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Abstract 19 

Human observers can reliably report their confidence in the choices they make. An 20 

influential framework conceptualizes decision confidence as the probability of a decision 21 

being correct, given the choice made and the evidence on which it was based. This 22 

framework accounts for three diagnostic signatures of human confidence reports, including 23 

an opposite dependence of confidence on evidence strength for correct and error trials. 24 

However, the framework does not account for the temporal evolution of these signatures, 25 

because it only describes the transformation of a static evidence representation into choice 26 

and the associated confidence. Here, we combine this framework with another influential 27 

framework: the temporal accumulation of evidence towards decision bounds. We propose 28 

that confidence at any point in time reflects the probability of being correct, given the choice 29 

and accumulated evidence up until that point. This model predicts a systematic time-30 

dependence of all diagnostic signatures of decision confidence, most critically: an increase of 31 

the opposite dependence of confidence on evidence strength and choice correctness with 32 

time. We tested, and confirmed, these predictions in human subjects performing a random 33 

dot motion discrimination task, in which confidence judgments were queried at different 34 

points in time. We conclude that confidence reports track the temporal evolution of the 35 

probability of being correct. 36 

Author summary 37 

Humans are able to report a sense of confidence in the accuracy of a choice. An 38 

influential framework states that confidence reflects the probability that a choice is correct. 39 

We combined human experimenting with computational modelling and extended this notion 40 

in the time domain, thus to formally describe the dynamics of confidence. Both human data 41 

and our model show that the sense of confidence depends on the point in time, at which it is 42 

queried. We conclude that human confidence reports reflect the dynamics of the probability 43 

of a choice being correct.  44 
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Introduction 45 

Human observers can reliable judge the confidence about their choices. They often 46 

report high confidence for correct choices and low confidence for errors. Accurate internal 47 

representations of confidence are useful for the adaptive control of future behaviour 1–3. An 48 

influential framework posits that internal representations of decision confidence, and agents’ 49 

overt reports thereof, reflect the probability of being correct, given the choice made and given 50 

the evidence on which it was based 4–6. In this framework, both choice and confidence are 51 

directly based on the same underlying computations. One advantage of this approach is that 52 

it predicts three qualitative signatures of confidence 5: (i) an interaction between evidence 53 

strength and choice accuracy, whereby confidence increases with evidence strength for 54 

correct choices, but decreases for incorrect choices; (ii): confidence predicts a monotonic 55 

increase in accuracy; (iii): a steeper psychometric performance for high versus low 56 

confidence trials. These three signatures have been observed in neural data 5, several 57 

implicit behavioural measures of confidence 4,5,7,8, and explicit confidence reports of human 58 

observers 4,9. While this framework is highly influential, an important limitation is that it is 59 

static: a fixed quantity of evidence determines both the choice and associated confidence. 60 

Therefore, this framework does not account for the dynamics of decision-making, the 61 

associated trade-off between speed and accuracy, and their effect on confidence reports.  62 

Another influential framework, bounded accumulation, holds that perceptual decisions 63 

are based on the temporal accumulation of noisy sensory evidence towards decision bounds  64 

10,11. In two-choice tasks, a decision maker accumulates evidence for each option, and the 65 

option for which the integrated evidence first crosses a decision threshold is selected, 66 

indicating commitment to choice 11. The efficiency (i.e., signal-to-noise ratio) of the 67 

accumulation process is governed by the so-called drift rate.  68 

Here, we extend the framework of statistical confidence into the time domain, by 69 

connecting it to the framework of evidence accumulation towards decision bounds, and show 70 
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that this dynamic framework of statistical decision confidence accounts well for human 71 

behavior in a classic perceptual choice task widely used in the study of decision-making.  72 

 73 

Results 74 

Dynamic statistical decision confidence 75 

We propose that confidence at any point in time reflects the probability of being 76 

correct, given the choice made and the evidence accumulated up until that point. We first 77 

unpack and solidify this idea through simulations of the drift diffusion model (DDM), a popular 78 

evidence accumulation model (Fig. 1A). The key insight, supported by recent data, is that the 79 

evidence accumulation does not necessarily terminate at the time of bound crossing: 80 

evidence can continue to accumulate following the response 12,13. Therefore, confidence 81 

reports may differ, depending on whether they are probed around the time of the response 82 

14,15 or only later in time, after additional post-decision processing 16–18. Even so, in both 83 

cases, confidence reflects the probability of being correct, given the choice and accumulated 84 

evidence up until that point. The heat map in Fig. 1A reflects the probability of being correct 85 

given evidence (Y-axis) and time (X-axis), conditional on the choice made. Note that the heat 86 

map is flipped vertically when the lower boundary is reached instead. Thus, confidence in our 87 

model reflects the probability of being correct, given choice, evidence and time. Most 88 

importantly, with respect to Signature 1 (an interaction between evidence strength and 89 

choice accuracy), our model simulations show that confidence increases for both corrects 90 

and errors when confidence is quantified at the time the bound is reached (Figure 1B), 91 

whereas the interaction between evidence strength and choice accuracy emerges when 92 

confidence is queried later in time (Figure 1C-D).  93 
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 94 

Figure 1. Quantifying decision confidence within an evidence accumulation framework. A. 95 

Noisy sensory evidence is accumulated over time, until the decision variable reaches one of two 96 

bounds (a or 0), corresponding to a left or right choice, respectively. After the decision variable 97 

reaches a bound, evidence continues to accumulate. The heat map shows the probability of being 98 

correct given time and evidence, conditional on the (left) choice made. Confidence is quantified as the 99 

probability of the choice being correct, given elapsed time and the integrated evidence (i.e., 100 

represented by the color of the heat map). Confidence can be queried at different points in time. B-D. 101 

Model predictions about signature 1, an interaction between evidence strength and accuracy, 102 

depending on when in time confidence is quantified.  103 

 104 

We next tested the model predictions in the behavior of human participants during the 105 

widely used random dot motion discrimination task, in which we prompted confidence ratings 106 

at different latencies. We first show that behavioral performance was well explained by the 107 

drift diffusion model. Second, we tested and confirmed dynamic predictions about these 108 

three diagnostic statistical signatures of confidence. Third, using a manipulation of evidence 109 

volatility, we shed light on the stopping rule used for post-decisional processing. 110 
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 111 

Explaining behavior through bounded evidence accumulation  112 

Twenty-six human participants viewed random dot motion stimuli and decided as fast 113 

and accurately as possible whether a subset of dots was coherently moving towards the left 114 

or the right side of the screen 10. The difficulty of these decisions was manipulated by varying 115 

the proportion of coherently moving dots. Five different levels of coherence were used, 116 

ranging from 0 up to .4, all of which were randomly intermixed within a block. We also 117 

manipulated the volatility of motion coherence over the course of a single trial. Specifically, 118 

on each frame, the input coherence was either sampled from a Gaussian distribution with SD 119 

= 0 (low volatility), or from a Gaussian distribution with SD = .256 (high volatility) around the 120 

generative coherence. In the high volatility condition, additional noise is thus introduced in 121 

the decision process, which previous work has shown to speed up RTs and increase 122 

confidence 14. Depending on the block that participants were in, responses were collected in 123 

a different way (see Figure 2). In the immediate condition participants jointly indicated their 124 

choice (left or right) and their level of confidence (guess correct, probably correct or certainly 125 

correct) via a single response. In the delayed condition, participants first indicated their 126 

choice (left or right), and then after a 1s blank screen or 1s of continued motion (same 127 

coherence, volatility and motion direction as the initial stimulus) they indicated the level of 128 

confidence in their choice on a six-point scale.  129 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.18.953778doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.953778
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 130 

Figure 2. Experimental task. Sequence of events in the experimental task. Participants decided, as 131 

fast and accurately as possible, whether the majority of dots were moving left or right. In the 132 

immediate condition, they did so by jointly indicating their choice (left or right) and confidence (sure 133 

correct, probably correct or guess correct) in a single response. In the delayed condition, participants 134 

first indicated their choice with their thumbs (left or right), and after a 1s blank or 1s of continued 135 

motion, they were prompted to indicate the degree of confidence in their decision using a six-point 136 

confidence scale (ranging from certainly correct to certainly wrong). 137 

To unravel how coherence and volatility affected latent cognitive variables in the 138 

decision process, we fitted choices and reaction times using a hierarchical version of the drift 139 

diffusion framework 19. Because the effects of coherence and volatility were not modulated by 140 

the timing of confidence reports (immediate vs delayed) for both RTs, F < 1, Bayes Factor 141 

(BF) = .008, and accuracy, F < 1, BF = .01, the RT and accuracy data were combined. First, 142 

as typically observed in random dot motion tasks, drift rates increased monotonically with 143 

coherence level (see Figure 3A), with significant differences in drift rate between all 144 

coherence levels (averaged across volatility levels), ps < .001. Estimated drift rates did not 145 

depend on the level of evidence volatility, ps > .119. Second, as we predicted 14, our 146 

manipulation of within-trial evidence volatility was captured by the within-trial drift variability 147 

parameter σ (see Figure 3B; Methods). When averaged over different coherences, estimated 148 

within-trial variability was higher for high compared to low volatility, p = .014 (pair-wise 149 
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comparisons within each coherence value: 0% coherence: p = .091; 5% coherence: p = .049; 150 

10% coherence: p = .259; 20% coherence: p = .106; 40% coherence: p = .457). 151 

These model fits captured key qualitative patterns evident in the behavioral data 152 

(Figure 3C-D). Accuracy increased with the level of coherence (data: F(4,22) = 267.48, p < 153 

.001; model: F(4,22) = 619.57, p < .001), whereas evidence volatility and the interaction 154 

between both variables left accuracy unaffected (data: Fs < 1; model: ps > .213). Reaction 155 

times decreased with increasing coherence levels (data: F(4,22) = 30.68, p < .001; model: 156 

F(4,22) = 52.25, p < .001), and were shorter with high compared to low volatility (data: 157 

F(1,25) = 9.10, p = .006; model: F(1,25) = 17.91, p < .001), an effect that was mostly 158 

pronounced at low coherence levels (data: F(4,22) = 13.21, p < .001; model: F(4,22) = 15.53, 159 

p < .001). 160 

 161 

 162 
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Figure 3. Model fits and task performance. A. Drift rate scales monotonically with the proportion of 163 

coherently moving dots, but did not differ for high and low volatility conditions. B. Within-trial variability 164 

(σ) selectively varied as a function of evidence volatility, whereas it was unaffected by motion 165 

coherence. Large dots: group averages; small dots: individual participants. Distributions show the 166 

group posteriors. Statistical significance is reflected in overlap between posterior distributions over 167 

parameter estimates (Materials and Methods). C-D. Accuracy (C) and RTs (D) as a function of 168 

coherence and evidence volatility, separately for the empirical data (points and bars) and model fits 169 

(lines and shades). Shades and error bars reflect SEM of model and data, respectively. 170 

 171 

Post-decision accumulation explains dynamic signatures of statistical confidence 172 

Next, we used our model fits to obtain qualitative and quantitative predictions of 173 

confidence reports about the three dynamic signatures of confidence. In order to create a 174 

heat map reflecting the probability of being correct, we simulated a large number of trials and 175 

calculated average accuracy for each combination of time and evidence. Confidence 176 

predictions were quantified by reading out the values from this heat map (reflecting the 177 

probability of being correct) for each combination of evidence, time, and choice.  178 

Signature 1: interaction between evidence strength and choice accuracy. The first 179 

diagnostic signature of statistical confidence established previously 5 is an increase of 180 

confidence with evidence strength for correct trials, but a decrease for error trials. In the 181 

immediate condition, confidence increased with coherence level, F(4,44.81) = 15.62, p < 182 

.001. Crucially, there was also the predicted interaction between coherence level and choice 183 

accuracy, F(4,1990.70) = 14.09, p < .001. Confidence increased with evidence strength for 184 

correct trials (linear contrast: p < .001), but there was no significant effect for error trials 185 

(linear contrast: p = .070; see Figure 4A). In contrast, as visualized in Figure 1B, the model 186 

predicts that when confidence is quantified at the time when the decision boundary is 187 

reached, confidence scales with coherence, F(4,25) = 14.14, p < .001, but there is no 188 

interaction between coherence and choice accuracy, F(4,125.02) = 1.03, p = .39.  189 
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The above mismatch can easily be remedied by assuming that choice and confidence 190 

cannot be simultaneously computed, or accessed for report – for example due to the 191 

psychological ‘refractory period’ 20,21. Indeed, when confidence was calculated with a small 192 

temporal delay (100 ms, Figure 1C; see Methods), the model did predict the interaction 193 

between coherence and choice accuracy, F(4,200) = 84.05, p < .001. As in the behavioral 194 

data, the model with the small temporal delay predicted increasing confidence with 195 

coherence for correct trials (linear contrast: p < .001), but not for error trials (linear contrast: p 196 

= .541; Figure 4A). In the remainder, we will continue with predictions from the model with 197 

temporal delay. 198 

In both delayed conditions, confidence scaled with coherence level (blank condition: 199 

F(4,51.8) = 5.49, p < .001; extra evidence condition: F(4,4571.1) = 4.75, p < .001). In both 200 

conditions, there was also an interaction between coherence and choice accuracy (blank 201 

condition: F(4,3625.6) = 53.38, p < .001; extra evidence condition: F(4,4568.7) = 71.45, p < 202 

.001). Within the correct trials, confidence increased with coherence levels (blank and extra 203 

evidence conditions, linear contrasts: p < .001. Instead, within the error trials, confidence 204 

decreased as a function of coherence (blank and extra evidence conditions, linear contrasts: 205 

p = .001). This interaction was captured by a model which terminated post-decision 206 

accumulation after a fixed amount of time (cf. Figure 1D; Materials and Methods). This model 207 

also showed the scaling of confidence with coherence (F(4,69.79) = 39.9, p < .001), as well 208 

as the interaction with choice accuracy (F(4,225) = 1634.3, p < .001). Similar to the human 209 

data, confidence increased with coherence for correct trials (linear contrast: p < .001) and 210 

decreased for error trials (linear contrast: p < .001; figure 4B). Finally, there was a three-way 211 

interaction between coherence, choice accuracy and interrogation condition (data: 212 

F(8,13466.5) = 18.22, p < .001, model: F(4,475) = 161.54, < .001). 213 

 214 
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 215 

Figure 4. Three dynamic signatures of statistical confidence. A. Signature 1: an interaction 216 

between evidence strength and choice accuracy. When confidence is quantified shortly after the 217 

decision bound has been reached (“immediate”), both model and data show an interaction between 218 

evidence strength and choice accuracy in the immediate condition. The same pattern was observed 219 

for the delayed condition, although the interaction effect was clearly much stronger here. B. Signature 220 

2: monotonically increasing accuracy as a function of confidence. Both model and data show a 221 

monotonic scaling of accuracy depending on the level of confidence. C. Signature 3: Steeper 222 

psychometric performance for high versus low confidence. Both model and data show a steeper 223 
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psychometric performance for trials judged with high versus low confidence. Notes: data for the 224 

delayed conditions are averaged over blank and extra evidence conditions. All plots show empirical 225 

data (black points and bars) and model predictions (grey lines and shades). Shades and error bars 226 

reflect SEM of model and data, respectively.  227 

 228 

Signature 2: Monotonically increasing accuracy as a function of confidence. The 229 

second signature of statistical confidence is that it monotonically predicts choice accuracy. 230 

Indeed, an approximately linear relation between confidence and mean accuracy was 231 

observed in the data for both the immediate condition, b = .13, t(29.92) = 12.82, p < .001, the 232 

delayed blank, b = .12, t(27.29) = 16.12, p < .001, and the delayed extra evidence condition, 233 

b = .13, t(23.33) = 15.45, p < .001. This pattern was also captured by the model in the 234 

immediate condition, b = .12, t(26.4) = 11.76, p < .001, and in the delayed condition, b = .12, 235 

t(26) = 25.05, p < .001 (see Figure 4B). Note that these slopes did not differ depending on 236 

the moment in time when confidence was queried (data: X² = 2.03, p = .363; model: X² = 237 

3.76, p = .152). 238 

Signature 3: Steeper psychometric performance for high versus low confidence. The 239 

third signature of statistical confidence is that the relation between accuracy and evidence 240 

strength should be steeper for trials judged with high versus low confidence. The model 241 

predicts that this difference should be larger for the delayed compared to the immediate 242 

condition (Figure 4C). To test this prediction, confidence reports were divided into high or low 243 

using a split-median, separately per participant. As expected, the interaction between 244 

coherence and confidence in predicting accuracy was observed both in the immediate 245 

condition (data: X2(4) = 30.9, p < .001; model: X2(4) = 2212.4, p < .001), and in the delayed 246 

condition (data: delayed blank: X2(4) = 84.15, p < .001, extra evidence: X2(4) = 56.64, p < 247 

.001; model: X2(4) = 9018.7, p < .001; see Figure 4C). Finally, there was a significant three-248 

way interaction between coherence, confidence and interrogation condition (data: X²(8) = 249 

24.51, p = .002; model: X²(4) = 228.90, p < .001). 250 
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 251 

Evidence volatility dissociates time-based and evidence-based stopping criteria 252 

If decision confidence is ‘read out’ and reported after additional post-decision 253 

processing, a stopping rule has to be implemented that determines when confidence is 254 

evaluated. In the previous simulations, following previous research a so-called ‘time-based 255 

stopping rule’ was implemented 16,17: confidence was extracted after a fixed latency following 256 

initial bound crossing. An alternative implementation, however, is that the stopping rule for 257 

confidence reports is also based on accumulated evidence, just like the stopping rule for the 258 

first-order decision process 18. According to this ‘evidence-based stopping rule’, after 259 

reaching the initial choice threshold, agents impose a second threshold and a delayed 260 

confidence report is given when this second threshold is reached. Because the statistical 261 

signatures discussed before do not arbitrate between the two delayed confidence stopping 262 

criteria (see Supplementary Materials), we next turn towards our manipulation of evidence 263 

volatility. Previous work has shown that an evidence-based model can explain the volatility 264 

effect on confidence for immediate confidence judgments 14. We reasoned that the same 265 

manipulation could be used to disentangle a time-based versus an evidence-based stopping 266 

rule for delayed confidence judgments.  267 

 268 
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 269 

Figure 5. Within-trial evidence volatility arbitrates between an evidence-based and a time-based 270 

stopping rule. Immediate confidence (A and C) and delayed confidence (B and D) as a function of 271 

coherence and evidence volatility, separately for the empirical data (points and bars) and model 272 

predictions (lines and shades). A and B show average confidence, C and D show differences between 273 

low and high evidence volatility. The inset on the top right shows two potential stopping criteria for 274 

post-decision processing: post-decision accumulation can stop after a fixed period of time (i.e., a 275 

vertical time-based rule) or when a fixed amount of evidence is reached (i.e., a horizontal evidence-276 

based rule). Notes: shades and error bars reflect SEM of model and data, respectively. 277 

 278 

For immediate confidence reports, model predictions closely capture the pattern seen 279 

in human confidence ratings (see Figure 5A). Confidence monotonically increased with 280 

coherence levels (data: F(4,22) = 27.47, p < .001; model: F(4,22) = 27.68, p < .001), and was 281 

higher with high evidence volatility (data: F(1,25) = 41.19, p < .001; model: F(1,25) = 9.90, p 282 
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= .004). Similar to RTs, the effect of evidence volatility on confidence was most pronounced 283 

with low coherence values (data: F(4,22) = 4.46, p = .008; model: F(4,22) = 30.79, p < .001). 284 

To easily interpret this effect, Figure 5C shows differences between the low and high volatility 285 

condition. As can be seen, for both model and data, confidence was increased with high 286 

evidence volatility, particularly with low coherence values. 287 

For delayed confidence reports, the data favored the evidence-based stopping rule 288 

over the time-based stopping rule (see Figure 5B and 6D). The data and both models 289 

showed a monotonic increase of confidence with coherence levels (data extra evidence: 290 

F(4,22) = 46.67, p < .001; data blank: F(4,22) = 33.38, p < .001; time-based model: F(4,22) = 291 

60.83, p < .001; evidence-based model: F(4,22) = 46.03, p < .001), and an interaction 292 

between coherence and volatility (data extra evidence: F(4,22) = 10.39, p < .001; data blank: 293 

F(4,22) = 8.42, p < .001; time-based model: F(4,22) = 11.94, p < .001; evidence-based 294 

model: F(4,22) = 23.50, p < .001). However, evidence volatility affected confidence in the 295 

data and the model with the evidence-based stopping rule (extra evidence: F(1,25) = 23.78, 296 

p < .001; blank: F(1,25) = 28.69, p < .001; evidence-based rule, F(1,25) = 8.96, p = .006), but 297 

not with the time-based stopping rule, F < 1. Finally, in the human data, delayed confidence 298 

reports were similar irrespective of whether post-decision evidence or a blank screen was 299 

presented following the choice (data not shown). This was further confirmed by an analysis 300 

including post-decision evidence (extra evidence or blank), which did not show a three-way 301 

interaction, F < 1, BF = .037. 302 

Figure 5D suggests that the effect of volatility on confidence for the lowest coherence 303 

values is even stronger than predicted by the model with the evidence-based stopping rule. 304 

This is most likely because the sigma parameter, which captures evidence volatility, was 305 

estimated based on choices and RTs only (i.e., not based on confidence). Therefore, our 306 

predictions about immediate and delayed confidence are entirely constrained by the decision 307 

process itself. Some evidence hints at the possibility that post-decision accumulation is 308 

different from pre-decision accumulation 16. In the current context, it could therefore be that 309 
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post-decision processing from memory amplifies noise in the sampling process. Indeed, 310 

when simulating the model with an evidence-based stopping rule using a slightly increased 311 

sigma value in the high volatility condition (σ = .575), it captures the pattern in the data even 312 

more tightly (see Figure 5D). This finding is in line with the possibility that post-decision 313 

accumulation is not fully determined by the pre-decision choice process.   314 
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Discussion 315 

And influential framework conceptualizes the sense of confidence in a decision as the 316 

probability of a choice being correct. Although this formalization is principled and fruitful, it 317 

has remained unclear whether and how it can account for dynamic expressions of 318 

confidence. To close this gap, we have formalized confidence within an evidence 319 

accumulation framework as the probability of being correct, given the accumulated evidence 320 

up until that point. We tested model predictions concerning three diagnostic signatures of 321 

statistical confidence, most notably an interaction between evidence strength and choice 322 

accuracy, both for immediate and delayed confidence reports. There was a close 323 

correspondence between model and human data for all three signatures, showing that these 324 

signature of statistical confidence depend on the time at which confidence is queried.  325 

 326 

Dynamic signatures of statistical confidence  327 

Statistical models have conceptualized confidence as the probability of being correct 4,5,22. 328 

Intuitively, when option A has a high (vs low) probability of being the correct answer, the 329 

model will give response A with high (vs low) confidence. One advantage of such a 330 

formalization is that it predicts the 3 qualitative signatures of confidence 4. A limitation of such 331 

an account is that this framework is inherently static, and therefore does not take time into 332 

account. To resolve this, we relied instead on a dynamic evidence accumulation framework 333 

to probe these different signatures across time. We are not the first to account for confidence 334 

within an evidence accumulation framework 14,17,18,23,24. Previous work has conceptualized 335 

immediate confidence as the probability of being correct given evidence and elapsed time 336 

14,15,23. Choices are formed when evidence reaches a fixed decision threshold, and both 337 

choice and confidence are quantified when this threshold is reached. This model is similar to 338 

ours, but it did not consider post-decision accumulation. As shown in our simulations, such a 339 

model does not predict an interaction between evidence strength and choice accuracy, a 340 
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prediction at odds with many existing datasets. By quantifying confidence across time, our 341 

model can account for these discrepancies. Specifically, our model was able to explain 342 

signature 1, an interaction between evidence strength and choice accuracy, in the immediate 343 

condition, as seen in behavioral data, by assuming that immediate confidence is quantified 344 

with a small temporal delay from the choice, suggesting a brief refractory period 20,21. Thus, 345 

an important novel insight of the current work is that some form of post-decision evidence 346 

accumulation is necessary, even to explain immediate confidence reports.  347 

Previous modelling work has unraveled boundary conditions of this first diagnostic 348 

signature, the interaction between evidence strength and choice accuracy. Model simulations 349 

have shown that this interaction disappears if stimuli are only probabilistically related to 350 

choices 25, and if the statistical model has knowledge about evidence strength on the single-351 

trial level 26. Remarkably, however, no previous work has unraveled the role of time in this 352 

signature. The current work overcomes this limitation, by incorporating the notion of 353 

confidence reflecting the probability of being correct within a dynamic evidence accumulation 354 

framework. Our model simulations show that at the time of the boundary crossing, 355 

confidence increases with evidence strength for both corrects and errors, whereas the 356 

interaction effect only emerges with time. Crucially, this pattern was also observed in the 357 

empirical data. This has important consequences for studies relying on this signature to 358 

identify brain regions coding for decision confidence 5,27. 359 

 360 

Post-decision processing terminates using an evidence-based stopping rule 361 

Post-decision evidence accumulation has been proposed as a mechanism explaining 362 

confidence 17,18 and biases in confidence judgments 28. It remains unclear, however, which 363 

stopping rule terminates this process of post-decision accumulation. Our data favored an 364 

evidence-based stopping rule (i.e., the sampling process terminates when a certain level of 365 

evidence has been reached), while it was incompatible with a time-based stopping rule (i.e., 366 
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sampling terminates after a certain time has elapsed). Only the evidence-based rule could 367 

explain increased confidence with high evidence volatility. Intuitively, high evidence volatility 368 

increases (immediate) confidence because the injection of noise in the decision process 369 

speeds up RTs 14, and faster RTs are associated with higher confidence. The model with an 370 

evidence-based stopping rule for delayed confidence judgments similarly predicts higher 371 

confidence with high evidence volatility, because the noise again pushes the decision 372 

variable towards a certain level of evidence (i.e., a second bound). This effect does not 373 

appear with a time-based stopping rule, however, because the noise only affects the 374 

evidence (i.e., how fast is a certain level of evidence reached), but not the timing of post-375 

decision accumulation itself. Therefore, using a time-based stopping rule the effects of 376 

evidence volatility are averaged out, and no differences in confidence are predicted. In sum, 377 

a second important insight of the current work is that human participants also use an 378 

evidence-based stopping rule in delayed confidence judgments. 379 

 380 

Sources of post-decisional evidence accumulation  381 

The hypothesis that confidence is affected by post-decisional evidence accumulation has 382 

evoked a strong interest in neural signatures of post-decisional processing 9,16,29. For 383 

example, recent neuroimaging work has linked this process of post-decision evidence 384 

accumulation to a specific neural signal in the EEG 29, that is sensitive to fine-grained levels 385 

of decision confidence 1,30. One question that has been largely overlooked so far, is what kind 386 

of information determines post-decisional evidence accumulation. For example, external 387 

information could drive post-decisional evidence accumulation 9. Alternatively, internal 388 

sources, such as additional evidence from the sensory buffer 12 or resampling from memory 389 

31, could determine such accumulation. To contrast these two possibilities, the current work 390 

featured conditions with and without additional external evidence during the post-decisional 391 

period. Interestingly, confidence judgments were highly similar between these two conditions. 392 

This demonstrates that, at least in our current experimental design, participant benefit 393 
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exclusively from internal resampling of the earlier evidence, whereas continued external 394 

sampling has no measurable influence. This does not imply that post-decisional evidence will 395 

never play a role in confidence. For example, in a recent study that de-correlated the 396 

strength of pre-decisional and post-decisional evidence (i.e., so that sometimes post-decision 397 

evidence was highly informative when pre-decision evidence was not), external post-398 

decisional evidence did have a reliable effect on confidence 9. Presumably, the correlational 399 

structure of post- versus pre-decision evidence determines whether sampling continues or 400 

not.  401 

 402 

Conclusion 403 

The current work quantified confidence within an evidence accumulation framework as the 404 

probability of being correct given the accumulated evidence up until that point. Both model 405 

and data showed that three key signatures of statistical confidence depend on the point in 406 

time when confidence is queried. Finally, post-decision confidence reports were best 407 

explained by an evidence-based stopping rule. 408 
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Methods 416 

Participants 417 

Thirty participants (two men; age: M = 18.5, SD = .78, range 18 – 21) took part in return for 418 

course credit. All participants reported normal or corrected-to-normal vision and were naïve 419 

with respect to the hypothesis. All but four participants were right handed. Four participants 420 

were excluded because their performance was not different from chance level in the 421 

immediate condition (as assessed by a binomial test). Participants provided written informed 422 

consent before participation. All data have been made publicly available via the Open 423 

Science Framework and can be accessed at osf.io/83x7c. Non-overlapping analyses of 424 

these data have been published elsewhere 3.  425 

 426 

Stimuli and apparatus 427 

Stimuli were presented in white on a black background on a 20-inch LCD monitor with a 75 428 

Hz refresh rate, using Psychtoolbox3 32 for MATLAB (The MathWorks, Natick, MA). Random 429 

moving white dots were drawn in a circular aperture centered on the fixation point. The 430 

current experiment was based on code provided by Kiani and colleagues 33. Parameter 431 

details can be found there.  432 

 433 

Procedure 434 

Participants completed a random dot motion task in which they additionally rated the 435 

confidence in their response. Each experimental trial started with a fixation dot for 750ms 436 

followed by random dot motion that lasted until a response was made, with a maximum of 3 437 

seconds. On each trial, the proportion of coherently moving dots was either 0, .05, .1, .2 or 438 

.4. In each block, there was an equal number of leftward and rightward movement. In the low 439 

evidence volatility condition, this proportion was the same on every timeframe within a trial. 440 
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In the high evidence volatility condition, the proportion of coherently moving dots was on 441 

each timeframe sampled from a Gaussian distribution with mean equal to the generative 442 

distribution of that trial and a standard deviation of .256. There were three different 443 

interrogation conditions. In the immediate condition, participants jointly indicated their 444 

response and their level of confidence. The numerical keys ‘1’, ‘2’, ‘3’, ‘8’, ‘9’, and ‘0’ on top 445 

of the keyboard mapped onto ‘sure left’, ‘probably left’, ‘guess left’, ‘guess right’, ‘probably 446 

right’, and ‘sure right’, respectively. In the delayed blank condition, participants indicated their 447 

response (left or right) by pressing ‘c’ or ‘n’ with the thumbs of their right and left hand, 448 

respectively. Then, a blank screen was presented for 1s, after which the following six 449 

confidence options were presented on the screen: ‘sure correct’, ‘probably correct’, ‘guess 450 

correct’, ‘guess error’, ‘probably error’, ‘sure error’ (reversed order for half of the participants). 451 

Participants had unlimited time to indicate their level of confidence by pressing one of the 452 

corresponding numerical keys (i.e., ‘1’, ‘2’, ‘3’, ‘8’, ‘9’, and ‘0’) on top of the keyboard. The 453 

delayed extra evidence condition was similar to the delayed blank condition, except that now 454 

1s of continued random motion was presented during the 1s interval between the response 455 

and the confidence judgment. The continued motion had the same direction, the same 456 

motion coherence and the same level of evidence volatility as the pre-decisional motion.  457 

The entire experiment comprised twelve blocks of sixty trials each, including three 458 

practice blocks. In the first practice block, participants only indicated the direction of the dots 459 

(i.e., no confidence), and each trial stopped after a response was given. Only coherence 460 

levels of .2 and .4 were presented. When participants made an error, the message ‘Error’ 461 

was shown on the screen for 750ms. This block was repeated until mean accuracy exceeded 462 

75%. The second practice block was similar, except that now the full range of coherence 463 

levels was used. This block was repeated until mean accuracy exceeded 60%. Block three 464 

served as a last practice block, and was identical to the main experiment. No more feedback 465 

was presented from this block on. Each participant then performed three blocks of each 466 

interrogation condition, with the specific order depending on a Latin square. Before the start 467 
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of block seven and block ten (i.e., start of a new interrogation condition), participants 468 

performed eight practice trials with .4 coherence using the procedure of the subsequent 469 

block, to get familiarized with the response keys. These eight trials were repeated until 470 

accuracy exceeded 75%. After each block, participants received feedback about their 471 

performance in that block, including mean response time on correct trials, mean accuracy, 472 

and the absolute value of the correlation between accuracy and confidence. Participants 473 

were motivated to maximize these three values. 474 

 475 

Data analysis 476 

Behavioral data and model predictions were analyzed using mixed regression modeling. This 477 

method allows analyzing data at the single-trial level. We fitted random intercepts for each 478 

participant; error variance caused by between-subject differences was accounted for by 479 

adding random slopes to the model. The latter was done only when this significantly 480 

increased the model fit. RTs and confidence were analyzed using linear mixed models, for 481 

which F statistics are reported and the degrees of freedom were estimated by Satterthwaite’s 482 

approximation 34. Accuracy was analyzed using logistic linear mixed models, for which Χ² 483 

statistics are reported. Model fitting was done in R (R Development Core Team, 2008) using 484 

the lme4 package 35. 485 

 486 

Drift diffusion modelling 487 

Fitting. Drift diffusion model parameters were estimated using hierarchical Bayesian 488 

estimation within the HDDM toolbox 19. The HDDM uses Markov-chain Monte Carlo (MCMC) 489 

sampling, which generates full posterior distributions over parameter estimates, quantifying 490 

not only the most likely parameter value but also uncertainty associated with each estimate. 491 

Due to the hierarchical nature of the HDDM, estimates for individual subjects are constrained 492 

by group-level prior distributions. In practice, this results in more stable estimates for 493 

individual subjects. For each model, we drew 100.000 samples from the posterior 494 
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distribution. The first ten percent of these samples were discarded as burn-in and every 495 

second sample was discarded for thinning, reducing autocorrelation in the chains. Group 496 

level chains were visually inspected to ensure convergence, i.e. ruling out sudden jumps in 497 

the posterior and ruling out autocorrelation. Additionally, all models were fitted three times, in 498 

order to compute the Gelman-Rubin R hat statistics (comparing within-chain and between-499 

chain variance). We checked and confirmed that all group-level parameters had an R hat 500 

between 0.98-1.02, showing convergence between these three instantiations of the same 501 

model. Because individual parameter estimates are constrained by group-level priors, 502 

frequentist statistics cannot be used because data are not independent. The probability that 503 

a condition differs from another can be computed by calculating the overlap in posterior 504 

distributions.  505 

When fitting the data (choices and reaction times), both drift rate (v) and decision 506 

bound (a) were allowed to vary as a function of coherence and evidence volatility, whereas 507 

non-decision time (ter) was fixed across conditions. According to our hypothesis, the effect of 508 

evidence volatility will be expressed in the within-trial variability parameter (σ). When fitting 509 

the DDM this parameter is fixed (i.e., to .1 in the Ratcliff Diffusion model or to 1 in the 510 

currently used HDDM). Because σ is a scaling factor, after fitting the model, we next scaled 511 

drift rate, decision bound and within-trial variability for each condition so that decision bound 512 

was equal to 1. Thus, this is approach allows estimating within-trial variability. Note that 513 

under this approach, an implicit assumption is that the decision bound does not differ 514 

between the different conditions. 515 

Simulations. Using the estimates obtained from the HDDM fit, predictions were 516 

generated using a random walk approximation of the diffusion process 36. This method 517 

simulates a random walk process that starts at z*a (here, z was an unbiased starting point of 518 

.5) and stops once the integrated evidence crosses 0 or a. At each time interval t, a 519 

displacement Δ occurs with probability p and a displacement -Δ with probability 1-p. Both 520 

quantities are given in equation (1). 521 
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𝑝 =
1

2
(1 +  

𝜇√𝜏

𝜎
) 

∆ =  𝜎√𝜏 

(1) 

Drift rate is given by μ, and within-trial variability is given by σ. In all simulations 𝜏 was 522 

set to 1e-4. In order to construct the heat map representing the probability of being correct 523 

shown in Figure 1, 300.000 random walks without absorbing bounds were generated, with 524 

drift rates sampled from a uniform distribution between zero and one. This assured sufficient 525 

data points across the relevant part of the heat map. Subsequently, the average accuracy 526 

was calculated for each (response time, evidence) combination, based on all trials that had a 527 

data point for that (response time, evidence) combination. Smoothing was achieved by 528 

aggregating over evidence windows of .01 and 𝜏 windows of 2. 529 

To generate model fits for choices and RTs and model predictions for confidence, we 530 

used the parameters obtained by the HDDM fit. For each combination of coherence levels, 531 

within-trial evidence volatility and interrogation condition, we simulated 5000 trials per 532 

participant. Both immediate and delayed confidence predictions were obtained by reading 533 

out the probability of being correct from the heat map given RT and evidence, conditional on 534 

the response given. Model predictions about confidence were then converted from a 535 

continuous scale to a categorical scaling by dividing them into three (immediate condition) or 536 

six (delayed condition) equal-sized bins. For the immediate condition, confidence predictions 537 

were obtained without any post-decision accumulation. In the adapted version confidence 538 

was quantified with a small temporal delay of .1s; other (small) values led to very similar 539 

results. For delayed confidence predictions with a time-based stopping rule, after reaching 540 

the decision bound, the random walk process continued for one second (i.e., the duration of 541 

the ITI) plus the average response speed of confidence judgments in that condition minus 542 

the non-decision time of that condition. For the evidence-based stopping rule, after the 543 

evidence crosses a, an evidence-based stopping rule (i.e., a horizontal boundary) was 544 

placed at a + a*.125 and 0 (or similarly at –a*.125 and a if evidence initially crossed 0), and 545 
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confidence was quantified at the time when the continued evidence accumulation crossed 546 

this second-order threshold. To project model confidence onto the same scale as human 547 

confidence, we used a linear transformation.   548 
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Supplementary Materials 632 

Statistical confidence signatures with an evidence-based stopping rule.  633 

Model predictions about the statistical confidence signatures for the delayed condition were 634 

quantified using a time-based stopping rule. Here, we report that these predictions were 635 

highly similar when using an evidence-based stopping rule instead. First, this model also 636 

predicted that confidence scales with coherence, F(4,225) = 84.43, p < .001, as well as the 637 

interaction between coherence and choice accuracy, F(4,225) = 232.31, p < .001, reflecting 638 

increasing confidence with coherence levels for correct trials (linear contrast: p < .001) and 639 

decreasing for error trials (linear contrast: p < .001). Second, this model also predicted a 640 

monotonic positive relation between confidence and mean accuracy, b = .06, t(129) = 20.42, 641 

p < .001. 642 
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