<-1$.

## Quantitative RT-PCR

Tissue sampling, RNA extraction, qualification and quantification was performed as described above. Reverse transcription and cDNA synthesis were carried out using SuperScript III Reverse Transcriptase kit (Invitrogen). Real-time PCR was performed using QuantiTect SYBR green PCR kit (Qiagen) and the ABI prism 7900HT sequence detection system (Applied Biosystems). Each qRT-PCR comprised at least four technical replicates, and each sample was represented by three biological replicates. The Actin gene based primers (Supplementary Table 1) were used as the reference sequence. qRT-PCR results were analyzed using SDS2.2 tool (Applied Biosystems) in which the presence of a unique PCR product was verified by dissociation analysis. Signific ance values were calculated using Student's $t$-test (two-tailed). The relevant primer sequences per species are detailed in Supplementary Table 1.

## Phylogenetic analysis

A comprehensive analysis of TCP proteins in grasses was already available we therefore focused only on constructing a detailed phylogeny of the COM1 protein among grasses and the barley TCP genes. Thus, barley COM1 was then queried against Ensembl Plants database to retrieve its orthologs or homologs from other grasses. The same database was also used to extract all barley TCP proteins. In case of COM1, protein and DNA sequence of the first and the second best hit (FBHs and SBHs) to each of the grass species were retrieved. To re-check their homology with barley COM1, the retrieved sequences were blasted back against the barley genome. For phylogenetic analysis, protein sequences were initially aligned using the algorithm implemented in CLC sequence viewer V7.8.1 (https://www.qiagenbioinformatics.com ). UPGMA tree construction method and the distance measure of Jukes-Cantor were implemented for constructing the
phylogenetic tree using CLC sequence viewer. The bootstrap consensus tree inferred from 1000 replicates was taken to represent the evolutionary relationship of the sequences analyzed.

## mRNA in situ hybridization

Three separated segments (excluding the TCP domain) from the COM1 gene each containing 300360 bp were synthesized (probe 1 and 2, GenScript Biotech , Netherlands) or amplified (probe 3) using cDNAs isolated from immature spikes of cv . Bonus and specific primers (Supplementary Table 1). The resulting products were cloned into pBluescript II KS (+) vector (Stratagene, La Jolla, CA, USA and GenScript Biotech, Netherlands). Linearized clones by HindIII or NotI were used as templates to generate antisense (HindIII) and sense (NotI) probes using T3 or T7 RNA polymerase. In situ hybridization was conducted with a single pool of the three aforementioned probes as described previously ${ }^{44}$.

## Scanning electron microscopy

Scanning electron microscopy (SEM) was performed on immature spike tissues at five stages including triple mound, glume, lemma, stamen, and awn primordium from greenhouse-grown plants. SEM was conducted as described elsewhere ${ }^{45}$.

## DNA preparation

DNA was extracted from leaf samples at the seedling as described before ${ }^{12}$. Plants for which the DNA was prepared included barley, Sorghum and Barchypodium. That included either mapping population, TILLING mutants or both.

## Palea anatomical and transmission electron microscopy analyses.

Plant material consisting of intact spikes shortly before anthesis was collected. Spikelets containing no grains were used for dissecting paleae that were subsequently stored in fixative ( $4 \% \mathrm{FA}, 1 \%$ GA in 50 mM phosphate buffer). Central spikelets (in case of barley) were isolated and placed in a 15 ml test tube containing 10 ml fixative, followed by extensive degassing until all probes had settled. Material was stored in a fridge until use. After three washes with A.D., lemma and palea were isolated by cutting away a small part at the base of the spikelet. Isolated paleae were placed in a flat bottomed mould filled with $4 \%$ liquid agarose $\left(\sim 60^{\circ} \mathrm{C}\right)$. After setting, agarose blocks were removed from the mold and the encapsuled Palea was cut into $1-2 \mathrm{~mm}$ wide sections using fresh razor blades. The embedding in agarose facilitated the cuttings while preventing unnecessary damage to the probes. After embedding in Spurr resin (see next page) semithin sections of $2 \mu \mathrm{~m}$ were cut on an Leica Ultracut. Sections were allowed to be baked in on a droplet of $0,02 \%$ Methylene blue/Azur blue on a heating plate set at $90^{\circ} \mathrm{C}$. Recordings were made using a Keyence VHX-5000 digital microscope (Keyence Germany GmbH, Neu-Isenburg, Germany).

## Sequence information and analysis

Unpublished sequence information for the BAC contigs 44150 spanning the interval between NGS084 and NGS094) was made available from the international barley sequencing consortium (through Nils Stein). This sequence information was used for marker development during high resolution mapping, map-based cloning and COM1 gene identification. Later on, the initial contigs 44150 sequence information was re- checked and confirmed with the higher-quality barley genome assembly and annotation data ${ }^{23}$.

Whole genome shotgun sequencing of BW-NIL (com1.a)

A whole-genome shotgun library was constructed using standard procedures (TruSeq DNA; Illumina) and quantified using real-time PCR. Cluster formation using the cBot device and pairedend sequencing (HiSeq2000, $2 \times 101$ cycles) were performed according to the manufacturer's instructions (Illumina).

## References

1. Zhang, D.B. \& Yuan, Z. Molecular Control of Grass Inflorescence Development. Annual Review of Plant Biology, Vol 65 65, 553-78 (2014).
2. Vegetti, A. \& Anton, A.M. Some Evolution Trends in the Inflorescence of Poaceae. in Flora Vol. 190 225-228 (1995).
3. Kellogg, E.A. et al. Early inflorescence development in the grasses (Poaceae). Frontiers in Plant Science 4 (2013).
4. Endress, P.K. Disentangling confusions in inflorescence morphology: Patterns and diversity of reproductive shoot ramification in angiosperms. Journal of Systematics and Evolution 48, 225-239 (2010).
5. Remizowa, M.V., Rudall, P.J., Choob, V.V. \& Sokoloff, D.D. Racemose inflorescences of monocots: structural and morphogenetic interaction at the flower/inflorescence level. Annals of Botany 112, 1553-1566 (2013).
6. Kellogg, E.A. Evolutionary history of the grasses. Plant Physiology 125, 1198-1205 (2001).
7. Koppolu, R. \& Schnurbusch, T. Developmental pathways for shaping spike inflorescence architecture in barley and wheat. J Integr Plant Biol 61, 278-295 (2019).
8. Lemmon, Z.H. et al. The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation. Genome Research 26, 1676-1686 (2016).
9. Malcomber, S.T., Preston, J.C., Reinheimer, R., Kossuth, J. \& Kellogg, E.A. Developmental gene evolution and the origin of grass inflorescence diversity. Advances in Botanical Research: Incorporating Advances in Plant Pathology, Vol 44 44, 425-481 (2006).
10. Vollbrecht, E., Springer, P.S., Goh, L., Buckler, E.S. \& Martienssen, R. Architecture of floral branch systems in maize and related grasses. Nature 436, 1119-1126 (2005).
11. Druka, A. et al. Genetic dissection of barley morphology and development. Plant Physiol 155, 617-27 (2011).
12. Poursarebani, N. et al. The Genetic Basis of Composite Spike Form in Barley and 'Miracle-Wheat'. Genetics 201, 155-165 (2015).
13. Cosgrove, D. Biophysical Control of Plant-Cell Growth. Annual Review of Plant Physiology and Plant Molecular Biology 37, 377-405 (1986).
14. Cosgrove, D.J. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. Journal of Experimental Botany 67, 463-476 (2016).
15. Martin-Trillo, M. \& Cubas, P. TCP genes: a family snapshotten years later. Trends Plant Sci 15, 31-9 (2010).
16. Zhao, J. et al. Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat (Triticum aestivum L.). Frontiers in Plant Science 9 (2018).
17. Lewis, M.W. et al. Gene regulatory interactions at lateral organ boundaries in maize. Development 141, 4590-4597 (2014).
18. Bai, F., Reinheimer, R., Durantini, D., Kellogg, E.A. \& Schmidt, R.J. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize. Proceedings of the National Academy of Sciences of the United States of America 109, 12225-12230 (2012).
19. Zeng, D.-D. et al. DBOP specifies palea development by suppressing the expansion of the margin of palea in rice. Genes \& Genomics 38, 1095-1103 (2016).
20. Yuan, Z. et al. RETARDED PALEA1 Controls Palea Development and Floral Zygomorphy in Rice. Plant Physiology 149, 235-244 (2009).
21. Studer, R.A. \& Robinson-Rechavi, M. How confident can we be that orthologs are similar, but paralogs differ? Trends in Genetics 25, 210-216 (2009).
22. Jiao, Y.P. et al. MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nature Communications 9 (2018).
23. Aguilar-Martinez, J.A., Poza-Carrion, C. \& Cubas, P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19, 458-472 (2007).
24. Koppolu, R. et al. Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proceedings of the National Academy of Sciences of the United States of America 110, 13198-13203 (2013).
25. Russell, J. et al. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nature Genetics 48, 1024-1030 (2016).
26. Liu, K. et al. Wheat TaSPL8 Modulates Leaf Angle Through Auxin and Brassinosteroid Signaling. Plant Physiology 181, 179-194 (2019).
27. Van der Does, D. et al. The Arabidopsis leucine-rich repeatreceptor kinase MIK2/LRRKISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. Plos Genetics 13 (2017).
28. Gou, M.Y., Ran, X.Z., Martin, D.W. \& Liu, C.J. The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Nature Plants 4, 299-310 (2018).
29. Chiba, Y., Mitani, N., Yamaji, N. \& Ma, J.F. HvLsi1 is a silicon influx transporter in barley. Plant Journal 57, 810-818 (2009).
30. Whipple, C.J. Grass inflorescence architecture and evolution: the origin of novel signaling centers. New Phytol 216, 367-372 (2017).
31. Hara, Y., Yokoyama, R., Osakabe, K., Toki, S. \& Nishitani, K. Function of xyloglucan endotransglucosylase/hydrolases in rice. Annals of Botany 114, 1309-1318 (2014).
32. Landrein, B. \& Ingram, G. Connected through the force: mechanical signals in plant development. Journal of Experimental Botany 70, 3507-3519 (2019).
33. Manassero, N.G., Viola, I.L., Welchen, E. \& Gonzalez, D.H. TCP transcription factors: architectures of plant form. Biomol Concepts 4, 111-27 (2013).
34. Dalmais, M. et al. A TILLING Platform for Functional Genomics in Brachypodium distachyon. PLoS One 8, e65503 (2013).
35. Jiao, Y.P. et al. A Sorghum Mutant Resource as an Efficient Platform for Gene Discovery in Grasses. Plant Cell 28, 1551-1562 (2016).
36. Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427 (2017).
37. Gottwald, S., Bauer, P., Komatsuda, T., Lundqvist, U. \& Stein, N. TILLING in the two rowed barley cultivar 'Barke' reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2, 258 (2009).
38. Clement, M., Posada, D. \& Crandall, K.A. TCS: a computer program to estimate gene genealogies. Mol Ecol 9, 1657-9 (2000).
39. Beier, S. et al. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. Scientific Data 4, 170044 (2017).
40. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14, R36 (2013).
41. Liao, Y., Smyth, G.K. \& Shi, W. featureCounts: an efficient general purp ose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930 (2014).
42. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. \& Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods 14, 417-419 (2017).
43. Robinson, M.D., McCarthy, D.J. \& Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2010).
44. Komatsuda, T. et al. Six-rowed barley originated from a mutation in a homeodomainleucine zipper I-class homeobox gene. Proceedings of the National Academy of Sciences of the United States of America 104, 1424-1429 (2007).
45. Lolas, I.B. et al. The transcript elongation factor FACT affects Arabid opsis vegetative and reproductive developmentand genetically interacts with HUB1/2. PlantJ 61, 68697 (2010).

Acknowledgments: We thank the US Department of Agriculture-Agricultural Research Service (USDA-ARS), the National Small Grains Collection, Aberdeen (ID); the Nordic Genetic Resources Center (NordGen), Alnarp, Sweden; and the IPK Genebank, Germany, for providing the mutants and germplasm for haplotype analysis. The authors would like to thank Dr. Shun Sakuma for fruitful discussions and help in conducting mRNA in-situ hybridizations. We are thankful to Dr. Marion Dalmais, INRA Evry, France, for providing access to and screening of the Brachypodium distachyon TILLING resource, Anne Fiebig for help with data submission to ENA and Sandra Driesslein, Jenny Knibbiche, Mechthild Pürschel, Ines Walde, Kerstin Wolf, Marion Benecke and Kirsten Hoffie for excellent technical assistance.

Funding: During this study, research in the Schnurbusch laboratory received financial support from the Federal Ministry of Education and Research (BMBF) FKZ 0315954A and 031B0201A, HEISENBERG Program of the German Research Foundation (DFG), grant No. SCHN 768/8-1 and SCHN 768/15-1, as well as IPK core budget.

Author contributions: T.S. conceived the idea for the study, designed and monitored experiments, and analyzed data. N.P. expanded the idea for the study, designed and performed experiments and analyzed data; C.T. executed the mRNA in-situ hybridizations. M.M. conducted microscopic analyses of cellular structures in paleae. T.N. analyzed RNA-seq data. U.L. provided irregular and intermedium barley spike mutants. T.R. executed SEM analyses. T.Schm. conducted sequence read mapping to unpublished barley genomic sequences for SNPcalling. R.B., A.H. and L.A. performed the initial whole-genome shotgun sequencing of the parental genotypes for mapping. R.K. was involved in the phenotypic analysis of com1.a and RT-qPCR analyses of COM1 in barley vrs4 mutant. H.M.Y. provided sequences from a barley diversity panel for haplotype analysis and was involved in the RT-qPCR analysis. M.D. and A.B. provided the Brachypodium TILLING resource; N.S. provided the barley TILLING resource; Z.X. provided the sorghum TILLING resource. N.P. and T.S. wrote the manuscript including contributions from co-authors. All authors have seen and agreed upon the final version of the manuscript.

## Competing interests:

The authors declare no conflict of interest.

## Data and materials availability:

Barley mutants are available from TS under a material transfer agreement (MTA) with IPKGatersleben. All data are available in the main text or online materials. The RNA-seq data and the whole genome shotgun (WGS) sequences of com1.a mutant have been submitted to the European

Nucleotide Archive under accession number PRJEB35746 and PRJEB35761, respectively. COM1 sequences are available with the corresponding ID mentioned in the current study in the public databases https $/ /$ plants.ensembl.org/ \& https://apex.ipk-gatersleben.de/apex/f?p=284:10 and are in the process of submission to NCBI as well.

## Figure Legends:

## Main Figures

Fig. 1 Proposed evolutionary pattern of grass inflorescences, and the spike/palea morphology of wild-type and com1.a mutant barley. (A-D) Model for grass inflorescence evolution from ancestral compound form to spike in Triticeae; re-drawn from ${ }^{2}$. (E) Spike morphology of wildtype (Wt) barley $c v$. Bowman. (F-G) Branched (mutant) BW-NIL(coml.a). (H-I) Floral reversion of spikelet to small spike-like branch structure from severe $(\mathbf{H})$ to weak appearance as an extended rachilla (I). (J-M) Consecutive developmental stages of immature BW-NIL(com1.a) mutant spike from early glume primordium ( $\mathbf{J}$ ), advanced glume primordium ( $\mathbf{K}$ ), to advanced lemma ( $\mathbf{L}$ ) and early stamen primordium (M). (N) Dorsal view of immature BW-NIL(coml.a) mutant spike at early stamen primordia. (O) Longitudinal adaxial palea view of the BW-NIL(com1.a); white rectangle corresponds to the area used to take sections for histological analysis and to the lower image depicting the flat-plane surface of a cross section. (P) Longitudinal adaxial view of Wt palea; the lower image corresponds to the infolding surface of a cross section. (Q-R) Histological analyses of transverse sections (from O and P ; white rectangles) of palea in mutant $(\mathbf{Q})$ and Wt (R). Paleae are from spikelets shortly before anthesis. (S-Z) Walls of palea cells in mutant (S-V) versus Wt (W-Z).

Fig. 2 Map-based cloning of the gene underlying com1.a, phylogenetic analysis and protein structural variation of COM1. (A) Physical and genetic maps of com1.a from 100 recombinant plants or $\sim 6,000$ gametes. A single gene (red; HORVU5Hr1G061270, a single-exon TCP transcription factor) was the strongest candidate and deleted in the mutant parent BWNIL(com1.a). (B) COM1 gene model containing one TCP DNA binding domain. Six TILLING alleles are shown with prefix M3 (Supplementary Note). (C) UPGMA phylogenetic tree, using 1000 bootstrap replications, of COM1 first best (highlighted in gray) and second best homologs. (D) Evolutionarily conserved motifs among proteins present in the phylogenetic tree using SALAD. (see also Supplementary Fig. 8).

Fig. 3 Inflorescence morphology and gene expression patterns in sorghum (A-F) and Brachypodium (G-R). (A) Inflorescence shape in wild type (Wt) cv. BT623. (B). Compact inflorescence in TILLING mutant ARS180. (C) Expanded branch angle of Wt. (D) Acute branch angle in mutant ARS180. (E) Dissected dorsal view of the pulvinus (red circles). (F) RT-qPCR of SbBad1/Wab1 in organs of Wt plants. 1_1, 1_2 and 1_3 represent first, second and third branch meristem stages, respectively. (G) Mutant palea scissor-like structure collapses easily due to external mechanical pressure; (H) normal/solid palea structure in Wt plants. (I) Acute branch angle in mutant (J); expanded branch angle in Wt. (K) SEM view of transverse section of Wt palea; mutant has extra VB in middle (L) lacking in Wt (M). (N) RT-qPCR of BdBad1/Wabl gene expression in Wt. (O) Branch angle measurement, as proxy for pulvinus size, among contrasting M6 homozygous TILLING lines; aa and bb refer to mutant and Wt homozygous, respectively (Supplementary Note). Values above x -axis indicate number of angles measured. ( $\mathbf{P}-\mathbf{Q}$ ) were
used for measuring number of spikelets per individual inflorescence (panicle) ( $\mathbf{P}$ ) and number of florets per spikelet $(\mathbf{Q})$ in the same M6 TILLING plant material (illustrated in $\mathbf{O}$ ); mutants (gray boxes) showed no significant difference to Wt. P values were determined using Student's $t$ test. Values above x -axis indicate number of plants. Genotype IDs below x -axis refer to the parental line of the respective M6 family.

Fig. 4. Transcript analyses of COM1 in two-rowed barley. . (A) Relative COM1 expression at different stages of immature spike and (B) organs along with spike sections (basal, central and apical at AP) of $c v$. Bowman. Despite expression in tiller buds, no difference in tiller number was observed (Supplementary Note, Supplementary Fig. 5). y-axis value: expression relative to HvActin. (C) Semi-qPCR of COM1 mRNA. (D) Control hybridization using sense probe. (E-G) mRNA in-situ hybridization of COM1 in two-rowed Wt barley $c v$. Bonus. Tissues represent crosssection through a spikelet triplet at TM (E) and AP stages (F-G).

Fig. 5. Model of COM1 regulation based on transcriptome analysis in barley (A-B) and schematic representation of COM1 functional modification from non-Triticeae (C-D). Wt COM1 transcriptional regulation model based on downregulation of the Wt allele. (B) RNA-seqbased heat map of selected differentially expressed (DE) genes; for the remaining DE genes see Supplementary Fig. 11. (C-D) IM-to-BM boundary formation due to Wt gene function (C) and lack of boundary due to the loss-of-function allele (D) in non-Triticeae grasses. Of note, COM1 involvement in thickening the boundary cell walls within non-Triticeae species cannot be excluded. (E) IM-to-SM boundary formation in Wt barley; restriction of COM1 function to cell wall thickening (the blue program), due to the evolutionary functional modification. (F). SM-to-IM

Table 1. Functional variation of COM1 homologs observed among grass species

|  |  |  | Effect on the corresponding organ/meristem |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Species | Gene function in <br> boundary | On branch <br> formation | On pulvinus <br> size/formation | Growth of palea cells | Number of VB ${ }^{1}$ in palea | Pollen |
| fertility ${ }^{2}$ |  |  |  |  |  |  |

1 stands for Vasculature Bundles

2 revealed by grain setting measurements as a proxy
3 pulvinus is typically absent in Wt spike of Triticeae including barley as well as in the branched mutant spikes.
4 apparent at the longitudinally-middle palea part resulting in formation of the infloded area
5 Refers to the formation of boundary bet ween pulvinus and the lateral branch without which fusion of the two happened. Reflects intermediate
evolutionary phylogenetic positon of Brachypodium among grasses.
6 not visible at the microscopic level
7 perhaps because the rice cultivars used in the corresponding studies ( $c v$. Nipponbare and $c v .9522$ ) are known to exhibit panicles with acute lateral
branches.


Figure 2
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.952705; this version posted March 20, 2020. The copyright holder for this preprint which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.952705; this version posted March 20, 2020. The copyright holder for this preprint which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Figure 3

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.952705; this version posted March 20, 2020. The copyright holder for this preprint which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 856 857

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.952705; this version posted March 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Figure 5 available under aCC-BY-ND 4.0 International license.


B

C

D Mutant


Putative biological function contributed by COM1

| I. Cell \& Cell wall formation * | - Boundary |
| :---: | :---: |
| II. Cell wall thickening | - Boundary |
| * Apparent also by the gene function in (promotes cell differentiation and pro | aea and pulivinus ation, respectively) |

E


Putative program independent to COM1; specific to barely **

- III. Independent to I (to form Boundary Cell \& Cell wall )
** Non- Triticeae species seems to lack this back-up program
(promotes cell differentiation and proliferation, respectively).

Title:

COMPOSITUM 1 (COM1) contributes to the architectural simplification of barley inflorescence via cell wall-me diated and meristem identity signals

## Authors:

N. Poursarebani ${ }^{1}$, C. Trautewig ${ }^{1}$, M. Melzer ${ }^{1}$, T. Nussbaumer ${ }^{3,4}$, U. Lundqvist ${ }^{5}$, T. Rutten ${ }^{1}$, T. Schmutzer $^{1,2}$, R. Brandt ${ }^{1}$, A. Himmelbach ${ }^{1}$, L. Altschmied ${ }^{1}$, R. Koppolu ${ }^{1}$, H. M. Youssef ${ }^{1,2,6}$, M. Dalmais ${ }^{7}$, A. Bendahmane ${ }^{7}$, N. Stein ${ }^{1}$, Z. Xin ${ }^{8}$, T. Schnurbusch ${ }^{1,2}$<br>*Corresponding authors. Email: Poursarebani@ ipk-gatersleben.de (NP); Schnurbusch@ipkgatersleben.de (TS)

This file includes:

Supplementary Notes

References

Supplementary Figs. 1 to 12

Supplementary Tables 1 to 6

Captions for Supplementary Source Data 1

## COM1 positional cloning in barley

The genetic map was conducted by screening $\sim 6,000$ gametes for recombination events in an $\mathrm{F}_{2}$ population (Bowman x com1.a). After which, fifteen critical recombinant $\mathrm{F}_{2}$-derived $\mathrm{F}_{3}$ families (i.e., 16 plants per family; Supplementary Table 2-3) were further analyzed that unambiguously confirmed the genetic interval detected. Resequencing a set of 20 barley spikebranching mutants, using both CDS and promoter specific primer pairs (Supplementary Table 1 and S4), revealed that five of them, i.e. Mut.3906, int-h.42, int-h. 43 and int-h.44, and com1.i, lost the same transcription factor as found missing in the com1.a mutant (Supplementary Fig. 3, Supplementary Table 1 and 4). All five mutants also showed the flat-palea phenotype observed in the mutant com1.a (Supplementary Fig. 3). Allelism tests of com1.a with Mut. 3906 indicated that they are allelic to each other. Furthermore, we PCR-screened a barley TILLING populations from cv. Barke (two-rowed) for the CDS of the candidate gene. Four homozygous M3 plants (M3.15104, M3.4406, M3.13729 and M3. 2598) carrying SNP mutations inside the DNA binding domain as well as two heterozygous M3 lines M3.4063 and M3.9299 with SNP mutation outside the domain were identified (Fig. 2B). All six SNP mutations caused amino acid substitution in conserved positions (Fig. 2B). They all transmitted a branched spike as was revealed by the phenotypes of the corresponding M4 and M5 homozygous plants (Fig. 2B; Supplementary Fig. 4-5; Supplementary Table 4). Interestingly, from the six TILLING mutants, only two, with mutation within the TCP domain, showed either a true flat-palea phenotype with a complete loss of the infolding (line 2598, exhibiting also the most severe branching), or only a mild change in the palea shape (line 4406) (Supplementary Fig. 4). Thus, penetrance of the mutant flat-palea phenotype depended on the type and position of the amino acids substitution (Supplementary Fig. 4, legend). Taken


#### Abstract

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.952705; this version posted March 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made phenotypes.

\section*{Development and characterized of BW-NIL (com1.a com2.g) double mutants}

20 BW-NIL(com1.a com2.g) double mutants homozygote plants along with 20 plants from each of the single mutants and 20 wild type cv. Bowman plants, were grown and used for phenotyping. The DM plants out-performed either single mutants in supernumerary spikelet and branch production and grain number per spike, which was elevated by $\sim 50 \%$ in DMs as compared to single mutants alone (Supplementary Fig. 6 and 12, legend). Notably, all tillers from DMs showed both supernumerary spikelet formation and spike-branching phenotypes. In addition to the ramification observed in central SMs, SEM analysis of DM plants also showed floral reversion of the lateral SMs (Supplementary Fig. 6). Both events were highly penetrant and pronounced in the DM's immature spikes that led $100 \%$ of the plant tillers to exhibit a DMspecific enhanced spike-branching phenotype at maturity (Supplementary Fig. 6 and 12). The uncommon enlargement of the glum primordia (Blue asterisk in Fig. 10) was seen only in $\sim 5 \%$ of the tillers in single mutant com1.a whereas $100 \%$ of the tillers in com1.acom2.g double mutants showed this enlargement (Supplementary Fig. 12).


## TILLING analysis of BdCOM1 in Brachypodium

Our TILLING analysis in Brachypodium distachyon revealed several mutations in the BdCOM1 homolog from which two (M4. 5446; Q116* and M4. 8373; S146N) with predicted severe damages to the protein domain and function were phenotypically characterized (Supplementary Table 4). Hence, per M4 plants, only homozygous M5 plants either with mutant genotype aa ( 3 to 4 plants) or wild type bb ( 3 to 4 plants) were selected. Per M5 plants, 10 M6 plants were grown. The homozygote states of the corresponding M5 and M6 mutant family transmitted a defect in palea structure (Fig. 3). In which, we always observed a palea

[^0]
## References

1. Zhang, D.B. \& Yuan, Z. Molecular Control of Grass Inflorescence Development. Annual Review of Plant Biology, Vol 65 65, 553-78 (2014).
2. Vegetti, A. \& Anton, A.M. Some Evolution Trends in the Inflorescence of Poaceae. in Flora Vol. 190 225-228 (1995).
3. Kellogg, E.A. et al. Early inflorescence development in the grasses (Poaceae). Frontiers in Plant Science 4(2013).
4. Endress, P.K. Disentangling confusions in inflorescence morphology: Patterns and diversity of reproductive shoot ramification in angiosperms. Journal of Systematics and Evolution 48, 225-239 (2010).
5. Remizowa, M.V., Rudall, P.J., Choob, V.V. \& Sokoloff, D.D. Racemose inflorescences of monocots: structural and morphogenetic interaction at the flower/inflorescence level. Annals of Botany 112, 1553-1566 (2013).
6. Kellogg, E.A. Evolutionary history of the grasses. Plant Physiology 125, 1198-1205 (2001).
7. Koppolu, R. \& Schnurbusch, T. Developmental pathways for shaping spike inflorescence architecture in barley and wheat. J Integr Plant Biol 61, 278-295 (2019).
8. Lemmon, Z.H.et al. The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation. Genome Research 26, 1676-1686 (2016).
9. Malcomber, S.T., Preston, J.C., Reinheimer, R., Kossuth, J. \& Kellogg, E.A. Developmental gene evolution and the origin of grass inflorescence diversity. Advances in Botanical Research: Incorporating Advances in Plant Pathology, Vol 44 44, 425-481 (2006).
10. Vollbrecht, E., Springer, P.S., Goh, L., Buckler, E.S. \& Martienssen, R. Architecture of floral branch systems in maize and related grasses. Nature 436, 1119-1126 (2005).
11. Druka, A. et al. Genetic dissection of barley morphology and development. Plant Physiol 155, 617-27 (2011).
12. Poursarebani, N. et al. The genetic basis of composite spike form in barley and 'Miracle-Wheat'. Genetics 201, 155-165 (2015).
13. Cosgrove, D. Biophysical Control of Plant-Cell Growth. Annual Review of Plant Physiology and Plant Molecular Biology 37, 377-405 (1986).
14. Cosgrove, D.J. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. Journal of Experimental Botany 67, 463-476 (2016).
15. Martin-Trillo, M. \& Cubas, P. TCP genes: a family snapshot ten years later. Trends Plant Sci 15, 31-9 (2010).
 Family Genes in Spike and Grain Development of Wheat (Triticum aestivum L.). Frontiers in Plant Science 9(2018).
16. Lewis, M.W. et al. Gene regulatory interactions at lateral organ boundaries in maize. Development 141, 4590-4597 (2014).
17. Bai, F., Reinheimer, R., Durantini, D., Kellogg, E.A. \& Schmidt, R.J. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize. Proceedings of the National Academy of Sciences of the United States of America 109, 12225-12230 (2012).
18. Zeng, D.-D. et al. DBOP specifies palea development by suppressing the expansion of the margin of palea in rice. Genes \& Genomics 38, 1095-1103 (2016).
19. Yuan, Z. et al. RETARDED PALEA1 Controls Palea Development and Floral Zygomorphy in Rice. Plant Physiology 149, 235-244 (2009).
20. Studer, R.A. \& Robinson-Rechavi, M. How confident can we be that orthologs are similar, but paralogs differ? Trends in Genetics 25, 210-216 (2009).
21. Jiao, Y.P. et al. MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nature Communications 9(2018).
22. Aguilar-Martinez, J.A., Poza-Carrion, C. \& Cubas, P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19, 458-472 (2007).
23. Koppolu, R. et al. Six-rowed spike4 (Vrs4) controls spikelet determinacy and rowtype in barley. Proceedings of the National Academy of Sciences of the United States of America 110, 13198-13203 (2013).
24. Russell, J. et al. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nature Genetics 48, 1024-+ (2016).
25. Liu, K. et al. Wheat <em>TaSPL8</em> Modulates Leaf Angle Through Auxin and Brassinosteroid Signaling. Plant Physiology 181, 179-194 (2019).
26. Van der Does, D. et al. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. Plos Genetics 13(2017).
27. Gou, M.Y., Ran, X.Z., Martin, D.W. \& Liu, C.J. The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Nature Plants 4, 299-310 (2018).
28. Chiba, Y., Mitani, N., Yamaji, N. \& Ma, J.F. HvLsi1 is a silicon influx transporter in barley. Plant Journal 57, 810-818 (2009).
29. Whipple, C.J. Grass inflorescence architecture and evolution: the origin of novel signaling centers. New Phytol 216, 367-372 (2017).
30. Hara, Y., Yokoyama, R., Osakabe, K., Toki, S. \& Nishitani, K. Function of xyloglucan endotransglucosylase/hydrolases in rice. Annals of Botany 114, 1309-1318 (2014).
31. Landrein, B. \& Ingram, G. Connected through the force: mechanical signals in plant development. Journal of Experimental Botany 70, 3507-3519 (2019).
32. Manassero, N.G., Viola, I.L., Welchen, E. \& Gonzalez, D.H. TCP transcription factors: architectures of plant form. Biomol Concepts 4, 111-27 (2013).
33. Dalmais, M. et al. A TILLING Platform for Functional Genomics in Brachypodium distachyon. PLoS One 8, e65503 (2013).
34. Jiao, Y.P. et al. A Sorghum Mutant Resource as an Efficient Platform for Gene Discovery in Grasses. Plant Cell 28, 1551-1562 (2016).
35. Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427 (2017).
[^1]
## Supplementary Figure 1. Creation of induced Bowman near isogenic line (NIL), mapping

 population, marker resource and the low-resolution linkage map of com1.a in barley. (A and B) The coml.a phenotype was introduced (after its induction in barley cv. Foma) into a two-rowed barley cv. Bowman by six time backcrosses as reported previously ${ }^{11}$. Green area in chromosome 5 H corresponds to the introgressed genomic segment caring the underlying com1.a mutation. (C) The resulted BW near isogenic line (NIL) of com1.a allele; BW-NIL (com1.a) was crossed to cv . Bowman to generate $\mathrm{F}_{2}$ population used in genetic mapping. (D) BW-NIL (com1.a) was whole genome shotgun (WGS) sequenced to 10x coverage (Online Materials) and compared with already published WGS of Bowman ${ }^{36}$.(E) Represents alignment of the BW-NIL (coml.a) sequence assembly against the physically localized Bowman WGS sequence contigs. The corresponding SNPs (that were used for marker development) derived from the 5 H introgression segment are plotted in the outer circle. (F) Genetic linkage mapping of com1.a in barley, derived from the $\mathrm{F}_{2}$ mapping population (see part C). SNPs derived from E located within the introgressed region, were used for marker development. Markers in red selected for high-resolution genetic mapping. A-B were performed and published previously ${ }^{11}$. C-F are entirely performed in the present study, except WGS of the wild type cv. Bowman.Supplementary Figure 2: TEM based cell wall structure in wild type palea versus mutant com1.a.

Left-ide; cross section of wild type palea in which different cell positions (used to image the cell walls shown in right panel) across cell layers (see Fig. 1S-T for the layer IDs) are labeled. Right-side; Cell walls thickness in Wt is depicted compared with that of mutant for each position of A-I; labeled accordingly in Left panel. BW-NIL (com2.g) mutant, that is visually

Supplementary Figure 3. Additional mutant alleles of spike branching in barley. Different coml induced mutant alleles identified by resequencing of primers correspond to CDS and potential promotor region of COM1. The corresponding palea is shown in the upper -right side of each spike image. See also Supplementary Table 1 and 4.

Supplementary Figure 4. Phenotype and COM1 protein sequence alignment in barley TILLING lines. (A) A representative display of branch formation of the six barley TILLING mutant plants derived from barley cv. Barke. The corresponding palea is shown in the upper right side of each spike image. (B) Protein sequence alignment of the six mutants, some located within the corresponding TCP domain (the red box). Mutation pointed with red arrows show severe (dark red; M4.2598) and very mild (light red; M4.4406) palea phenotypes, while green arrows show mutation with no palea phenotype.

Supplementary Figure 5. Tillering related characters in barley TILLING lines. (A) Average tiller number and (B) spike number per plant of the three spike-branching barley TILLING lines are compared against wild type cv. Barke. This was performed to check whether COM1 expression detected in tiller buds (Fig. 4B) play any role in tiller formation. Twenty plants were grown per genotype under greenhouse conditions. $P$ values were determined using the Student's $t$ test.


#### Abstract

BW-NIL (com1.a/com2.g) (DM). (A) Lateral view of a DM immature spike at late GP stage. (B-D) Close-up and complete view of a DM immature spike; depict reversion of lateral and central SMs as well as glume primordium into the IM-like meristems. (E-J) Yield components of the DM plants, and the corresponding single mutants com1.a and com2.g in comparisons to the Wt cv. Bowman. Data are based on a single greenhouse-condition experiment and on averages of 20 plants ( 390 to 540 spikes) per phenotypic class.


Supplementary Figure 7. Phylogeny of barley TCP proteins and the phylogeny-based model of COM1 evolution. (A) 1000 bootstraps based UPGMA phylogenetic tree of 22 barley TCP proteins. (B). Depicts origin and divergence of two (out-) paralogs of REP1/COM1 ( $\alpha$ ) and MSD1 ( $\beta ;{ }^{22}$ clades from a common ancestor ${ }^{16}$. This divergence seems to happen after genome duplication in grass common ancestor and before the grass speciation (e.g. the separation of Triticeae from Non-Triticeae species). More importantly, in case of paralogs $\alpha$ clade; although the clade members showed no duplication (no in-paralogy) after speciation, except in maize (Fig. 2C; light-grey block), they have gone through a functional modification that separate Non-Triticeae function ( $\alpha 1$ ) from that of Triticeae subclade ( $\alpha 2$ ). Which, coincidentally, the respective modification separates inflorescence shapes between the two groups of grass plants by regulating contrasting phenotypes of formation versus inhibition of branches. Whether out-paralog $\beta$ also differs in function among grass (to be as $\beta 1$ and $\beta 2$ ) remains to be investigated. So far, only functional characterization of $\beta$ in sorghum, the $S b M s d I$, has been reported ${ }^{22}$. Lines in brown represent the speciation process.

Supplementary Figure 8. Amino acid sequence alignment of the COM1 homologs among grass. The green box shows the TCP domain conservation.


#### Abstract

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.952705; this version posted March 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made accessions (including 90 wild barleys) producing 12 haplotypes; comprising two main haplotypes: namely Hap1 (154 wild and landraces) and Hap2 (64 wild and landraces) with Hap1 being assigned as ancestral. The remaining 10 haplotypes, except Hap8 that contains two landraces comprised only wild barleys (16 accessions), independently raised from Hap1 during the course of evolution. Accessions representing each of the 12 haplotypes were grown and carefully inspected for the spike and palea phenotype for which no obvious phenotypic alteration was observed. Sequences were obtained using primers for the CDS region.


Supplementary Figure 10. Branch formation in vrs4 mutant (mul1.a). (A) Mature spike of wild type progenitor cv . Montcalm with determinate triple spikelet meristem. (B-D) Mature spikes of vrs 4 mutant MC (mull.a) showing various levels of branch proliferation at the spike base and middle portion of the spike. See also ${ }^{12}$. $\operatorname{COM1}(\mathbf{E})$ and $\operatorname{COM} 2(\mathbf{F})$ transcripts in BW-NIL(vrs4.k) (red) and com1.a (green) mutants, respectively. Mean $\pm$ SE of three biological replicates. $P$ values were determined using the Student's $t$ test.

Supplementary Figure 11. Transcriptome analysis of com1.a using RNA seq. Heat map of all DE genes (found in RNA seq; $\mathrm{n}=3$ reps $/ 3$ stages $/ 3$ genotype) conjointly in the BW-NL (com2.g) as compared to the corresponding wild type cv. Bowman and cv. Foma. The scale bar at the top of the heat map indicates the transcript level of differentially regulated genes observed between wild type and mutant; blue color indicates down-regulation while red shows up-regulation. Of the highly upregulated genes in mutant com1.a was HORVU3Hr1G055600; NAD-dependent epimerase/dehydratase gene family; associated with increased growth ${ }^{46}$. Other highly upregulated genes involved in plant reproduction (HORVU7Hr1G054320;, type I MADS-box transcription factor family protein; ${ }^{47,48}$, as well as the floral meristem determinac y of the relevant genes that are downregulated in mutant.

## Supplementary figures

Supplementary Figure 1.

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.952705; this version posted March 20, 2020. The copyright holder for this preprint which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made Supplementary Figure 2 available under aCC-BY-ND 4.0 International license.


Supplementary Figure 3


bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.952705; this version posted March 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Supplementary Figure 5. available under aCC-BY-ND 4.0 International license.


Supplementary Figure 6



Supplementary Figure 8

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.952705; this version posted March 20, 2020. The copyright holder for this preprint which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made Supplementary Figure 9 available under aCC-BY-ND 4.0 International license.


bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.952705; this version posted March 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Supplementary Figure 11


## Supplementary tables

Supplementary Table 1. List of the primers

Supplementary Table 2. Graphical genotyping of the critical $F_{2}$ recombinants used to develop $\mathrm{F}_{3}$ families

Supplementary Table 3. Genotypic and phenotypic data of the $F_{3}$ progenies

Supplementary Table 4. List of the TILLING as well as induced mutants per corresponding species

Supplementary Table 5. Phenotypic data of the sorghum-TILLING mutants

Supplementary Table 6. Haplotypes identified for COM1 in barley

| Supplementary Table 1. List of the primers |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Primer ID | Species | Application | Marker Type | Orienta tion | tm | Seq | RE |
| NGS0015 | Barley | genetic mapping | CAPS | FORW <br> ARD | $\begin{aligned} & 60, \\ & 36 \end{aligned}$ | ACTACAGGAGTGCTGCTGGTA AA | SfaNI |
| NGS0015 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \end{aligned}$ | $\begin{aligned} & \hline 62, \\ & 07 \\ & \hline \end{aligned}$ | TTGCGGTATGCAACTCTCAAC T |  |
| NGS043 | Barley | genetic mapping | CAPS | FORW ARD | $\begin{aligned} & 61, \\ & 56 \end{aligned}$ | TCGAGACTGAGGTAGTGGGAC TT | PstI |
| NGS043 | Barley | genetic mapping | CAPS | $\begin{array}{\|l} \hline \text { REVE } \\ \text { RSE } \\ \hline \end{array}$ | $\begin{aligned} & \hline 62, \\ & 06 \end{aligned}$ | CCGAAGGTGGTCAATAGACAA AG |  |
| NGS044 | Barley | genetic mapping | CAPS | FORW ARD | $\begin{aligned} & \hline 61, \\ & 43 \end{aligned}$ | GCAACTGGGATTCGATCTCTT AG | EcoRV |
| NGS044 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 61, \\ & 14 \\ & \hline \end{aligned}$ | ```CTAAAGCCTTGCACAAAGTTG G``` |  |
| NGS045 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { FORW } \\ & \text { ARD } \end{aligned}$ | $\begin{aligned} & \hline 62, \\ & 69 \\ & \hline \end{aligned}$ | ACACCGAGATGTTGTTGGAAG AG | BtgI |
| NGS045 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 62, \\ & 07 \\ & \hline \end{aligned}$ | ATGGATACGGAAGCCAGTGTC TA |  |
| NGS046 | Barley | genetic mapping | CAPS | $\begin{aligned} & \text { FORW } \\ & \text { ARD } \end{aligned}$ | $\begin{aligned} & 62, \\ & 15 \end{aligned}$ | GATACACTTAAGGCCAAACGG TTC | HinfI |
| NGS046 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 61, \\ & 58 \end{aligned}$ | TACGTCAGCTGGACACACACA TA |  |
| NGS048 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { FORW } \\ & \text { ARD } \end{aligned}$ | $\begin{aligned} & \hline 62, \\ & 03 \\ & \hline \end{aligned}$ | ```CTCCTACGTGATTCACTGTGTC G``` | SspI |
| NGS048 | Barley | genetic mapping | CAPS | $\begin{array}{\|l} \hline \text { REVE } \\ \text { RSE } \\ \hline \end{array}$ | $\begin{aligned} & \hline 61, \\ & 62 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { TTCAGAGGCTGAAGAAAGAG } \\ & \text { AGC } \\ & \hline \end{aligned}$ |  |
| NGS049 | Barley | genetic mapping | CAPS | FORW ARD | $\begin{aligned} & \hline 61, \\ & 95 \\ & \hline \end{aligned}$ | GGTGATAAATCCACTCCAGCA AC | BbsI |
| NGS049 | Barley | genetic mapping | CAPS | $\begin{array}{\|l} \hline \text { REVE } \\ \text { RSE } \\ \hline \end{array}$ | $\begin{aligned} & \hline 61, \\ & 82 \\ & \hline \end{aligned}$ | $\qquad$ $\mathrm{A}$ |  |
| NGS051 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { FORW } \\ & \text { ARD } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 61, \\ & 97 \\ & \hline \end{aligned}$ |  | PstI |


| NGS051 | Barley | genetic mapping | CAPS | $\begin{aligned} & \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 62, \\ & 17 \end{aligned}$ | GAACGAAATCAACACAGGAG ACAC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NGS052 | Barley | genetic mapping | CAPS | FORW ARD | $\begin{aligned} & 61, \\ & 95 \end{aligned}$ | $\begin{aligned} & \text { GAGAGTAGGCAGATCCAACG } \\ & \text { AAA } \end{aligned}$ | TagI |
| NGS052 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & 61, \\ & 96 \\ & \hline \end{aligned}$ | CGCGCTCCTAATTATACACAA CC |  |
| NGS054 | Barley | genetic mapping | CAPS | FORW ARD | $\begin{aligned} & \hline 61, \\ & 58 \\ & \hline \end{aligned}$ | TTGGAGTGAGGGTTCTGGTAA TC | PstI |
| NGS054 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & 61, \\ & 82 \\ & \hline \end{aligned}$ | CTCGACTGCTTCGTCCAGTTTA |  |
| NGS084 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { FORW } \\ & \text { ARD } \end{aligned}$ | $\begin{aligned} & 62, \\ & 37 \end{aligned}$ | ```CTTTATTCTCACGTCGTGCACT C``` |  |
| NGS084 | Barley | genetic mapping | CAPS | $\begin{aligned} & \text { REVE } \\ & \text { RSE } \end{aligned}$ | $\begin{aligned} & 60, \\ & 46 \end{aligned}$ | TGAAGTAGATGCTCCGTCATC CT | BssHII |
| NGS094 | Barley | genetic mapping | CAPS | FORW <br> ARD | $\begin{aligned} & 61, \\ & 44 \\ & \hline \end{aligned}$ | TGCAAGAGCATCTTCCCTTCTT | HhaI |
| NGS094 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & 60, \\ & 28 \end{aligned}$ | ```CTTGCCAACATGCCAAGAGTA G``` |  |
| NGS158 | Barley | genetic mapping | CAPS | FORW ARD | $\begin{aligned} & \hline 61, \\ & 71 \\ & \hline \end{aligned}$ | TCAACTACACAAGTTCCCGAA TTAAC | BsmAI |
| NGS158 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 62, \\ & 41 \\ & \hline \end{aligned}$ | ```TGTGAGTCATCAAGGTCCAAG G``` |  |
| NGS160_F | Barley | genetic mapping | CAPS | FORW ARD | $\begin{aligned} & 62, \\ & 1 \\ & \hline \end{aligned}$ | GTGGCATCATTAGCATAGGAT TACTG | HgaI |
| NGS160_R | Barley | genetic mapping | CAPS | $\begin{array}{\|l\|} \hline \text { REVE } \\ \text { RSE } \\ \hline \end{array}$ | $\begin{aligned} & \hline 61, \\ & 72 \\ & \hline \end{aligned}$ | AATATGCAAGGTACACCACAA AGAAG |  |
| NGS163 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { FORW } \\ & \text { ARD } \end{aligned}$ | $\begin{aligned} & \hline 62, \\ & 12 \end{aligned}$ | CGTATCCGGTGTATCGACGTA TT | BsrGI |
| NGS163 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & 62, \\ & 07 \end{aligned}$ | TTATCTTCTCTAGAGTGCTGGC TTGA |  |
| NGS164 | Barley | genetic mapping | CAPS | FORW ARD | $\begin{aligned} & 63, \\ & 37 \end{aligned}$ | AGCCATGGGCCATTATCTTAA TTATC | HhaI |
| NGS164 | Barley | genetic mapping | CAPS | $\begin{array}{\|l} \hline \text { REVE } \\ \text { RSE } \\ \hline \end{array}$ | $\begin{aligned} & \hline 62, \\ & 83 \end{aligned}$ | CATGGAATGCACAACTCCTAT GTC |  |


| NGS166 | Barley | genetic mapping | CAPS | FORW <br> ARD | $\begin{array}{\|l\|} \hline 61, \\ 83 \\ \hline \end{array}$ | AATTCCTGAAACAACGATCAA GTTC | Hpy99I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NGS166 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & 62, \\ & 28 \end{aligned}$ | CAAGTATGTAATGTTGTGGTG AAGCA |  |
| NGS168 | Barley | genetic mapping | CAPS | FORW ARD | $\begin{aligned} & \hline 61, \\ & 82 \\ & \hline \end{aligned}$ | CAATATACGCCGTGTCATACT CTCTT | NdeI |
| NGS168 | Barley | genetic mapping | CAPS | $\begin{array}{\|l\|} \hline \text { REVE } \\ \text { RSE } \\ \hline \end{array}$ | $\begin{aligned} & \hline 62, \\ & 27 \\ & \hline \end{aligned}$ | ATATGATCGAGTGGACTGGGA GTT |  |
| NGS169 | Barley | genetic mapping | CAPS | FORW <br> ARD | $\begin{aligned} & 62, \\ & 35 \end{aligned}$ | GAGTAGAGGCGCACAGGTGTC | $\begin{array}{\|l\|} \hline \text { HpyCH } \\ 41 \mathrm{~V} \end{array}$ |
| NGS169 | Barley | genetic mapping | CAPS | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & 61, \\ & 75 \\ & \hline \end{aligned}$ | CCAGACATTCTCATTGAAAGA GCTAC |  |
| NGS142_F | Barley | genetic mapping | CAPS | $\begin{aligned} & \text { FORW } \\ & \text { ARD } \end{aligned}$ |  | $\begin{aligned} & \text { GACGGCCCTGGTATTAGATAT } \\ & \text { G } \end{aligned}$ | MboII |
| NGS142_R | Barley | genetic mapping | CAPS | $\begin{array}{\|l} \hline \text { REVE } \\ \text { RSE } \\ \hline \end{array}$ |  | CCCATCATAACCAAACAGTCC T |  |
| TCP-CDS_F2 | Barley | COM1_CDS_resequening | - | FORW ARD | $\begin{aligned} & \hline 61, \\ & 93 \\ & \hline \end{aligned}$ | AGGAAGAAGAGAGTCCTCAA CCAA |  |
| TCP-CDS_R2 | Barley | COM1_CDS_resequening | - | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 62, \\ & 88 \end{aligned}$ | TAAGCTGCTCGATCGCTAGTA CCT |  |
| TCP-CDS_F | Barley | COM1_CDS_resequening | - | FORW ARD | $\begin{aligned} & \hline 63, \\ & 62 \\ & \hline \end{aligned}$ | ATATTGTACTCAAGTGCAGGC AGCTACTA |  |
| TCP-CDS_R | Barley | COM1_CDS_resequening | - | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 62, \\ & 13 \end{aligned}$ | CATGCAATAATTAACTAAGAA CATGATGC |  |
| FPC44150-37B_F | Barley | COM1_promotor region | - | FORW ARD | 61 | CACTGTCTATGGAGAGACCAC ATAGATT |  |
| FPC44150-37B_R | Barley | COM1_promotor region | - | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | 61 | GTGAGCTAGGCAGCTAGGTAT TTATTAG |  |
| FPC44150-38_F | Barley | COM1_promotor region | - | $\begin{aligned} & \hline \text { FORW } \\ & \text { ARD } \\ & \hline \end{aligned}$ | $\begin{aligned} & 62, \\ & 34 \end{aligned}$ | TGTTTTCTACTAGTGTCAAGA ACCCTACC |  |
| FPC44150-38_R | Barley | COM1_promotor region | - | $\begin{aligned} & \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & 62, \\ & 54 \end{aligned}$ | GAGAAAATGTGAGTTATCCTG AACCAG |  |
| xNGS129_F | Barley | qPCR | - | FORW ARD | 60 | CGAGCGCATCATGTTCTTAGT TAAT |  |


| xNGS129_R | Barley | qPCR | - | REVE RSE | 60 | AGCAACATAGAACAAAACCAT GAGAT |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Com1_ISH_1F20 | Barley | In Situ | - | $\begin{aligned} & \text { FORW } \\ & \text { ARD } \end{aligned}$ |  | CACAGACGCGAGATGAACAG |  |
| Com1_ISH_1R20 | Barley | In Situ | - | REVE RSE |  | AAAAGGCATCACCCTCAAAA |  |
| ActinGene | Barley | qPCR |  | $\begin{aligned} & \text { FORW } \\ & \text { ARD } \end{aligned}$ |  |  |  |
| ActinGene | Barley | qPCR |  | REVE RSE |  |  |  |
| $\begin{aligned} & \hline \text { TILLING_Bd- } \\ & \text { TCP_F1 } \\ & \hline \end{aligned}$ | Brachyp odium | Screening of TILLING population | - | FORW ARD | $\begin{aligned} & 57 . \\ & 10 \\ & \hline \end{aligned}$ | GCAGCAGCAGCAAACTACTA |  |
| $\begin{aligned} & \text { TILLING_Bd- } \\ & \text { TCP_R1 } \end{aligned}$ | Brachyp odium | Screening of TILLING population | - | REVE RSE | $\begin{aligned} & 57 . \\ & 14 \end{aligned}$ | GCTTGGACTGAGTGAGCAG |  |
| $\begin{aligned} & \hline \text { TILLING_Bd- } \\ & \text { TCP_F2 } \\ & \hline \end{aligned}$ | Brachyp odium | Screening of TILLING population | - | FORW ARD | $\begin{aligned} & \hline 58 . \\ & 48 \end{aligned}$ | TTTGACAAGGCCAGCAAG |  |
| $\begin{aligned} & \text { TILLING_Bd- } \\ & \text { TCP_R2 } \\ & \hline \end{aligned}$ | Brachyp odium | Screening of TILLING population | - | $\begin{aligned} & \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & 58 . \\ & 25 \end{aligned}$ | AACCACACGCAACAAAGC |  |
| $\begin{aligned} & \text { BdACTIN2_F } \\ & \text { (Bradilg10630) } \end{aligned}$ | Brachyp odium | qPCR |  | $\begin{aligned} & \text { FORW } \\ & \text { ARD } \\ & \hline \end{aligned}$ |  | GTCGTTGCTCCTCCTGAAAG |  |
| BdACTIN2_R <br> (Bradilg10630) | Brachyp odium | qPCR |  | REVE RSE |  | ATCCACATCTGCTGGAAGGT |  |
| Bd_TCP_InSitu_F | Brachyp odium | qPCR |  | FORW ARD | $\begin{aligned} & \hline 61 . \\ & 67 \\ & \hline \end{aligned}$ | CAGACCAAGTTCAGCAGAGAT GTAG |  |
| $\begin{aligned} & \text { Bd_TCP_InSitu_ } \\ & \text { R } \end{aligned}$ | Brachyp odium | qPCR |  | REVE RSE | $\begin{aligned} & \hline 61 . \\ & 72 \\ & \hline \end{aligned}$ | CCATCCAAATCAAGAGGTGTA CTTT |  |
| TILL_SbTCP_F1 | Sorghu <br> m | Screening of TILLING population |  | FORW ARD | $\begin{aligned} & \hline 62 . \\ & 25 \end{aligned}$ | $\begin{aligned} & \text { GAAGAAGCAGTAGCAGTGGC } \\ & \text { AGTA } \\ & \hline \end{aligned}$ |  |
| TILL_SbTCP_R1 | Sorghu <br> m | Screening of TILLING population |  | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 62 . \\ & 26 \\ & \hline \end{aligned}$ | CTTGCTGGCCTTATCGAAGC |  |
| TILL_SbTCP_F2 | Sorghu <br> m | Screening of TILLING population |  | FORW <br> ARD | $\begin{aligned} & \hline 62 . \\ & 11 \\ & \hline \end{aligned}$ | ATGCGGTTGTCCCTCGAC |  |
| TILL_SbTCP_R2 | Sorghu <br> m | Screening of TILLING population |  | $\begin{aligned} & \text { REVE } \\ & \text { RSE } \end{aligned}$ | $\begin{aligned} & 62 . \\ & 10 \end{aligned}$ | $\begin{aligned} & \text { GATAGTGAAGAAGTGCTTGCC } \\ & \text { AGA } \end{aligned}$ |  |


| TILL_SbTCP_F3 | Sorghu <br> m | Screening of TILLING population | FORW ARD | $\begin{aligned} & \hline 62 . \\ & 17 \\ & \hline \end{aligned}$ | CACTACGTGGACCATCACTTC TTC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TILL_SbTCP_R3 | Sorghu <br> m | Screening of TILLING population | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & 62 . \\ & 64 \\ & \hline \end{aligned}$ | CTAGAGCTCAACTTCTCGGCA ACT |  |
| SbActin_F | Sorghu <br> m | qPCR | FORW ARD |  | TGGCATCTCTCAGCACATTC |  |
| SbActin_R | Sorghu <br> m | qPCR | $\begin{array}{\|l\|} \hline \text { REVE } \\ \text { RSE } \\ \hline \end{array}$ |  | GGGCGGAAAGAATTAGAAGC |  |
| Sb_TCP_qPCR_F | Sorghu <br> m | qPCR | FORW <br> ARD | $\begin{aligned} & \hline 60, \\ & 07 \\ & \hline \end{aligned}$ | CACTAGTAGCTAGCTCTTTCTT TATCTGG |  |
| Sb_TCP_qPCR_R | Sorghu <br> m | qPCR | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & 60, \\ & 42 \\ & \hline \end{aligned}$ | CCAGTAGCATTAACTTAAAGG AGTTCA |  |
| Com2-Bw_Sfil_F | Barley | To screen/sequence for A300C com2 Haplotype in com1.a/com2.g DM population | FORW ARD | $\begin{aligned} & \hline 62 . \\ & 51 \\ & \hline \end{aligned}$ | CTCCCAGATGATGGCGTTCT |  |
| Com2-Bw_Sfii_R | Barley | To screen/sequence for A300C com2 Haplotype in com1.a/com2.g DM population | $\begin{aligned} & \hline \text { REVE } \\ & \text { RSE } \\ & \hline \end{aligned}$ | $\begin{aligned} & 62 . \\ & 94 \\ & \hline \end{aligned}$ | GAACGGCGGGTAGTTGTTGTA G |  |
| $\begin{aligned} & \text { iLL_TIL_BdTCP_ } \\ & \text { F1 } \end{aligned}$ | Brachyp odium | illumina sequencing for TILLING mutation detection |  |  | TTCCCTACACGACGCTCTTCCGATCTGC AGCAGCAGCAAACTACTA |  |
| $\begin{aligned} & \hline \text { iLL_TIL_BdTCP_ } \\ & \text { R1 } \end{aligned}$ | Brachyp odium | illumina sequencing for TILLING mutation detection |  |  | AGTTCAGACGTGTGCTCTTCCGATCT GCTTGGACTGAGTGAGCAG |  |
| $\begin{aligned} & \text { iLL_TIL_BdTCP_ } \\ & \text { F2 } \end{aligned}$ | Brachyp odium | illumina sequencing for TILLING mutation detection |  |  | TTCCCTACACGACGCTCTTCCGATCTTTT GACAAGGCCAGCAAG |  |
| $\begin{aligned} & \begin{array}{l} \text { iLL_TIL_BdTCP_ } \\ \text { R2 } \end{array} \\ & \hline \end{aligned}$ | Brachyp odium | illumina sequencing for TILLING mutation detection |  |  | AGTTCAGACGTGTGCTCTTCCGATCT AACCACACGCAACAAAGC |  |

Supplementary Table 2. Graphical genotyping of the critical F2 recombinants used to develop F3 families

|  | Critical F2 recombinants_selected to develop F3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| Marker ID | 4839 | 5176 | 5250 | 5403 | 5409 | 5443 | 5504 | 4953 | 5326 | 5483 | 5070 | 5045 | 174 | 5407 | 5488 |
| NGS065 | h | h | h | h | h | h | b | b | b | b | a | a | a | a | a |
| NGS066 | h | h | h | h | h | h | b | b | b | b | a | a | a | a | a |
| NGS046 | h | h | h | h | h | h | b | b | b | b | a | a | a | a | a |
| NGS083 | h | h | h | h | h | h | b | b | b | b | a | a | a | a | a |
| d1652 | h | h | h | h | h | h | b | b | b | b | a | a | a | a | a |
| NGS049 | h | h | h | h | h | h | b | b | b | b | a | a | a | a | a |
| NGS084 | h | h | h | h | h | h | b | b | b | b | a | a | a | a | a |
| NGS168 | h | h | h | h | h | h | b | b | b | b | a | a | a | h | a |
| NGS169 | h | b | b | h | h | h | b | b | h | b | h | h | h | h | a |
| NGS166 | h | b | b | h | h | h | b | b | h | b | h | h | h | h | a |
| coml.a/Phenotype | c | c | c | c | c | c | c | c | c | c | c | c | c | c | a |
| NGS164 | h | b | b | h | h | h | b | b | h | b | h | h | h | h | a |
| NGS163 | h | b | b | h | h | h | b | b | h | b | h | h | h | h | a |
| NGS160 | h | b | b | h | h | h | b | b | h | b | h | h | h | h | a |
| NGS158 | b | b | b | h | h | h | b | h | h | b | h | h | h | h | a |
| NGS094 | b | b | b | b | b | b | h | h | h | h | h | h | h | h | h |
| NGS111 | b | b | b | b | b | b | h | h | h | h | h | h | h | h | h |
| NGS112 | b | b | b | b | b | b | h | h | h | h | h | h | h | h | h |
| NGS099 | b | b | b | b | b | b | h | h | h | h | h | h | h | h | h |
| NGS142 | b | b | b | b | b | b | h | h | h | h | h | h | h | h | h |

Supplementary Table 3. Genotypic and phenotypic data of the F3 progenies

| CriticalRecF2_ID | GenotypeParentF2_closely linked marker (NGS164 \& NGS166) | CriticalRec_ProgenyF3_ID | Genotype_ProgenyF3_NGS169 | Phenotype | Number of Spike | Number of Branched Spike |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 174 | h | 174-1 | h | Wt | 16 | - |
| 174 | h | 174-2 | h | Wt | 18 | - |
| 174 | h | 174-3 | h | Wt | 17 | - |
| 174 | h | 174-4 | a | branched | 17 | 13 |
| 174 | h | 174-5 | b | Wt | 20 | - |
| 174 | h | 174-6 | h | Wt | 17 | - |
| 174 | h | 174-7 | b | Wt | 22 | - |
| 174 | h | 174-8 | b | Wt | 21 | - |
| 174 | h | 174-9 | a | branched | 15 | 12 |
| 174 | h | 174-10 | a | branched | 19 | 16 |
| 174 | h | 174-12 | a | branched | 14 | 8 |
| 174 | h | 174-13 | h | Wt | 12 | - |
| 174 | h | 174-14 | h | Wt | 16 | - |
| 174 | h | 174-15 | h | Wt | 14 | - |
| 174 | h | 174-16 | b | Wt | 17 | - |
| 4839 | h | 4839-1 | h | Wt | 15 | - |
| 4839 | h | 4839-2 | b | Wt | 15 | - |
| 4839 | h | 4839-3 | a | branched | 15 | 6 |
| 4839 | h | 4839-4 | b | Wt | 15 | - |
| 4839 | h | 4839-5 | a | branched | 15 | 5 |
| 4839 | h | 4839-6 | b | Wt | 13 | - |
| 4839 | h | 4839-7 | h | Wt | 15 | - |
| 4839 | h | 4839-8 | h | Wt | 15 | - |


| 4839 | h | 4839-9 | a | branched | 20 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4839 | h | 4839-10 | b | Wt | 14 | - |
| 4839 | h | 4839-11 | h | Wt | 16 | - |
| 4839 | h | 4839-12 | h | Wt | 19 | - |
| 4839 | h | 4839-13 | h | Wt | 20 | - |
| 4839 | h | 4839-14 | h | Wt | 19 | - |
| 4839 | h | 4839-15 | h | Wt | 19 | - |
| 4839 | h | 4839-16 | h | Wt | 12 | - |
| 4953 | b | 4953-1 | b | Wt | 13 | - |
| 4953 | b | 4953-2 | b | Wt | 15 | - |
| 4953 | b | 4953-3 | b | Wt | 14 | - |
| 4953 | b | 4953-4 | b | Wt | 13 | - |
| 4953 | b | 4953-5 | b | Wt | 16 | - |
| 4953 | b | 4953-6 | b | Wt | 17 | - |
| 4953 | b | 4953-7 | b | Wt | 13 | - |
| 4953 | b | 4953-8 | b | Wt | 18 | - |
| 4953 | b | 4953-9 | b | Wt | 13 | - |
| 4953 | b | 4953-10 | b | Wt | 15 | - |
| 4953 | b | 4953-11 | b | Wt | 19 | - |
| 4953 | b | 4953-12 | b | Wt | 16 | - |
| 4953 | b | 4953-13 | b | Wt | 19 | - |
| 4953 | b | 4953-14 | b | Wt | 14 | - |
| 4953 | b | 4953-15 | b | Wt | 15 | - |
| 4953 | b | 4953-16 | b | Wt | 17 | - |
| 5045 | h | 5045-1 | a | branched | 19 | 10 |
| 5045 | h | 5045-2 | h | Wt | 14 | - |
| 5045 | h | 5045-3 | h | Wt | 11 | - |
| 5045 | h | 5045-5 | h | Wt | 14 | - |
| 5045 | h | 5045-6 | h | Wt | 16 | - |


| 5045 | h | 5045-7 | h | Wt | 20 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5045 | h | 5045-8 | a | branched | 15 | 6 |
| 5045 | h | 5045-9 | h | Wt | 15 | - |
| 5045 | h | 5045-10 | h | Wt | 18 | - |
| 5045 | h | 5045-11 | a | branched | 12 | 5 |
| 5045 | h | 5045-13 | h | Wt | 20 | - |
| 5045 | h | 5045-14 | h | Wt | 19 | - |
| 5045 | h | 5045-15 | h | Wt | 15 | - |
| 5045 | h | 5045-16 | h | Wt | 15 | - |
| 5070 | h | 5070-1 | h | Wt | 16 | - |
| 5070 | h | 5070-2 | h | Wt | 17 | - |
| 5070 | h | 5070-3 | h | Wt | 15 | - |
| 5070 | h | 5070-4 | a | branched | 16 | 11 |
| 5070 | h | 5070-5 | b | Wt | 20 | - |
| 5070 | h | 5070-6 | h | Wt | 21 | - |
| 5070 | h | 5070-7 | a | branched | 17 | 9 |
| 5070 | h | 5070-8 | a | branched | 16 | 8 |
| 5070 | h | 5070-9 | b | Wt | 18 | - |
| 5070 | h | 5070-11 | b | Wt | 25 | - |
| 5070 | h | 5070-12 | a | branched | 14 | 9 |
| 5070 | h | 5070-13 | h | Wt | 15 | - |
| 5070 | h | 5070-14 | h | Wt | 14 | - |
| 5070 | h | 5070-15 | h | Wt | 26 | - |
| 5070 | h | 5070-16 | a | branched | 19 | 11 |
| 5176 | b | 5176-1 | b | Wt | 13 | - |
| 5176 | b | 5176-2 | b | Wt | 16 | - |
| 5176 | b | 5176-3 | b | Wt | 21 | - |
| 5176 | b | 5176-4 | b | Wt | 13 | - |
| 5176 | b | 5176-5 | b | Wt | 14 | - |


| 5176 | b | $5176-6$ | b | Wt | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5176 | b | b | b | W | -Wt |


| 5326 | h | 5326-3 | h | Wt | 15 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5326 | h | 5326-4 | h | Wt | 15 | - |
| 5326 | h | 5326-5 | b | Wt | 13 | - |
| 5326 | h | 5326-6 | b | Wt | 16 | - |
| 5326 | h | 5326-7 | h | Wt | 17 | - |
| 5326 | h | 5326-8 | h | Wt | 16 | - |
| 5326 | h | 5326-9 | a | branched | 16 | 8 |
| 5326 | h | 5326-10 | b | Wt | 11 | - |
| 5326 | h | 5326-11 | b | Wt | 15 | - |
| 5326 | h | 5326-12 | h | Wt | 16 | - |
| 5326 | h | 5326-13 | a | branched | 13 | 10 |
| 5326 | h | 5326-14 | b | Wt | 12 | - |
| 5326 | h | 5326-15 | b | Wt | 11 | - |
| 5326 | h | 5326-16 | h | Wt | 15 | - |
| 5403 | h | 5403-1 | h | Wt | 15 | - |
| 5403 | h | 5403-2 | h | Wt | 16 | - |
| 5403 | h | 5403-3 | a | branched | 17 | 13 |
| 5403 | h | 5403-4 | h | Wt | 13 | - |
| 5403 | h | 5403-5 | b | Wt | 17 | - |
| 5403 | h | 5403-6 | a | branched | 14 | 9 |
| 5403 | h | 5403-7 | a | branched | 16 | 10 |
| 5403 | h | 5403-8 | h | Wt | 15 | - |
| 5403 | h | 5403-9 | h | Wt | 13 | - |
| 5403 | h | 5403-10 | b | Wt | 16 | - |
| 5403 | h | 5403-12 | b | Wt | 18 | - |
| 5403 | h | 5403-13 | h | Wt | 15 | - |
| 5403 | h | 5403-14 | b | Wt | 15 | - |
| 5403 | h | 5403-15 | a | branched | 15 | 9 |
| 5403 | h | 5403-16 | b | Wt | 16 | - |


| 5407 | h | 5407-1 | a | branched | 15 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5407 | h | 5407-2 | h | Wt | 19 | - |
| 5407 | h | 5407-3 | b | Wt | 13 | - |
| 5407 | h | 5407-4 | h | Wt | 14 | - |
| 5407 | h | 5407-5 | h | Wt | 14 | - |
| 5407 | h | 5407-6 | a | branched | 15 | 11 |
| 5407 | h | 5407-7 | h | Wt | 14 | - |
| 5407 | h | 5407-8 | h | Wt | 15 | - |
| 5407 | h | 5407-9 | h | Wt | 15 | - |
| 5407 | h | 5407-10 | b | Wt | 13 | - |
| 5407 | h | 5407-11 | h | Wt | 16 | - |
| 5407 | h | 5407-12 | a | branched | 18 | 10 |
| 5407 | h | 5407-13 | a | branched | 16 | 12 |
| 5407 | h | 5407-14 | h | Wt | 15 | - |
| 5407 | h | 5407-15 | h | Wt | 14 | - |
| 5407 | h | 5407-16 | h | Wt | 15 | - |
| 5409 | h | 5409-1 | - | Wt | 16 | - |
| 5409 | h | 5409-2 | h | Wt | 13 | - |
| 5409 | h | 5409-3 | h | Wt | 13 | - |
| 5409 | h | 5409-4 | b | Wt | 13 | - |
| 5409 | h | 5409-5 | h | Wt | 14 | - |
| 5409 | h | 5409-6 | a | branched | 15 | 11 |
| 5409 | h | 5409-7 | a | branched | 19 | 7 |
| 5409 | h | 5409-8 | h | Wt | 13 | - |
| 5409 | h | 5409-9 | h | Wt | 16 | - |
| 5409 | h | 5409-11 | h | Wt | 19 | - |
| 5409 | h | 5409-13 | h | Wt | 13 | - |
| 5409 | h | 5409-14 | a | branched | 16 | 11 |
| 5409 | h | 5409-15 | b | Wt | 13 | - |


| 5409 | h | 5409-16 | b | Wt | 14 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5443 | h | 5443-1 | h | Wt | 14 | - |
| 5443 | h | 5443-2 | a | branched | 12 | 7 |
| 5443 | h | 5443-3 | h | Wt | 14 | - |
| 5443 | h | 5443-4 | b | Wt | 13 | - |
| 5443 | h | 5443-5 | h | Wt | 13 | - |
| 5443 | h | 5443-6 | h | Wt | 18 | - |
| 5443 | h | 5443-7 | a | branched | 17 | 10 |
| 5443 | h | 5443-8 | a | branched | 12 | 9 |
| 5443 | h | 5443-9 | b | Wt | 14 | - |
| 5443 | h | 5443-11 | h | Wt | 12 | - |
| 5443 | h | 5443-12 | h | Wt | 14 | - |
| 5443 | h | 5443-13 | h | Wt | 14 | - |
| 5443 | h | 5443-14 | a | branched | 16 | 12 |
| 5443 | h | 5443-15 | a | branched | 14 | 10 |
| 5443 | h | 5443-16 | b | Wt | 15 | - |
| 5483 | b | 5483-1 | b | Wt | 15 | - |
| 5483 | b | 5483-2 | b | Wt | 15 | - |
| 5483 | b | 5483-3 | b | Wt | 15 | - |
| 5483 | b | 5483-4 | b | Wt | 13 | - |
| 5483 | b | 5483-5 | b | Wt | 11 | - |
| 5483 | b | 5483-6 | b | Wt | 13 | - |
| 5483 | b | 5483-7 | b | Wt | 16 | - |
| 5483 | b | 5483-8 | b | Wt | 14 | - |
| 5483 | b | 5483-9 | b | Wt | 15 | - |
| 5483 | b | 5483-10 | b | Wt | 14 | - |
| 5483 | b | 5483-11 | b | Wt | 14 | - |
| 5483 | b | 5483-12 | b | Wt | 16 | - |
| 5483 | b | 5483-13 | b | Wt | 12 | - |


| 5483 | b | 5483-14 | b | Wt | 14 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5483 | b | 5483-15 | b | Wt | 15 | - |
| 5483 | b | 5483-16 | b | Wt | 13 | - |
| 5488 | a | 5488-2 | a | branched | 22 | 15 |
| 5488 | a | 5488-3 | a | branched | 23 | 14 |
| 5488 | a | 5488-5 | a | branched | 19 | 14 |
| 5488 | a | 5488-6 | a | branched | 12 | 10 |
| 5488 | a | 5488-7 | a | branched | 21 | 15 |
| 5488 | a | 5488-8 | a | branched | 17 | 13 |
| 5488 | a | 5488-9 | a | branched | 20 | 11 |
| 5488 | a | 5488-10 | a | branched | 20 | 10 |
| 5488 | a | 5488-11 | a | branched | 23 | 13 |
| 5488 | a | 5488-12 | a | branched | 25 | 16 |
| 5488 | a | 5488-13 | a | branched | 20 | 14 |
| 5488 | a | 5488-14 | a | branched | 20 | 12 |
| 5488 | a | 5488-15 | a | branched | 21 | 12 |
| 5488 | a | 5488-16 | a | branched | 20 | 10 |
| 5504 | b | 5504-1 | b | Wt | 15 | - |
| 5504 | b | 5504-2 | b | Wt | 19 | - |
| 5504 | b | 5504-3 | b | Wt | 24 | - |
| 5504 | b | 5504-4 | b | Wt | 21 | - |
| 5504 | b | 5504-5 | b | Wt | 21 | - |
| 5504 | b | 5504-6 | b | Wt | 17 | - |
| 5504 | b | 5504-7 | b | Wt | 19 | - |
| 5504 | b | 5504-8 | b | Wt | 11 | - |

Supplementary Table 4. Part 1. List of the TILLING as well as induced mutants per corresponding species

| Species | TILLING Line ID | DNA <br> Position (from Start Codon) | SNP <br> type | Homo/ Hetero | Wild aa | $\begin{gathered} \text { Mutant } \\ \text { aa } \end{gathered}$ | Location within the gene | the grass sp. with deviated aa | SIFT <br> prediction | SIFT score |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Barley | M3.15104 | 305 | G-to-A | homo | R | K | within TCP Domain | no change in grass; R | NA | NA |
| Barley | M3.4406 | 334 | G-to-A | homo | A | T | within TCP Domain | no change in grass; A | NA | NA |
| Barley | M3.2598 | 346 | C-to-T | homo | R | W | within TCP Domain | no change in grass; R | NA | NA |
| Barley | M3.13729 | 335 | C-to-T | homo | A | V | within TCP Domain | no change in grass; A | NA | NA |
| Barley | M3.4063 | 211 | C-to-T | hetro | P | S | befor TCP Domain | OS: D | NA | NA |
| Barley | M3.9299 | 595 | G-to-A | hetro | G | R | after TCP Domain | no change in grass; G | NA | NA |
| Barley | M3.14287 | 109 | G-to-A | hetro | D | N | befor TCP Domain | OS: Q | NA | NA |
| Barley | M3.2821 | 241 | C-to-T | hetro | p | S | befor TCP Domain | in $\mathrm{OS}, \mathrm{Tu}, \mathrm{BD}$ and SB : A | NA | NA |
| Barley | M3.14325 | 242 | C-to-A | hetro | p | Q | befor TCP Domain | in OS, Tu, BD and SB: A | NA | NA |
| Barley | M3.6995 | 290 | G-to-A | homo | R | K | befor TCP Domain | no change in grass; R | NA | NA |
| Barley | M3.12123 | 290 | G-to-A | hetro | R | K | befor TCP Domain | no change in grass; R | NA | NA |
| Barley | M3.13483 | 290 | G-to-A | hetro | R | K | befor TCP Domain | no change in grass; R | NA | NA |
| Barley | M3.2927 | 496 | C-to-T | homo | L | F | after TCP Domain | OS: S, ZM: E, Sb: L | NA | NA |
| Barley | M3.13996 | 511 | G-to-A | hetro | A | T | after TCP Domain | ZM: R, Sb: V | NA | NA |
| Barley | M3.14152 | 514 | G-to-A | homo | G | R | after TCP Domain | OS: A, ZM: - | NA | NA |
| Barley | M3.6504 | 515 | G-to-A | hetro | G | E | after TCP Domain | OS: A, ZM: - | NA | NA |
| Barley | M3.3717 | 528 | G-to-A | hetro | M | I | after TCP Domain | in OS: R, BD: -, SB: - , ZM: - | NA | NA |
| Barley | M3.11298 | 544 | G-to-A | hetro | V | M | after TCP Domain | in OS: A, BD: -, SB: D, ZM: D | NA | NA |
| Barley | M3.11933 | 544 | G-to-A | homo | V | M | after TCP Domain | in OS: A, BD: -, SB: D, ZM: D | NA | NA |
| Barley | M3.13403 | 544 | G-to-A | hetro | V | M | after TCP Domain | in OS: A, BD: -, SB: D, ZM: D | NA | NA |
| Barley | M3.6448 | 573 | G-to-T | hetro | E | D | after TCP Domain | in OS: V, SB: S , ZM: S | NA | NA |
| Barley | M3. 12394 | 595 | G-to-A | hetro | G | R | after TCP Domain | no change in grass; G | NA | NA |


| Barley | M3.3609 | 635 | G-to-A | homo | R | k | after TCP Domain | no change in grass; R | NA | NA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Barley | M3.9852 | 641 | G-to-A | hetro | G | D | after TCP Domain | no change in grass; G | NA | NA |
| Barley | M3.11856 | 670 | C-to-T | homo | R | C | after TCP Domain | in OS: -, BD: L, SB: - , ZM: - | NA | NA |
| Sorghum | ARS152 | 188 | G-to-A | hetro | R | H | Befor TCP Domain | not conserved | NA | NA |
| Sorghum | ARS180 | 430 | A-to-G | homo | A | T | within TCP Domain | no change in grass; A | NA | NA |
| Sorghum | ARS137 | 577 | C-to-T | hetro | P | S | after TCP Domain | not conserved | NA | NA |
| $\begin{gathered} \text { Brachypo } \\ \text { dium } \\ \hline \end{gathered}$ | 8004 | 173 | C_To_T |  | S58F |  | Befor TCP Domain |  | Damaging | 0 |
| Brachypo dium | 8231 | 187 | $\begin{gathered} \mathrm{G}_{-} \mathrm{To}_{-} \\ \mathrm{A} \end{gathered}$ |  | $\begin{gathered} \hline \text { A63 } \\ \mathrm{T} \end{gathered}$ |  | Befor TCP Domain |  | Damaging | 0 |
| Brachypo dium | 8566 | 266 | $\begin{gathered} \hline \mathrm{G}_{-} \mathrm{To}_{-} \\ \mathrm{A} \\ \hline \end{gathered}$ |  | $\begin{gathered} \text { G89 } \\ \text { D } \end{gathered}$ |  | Befor TCP Domain |  | Damaging | 0,01 |
| Brachypo dium | 7576 | 278 | C_To_T |  | $\begin{gathered} \text { A93 } \\ \text { V } \\ \hline \end{gathered}$ |  | Befor TCP Domain |  | Damaging | 0,01 |
| Brachypo dium | 4957 | 295 | C_To_T |  | P99S |  | Befor TCP Domain |  | Damaging | 0,05 |
| Brachypo dium | 5446 | 346 | C_To_T |  | Q116 |  | within TCP Domain |  | - | - |
| Brachypo dium | 8373 | 437 | $\begin{gathered} \mathrm{G}_{-} \mathrm{To} \\ \mathrm{~A} \end{gathered}$ |  | $\begin{gathered} \hline \text { S146 } \\ \mathrm{N} \\ \hline \end{gathered}$ |  | within TCP Domain |  | Damaging | 0,02 |
| Brachypo dium | 5149 | 472 | C_To_T |  | $\begin{gathered} \hline \text { P158 } \\ \mathrm{S} \end{gathered}$ |  | within TCP Domain |  | Tolerated | 0,07 |
| Brachypo dium | 5337 | 533 | C_To_T |  | $\begin{gathered} \mathrm{A} 178 \\ \mathrm{~V} \\ \hline \end{gathered}$ |  | within TCP Domain |  | Tolerated | 0,15 |
| Brachypo dium | 6339 | 536 | $\begin{gathered} \hline \mathrm{G}_{-} \mathrm{To}_{-} \\ \mathrm{A} \\ \hline \end{gathered}$ |  | $\begin{gathered} \hline \text { G179 } \\ \text { E } \\ \hline \end{gathered}$ |  | within TCP Domain |  | Tolerated | 0,07 |
| Brachypo dium | 4196 | 785 | $\begin{gathered} \hline \mathrm{G}_{-} \mathrm{To}_{-} \\ \mathrm{A} \end{gathered}$ |  | $\begin{gathered} \hline \text { G262 } \\ \text { D } \end{gathered}$ |  | after TCP Domain |  | Damaging | 0 |


| Supplementary Table 4. Part 2. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Running <br> Number | Branched (compositum) Barleys: | Gene <br> Bank | $\begin{aligned} & \text { Ty } \\ & \text { pe } \end{aligned}$ | ID | type of mutation and the doner line | Cross with comla | PCR with TCP_potential promotor based primers | $\begin{array}{\|l\|} \hline \text { TCP } \\ \text { _CDS_Resequ } \\ \text { ening } \\ \hline \end{array}$ |
| 4 | Mut. 3906 | GER | $\begin{aligned} & \text { Spr } \\ & \text { ing } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { MHO } \\ & \text { R347 } \\ & \hline \end{aligned}$ | X-ray; spike with short branches; 1949- 'Heines Haisa'; | Done/allel ic | Amplicon observed | No Amplicon |
| 8 | com1.j | USA | $\begin{aligned} & \hline \text { Spr } \\ & \text { ing } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { NGB2 } \\ & 2020 \\ & \hline \end{aligned}$ | X-ray; induced mutant in Donaria (PI 161974) isolated by F. Scholz |  | No Amplicon | No Amplicon |
| int-h 42 | int-h 42 | SWE | $\begin{aligned} & \text { \#N/ } \\ & \mathrm{A} \\ & \hline \end{aligned}$ | \#N/A | /neutrons/ KRISTINA |  | No Amplicon | No Amplicon |
| int-h 43 | int-h 43 | SWE | $\begin{aligned} & \hline \text { \#N/ } \\ & \text { A } \end{aligned}$ | \#N/A | /hydroxy n-propyl methanesulfonate/ KRISTINA |  | No Amplicon | No Amplicon |
| int-h 44 | int-h 44 | SWE | $\begin{aligned} & \text { \#N/ } \\ & \text { A } \end{aligned}$ | \#N/A | /ethyl methanesulfonate/ KRISTINA |  | No Amplicon | No Amplicon |

Supplementary Table 5. Phenotypic data of the sorghum-TILLING mutants

|  |  |  | M5 generation _to measure branch number |  |  | M6 generation _to measure branch angle |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TILLIN GLine ID_M4 | DNA Position (from Start Codon) | Location within the gene | Number of plants _all homozygous | Average No of nodes/panicle/ family | Average No of branch per nodes/panicle/ family | Number of plants _ all homozygous | No of nodes/panic le/family | Average No of angle per nodes/panicle/ family | Average angle size (degree) per nodes/panicle/ family | Grain formation |
| ARS180 | A430G | $\begin{gathered} \text { within } \\ \text { TCP } \\ \text { Domain } \end{gathered}$ | 8 | 12 | 4,2* | 7 | 3 basal | 10,1 | 5,2*** | only 20-40 grains/panicle |
| ARS137 | C577T | after TCP <br> Domain | 8 | 11,5 | 4,4* | 6 | 3 basal | 9,3 | 15,9 | Complete fertility |
| $\begin{gathered} \mathrm{Wt} \\ \text { BT623 } \end{gathered}$ | - | - | 7 | 10 | 5,4 | 5 | 3 basal | 8,1 | 10,95 | Complete fertility |
| $\begin{aligned} & * ; \text { thest }(\mathrm{P}<0.05) \\ & * * * ; \text { thest }(\mathrm{P}<0.001) \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |

## Supplementary source data

## Supplementary source data 1. Differentially expressed genes in Wt and barrey mutant with

the corresponding statistical values


[^0]:    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.952705; this version posted March 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
    pressure. In contrast, palea in Wt never made such structure while applying same external handpressure. Histological analyses of the Brachypodium mutants' palea revealed no obvious change in cell expansion (Fig. 4).

[^1]:    bioRxiv preprint doi: htps:///dooi. org/10.1101/2020.02. 18.952705; this version posted March 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the authorffunder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
     rowed barley cultivar 'Barke' reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2, 258 (2009).
    38. Clement, M., Posada, D. \& Crandall, K.A. TCS: a computer program to estimate gene genealogies. Mol Ecol 9, 1657-9 (2000).
    39. Beier, S. et al. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. Scientific Data 4, 170044 (2017).
    40. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14, R36 (2013).
    41. Liao, Y., Smyth, G.K. \& Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930 (2014).
    42. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. \& Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods 14, 417-+ (2017).
    43. Robinson, M.D., McCarthy, D.J. \& Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2010).
    44. Komatsuda, T. et al. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proceedings of the National Academy of Sciences of the United States of America 104, 1424-1429 (2007).
    45. Lolas, I.B. et al. The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant J 61, 686-97 (2010).
    46. Cao, Y.Y. et al. Identification of Differential Expression Genes in Leaves of Rice (Oryza sativa L.) in Response to Heat Stress by cDNA-AFLP Analysis. Biomed Research International (2013).
    47. Zhao, T. et al. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Molecular Genetics and Genomics 276, 334-350 (2006).
    48. Masiero, S., Colombo, L., Grini, P.E., Schnittger, A. \& Kater, M.M. The Emerging Importance of Type I MADS Box Transcription Factors for Plant Reproduction. Plant Cell 23, 865-872 (2011).

