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Abstract 
 
Expected utility theory (EUT), the first axiomatic theory of risky choice, describes choices as a utility 
maximization process: decision makers assign a subjective value to the choice options, and choose the 
option with the highest subjective value. This description can be obtained for every subject that complies 
with the four axioms of EUT. The continuity axiom, central to EUT and to its modifications, requires 
decision makers to be indifferent between a gamble and a specific probabilistic combination of a more 
preferred and a less preferred gamble. Compliance with the axiom is necessary for the definition of 
numerical subjective values. We experimentally tested the continuity axiom for a broad class of gamble 
types in four monkeys, showing that their choice behavior complied with the existence of numerical 
subjective values. We used the numerical quantity defined by the continuity axiom to characterize subjective 
preferences in a magnitude-probability space. This mapping highlighted a trade-off relation between reward 
magnitudes and probabilities, compatible with the existence of a utility function underlying subjective value 
computation. These results support the existence of a numerical utility function able to describe choices, 
allowing for the investigation of the neuronal substrates responsible for coding such rigorously defined 
numerical quantities. 
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INTRODUCTION 
In risky choices, we should select the option with the highest expected return in order to maximize our 
profits in the long term. Since human and animal subjects consistently violate this principle, to better 
describe real-world choices economists introduced the concept of utility, defining an internal, subjective 
evaluation of the choice options. Expected utility theory (EUT), the first axiomatic theory of risky choice 
(1), defined an option’s subjective value as its expected utility (EU	= ∑ 𝑈(𝑚') ∙ 𝑝'' ), i.e. the utility U(m) of 
possible outcome magnitudes (mi) weighted by their respective probabilities of occurrence (pi). This 
subjectively defined quantity, EU, replaced the objective expected return EV = ∑ 𝑚' ∙ 𝑝''  as the key 
quantity driving decisions. Although EUT was unable to explain choices in particular situations, its basic 
ideas remained central to the generalized EU theories that were later developed. Most notably, prospect 
theory (2–4) explained deviations from EUT introducing the concepts of subjective probability weighting 
and reference point. 
In EUT, decisions are modeled “as if” subjects had an internal utility representation, making no assumptions 
about the brain processes underlying choice (5). To investigate the possibility of EUT describing the actual 
neuronal mechanisms of choice, our approach is to 1) verify that subjects follow the model’s assumptions, 2) 
infer the subjective utility measure defined in EUT, which is not directly measurable and 3) identify the 
neuronal substrates coding such quantity, if they exist. To fulfill the first point, we need to verify compliance 
with the assumptions of EUT (i.e. the axioms, see below). If the assumptions are satisfied, the utility 
measure can be elicited following econometric methods based on EUT. These crucial steps identify the 
subjective quantities, as opposed to the objective, physical ones, that can be used to describe preferences. 
The third point, which represents the ultimate goal of our research, involves the identification of utility-
coding neuronal substrates by correlating the neuronal activity with the utility measure, rigorously defined in 
the previous points. Here, we focused on the starting point: testing the basic assumptions of EUT in order to 
infer the existence of a utility measure. 
The EU theorem demonstrated mathematically that if a subject’s behavior followed a simple set of rules, or 
axioms, their choices could be described by the maximization of EU (SI methods: EU theorem), a general 
and basic process determining the subject’s survival. All four axioms (completeness, transitivity, continuity 
and independence) contribute to the EU theorem, with each axiom based on the preceding ones. The first 
two axioms (completeness, transitivity) define a “weak order”, a fundamental requirement for consistent 
choice behavior: subjects with complete and transitive preferences are able to order all offered options. The 
third axiom (continuity) introduces the contribution of reward probability: given three subjectively ranked 
gambles, it requires the existence of an indifference point (IP) between the intermediate gamble and a 
probabilistic combination of the two other gambles. The continuity axiom ensures that no option is 
considered infinitely better (or worse) than any other option, making it possible to define a finite, numerical 
value for each gamble (6–8). Finally, the independence axiom mathematically defines such numerical value 
as the option’s EU. Violations of the independence axiom have been reported in human and animal 
experiments, highlighting the limits of EUT (3, 9–11). Nevertheless, the continuity axiom remained a 
necessary condition in all major generalized EU theories developed since the 1940s, which share the 
axiom’s main implication, i.e. the definition of a scale of numerical subjective values (2, 6, 12). 
Together with completeness and transitivity, continuity constitutes the foundation for establishing well-
behaved preference functions that can be used to subjectively order the choice options. Different additional 
constraints produced a broad spectrum of choice theories, including prospect theory, subjectively weighted 
utility, disappointment theory, rank-dependent and lottery-dependent utility theories (13). A form of 
continuity was also defined for non-risky choice theories, most notably revealed preference theory (14). The 
continuity axiom thus emerges as a fundamental construct in all economic schemes that imply some form of 
value computation. 
The axiom was originally defined as a “plausible continuity assumption” (1). Thought experiments 
intuitively clarified how the continuity axiom could be violated (7, 15, 16), for example when options had 
infinitely different values. Nevertheless, the axiom was considered a reasonable condition and not 
experimentally tested. 
Here, we explicitly tested compliance with the continuity axiom of EUT in four monkeys. The test was 
performed within the confines of EUT, assuming no adaptation in reference point. We tested the axiom in 
choices between a single gamble and a probabilistic combination of a more preferred and a less preferred 
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gamble. In each trial, the animal revealed its preference by selecting one of the two options. Compliance 
with the continuity axiom requires the existence of indifference between the middle gamble and one of the 
probabilistic combinations. To comply with the general definition of the axiom, we tested a broad range of 
magnitudes and probabilities, starting with degenerate gambles (i.e. only one outcome, probability P=1.0) 
and advancing to gradually more complex gambles containing two or three possible outcomes. 
 

RESULTS 
Design. To test the continuity axiom of EUT in non-human primates, we trained four monkeys to perform a 
binary choice task. In each trial, the animal chose between two options, presented simultaneously on a 
computer monitor (Fig. 1a), offering liquid rewards varying in amount and probability (Fig. 1b). The 
continuity axiom states that given any three ranked gambles (A, B and C, ranging widely) a decision maker 
should be indifferent between the middle gamble (B) and a probabilistic combination of the two other 
gambles (AC). Formally, 

∀	𝐴 ≻ 𝐵 ≻ 𝐶,			∃! 𝛼 ∈ (0, 1)	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡		𝛼𝐴 + (1 − 𝛼)𝐶 ∼ 𝐵 (1) 
where “≻” defines a preference relation and “∼” indifference; 𝛼 is the specific probability associated to 
gamble A for which indifference occurs. Note that the axiom should be satisfied for any arbitrary set of 
gambles A, B and C.  
To experimentally test the axiom, we first defined three gambles (Fig. 1c) for which the monkey had well 
defined preferences (A≻B and B≻C in the majority of trials; binomial test, p<0.05). We then combined the 
most and least preferred gambles (A and C respectively) with probability pA (varying between 0.1 and 0.9 in 
0.1 steps), obtaining the family of gambles AC(pA) (Fig. 1d). Finally, we presented choices between B and 
one of the AC combinations and tested for the existence of indifference between B and a probabilistic 
combination of gambles A and C, with probability 𝑝@ = 𝛼 such that 𝐵	~	𝛼𝐴 + (1 − 𝛼)𝐶 (Fig. 1e). 
Compliance with the continuity axiom would thus be demonstrated by the existence of a unique α between 0 
and 1, while violations would occur if α were not identifiable or when multiple α existed (Fig. S1). 
The continuity axiom must be satisfied for any arbitrary set of gambles. Therefore, we varied the behavioral 
test with the A, B and C gambles in several ways: (1) we varied the safe reward amounts of the degenerate 
gambles A, B and C between tests (see paragraph Compliance with the continuity axiom); (2) we used a 
risky B gamble but kept varying the safe reward amounts of the degenerate gambles A and C between tests 
(see paragraph Indifference curves in the magnitude-probability space); (3) we used only risky A, B and C 
gambles and varied A and C between tests (see paragraph Continuity axiom test in the Marschak-Machina 
triangle). The first, more basic manipulation (1) was tested in four monkeys, while the further two, more 
specific variations (2 and 3) were tested in only two of the animals (monkeys A and B). 
We used pseudo-random repetitions of all presented choice pairs in order to account for the stochasticity of 
choice behavior and as a basis for future recordings of neuronal activity. Because the EUT axioms were 
defined as deterministic rules, we extended their definitions to the stochastic domain (4, 17). 

 
Basic choice behavior. We investigated the consistency of choice behavior to make sure that the four tested 
monkeys understood the reward-cue associations and were able to express their preferences. 
To assess the contribution of magnitude and probability information to decisions, we performed a logistic 
regression on single trials’ choice data, using the chosen side as the dependent variable and the options’ 
probabilities and magnitudes as independent variables. An additional regressor controlled for the effect of 
past trials: the product of the previous trial’s chosen side and obtained reward (SI methods: Logistic 
regression). Standardized regression coefficients (β) corresponding to reward magnitude and reward 
probability were significantly different from zero (one-sample t test, p<0.05, FDR corrected) in all four 
animals (Fig. 1f), indicating that both variables were choice-driving factors. Compared to such coefficients 
(average absolute value across animals: 0.54±0.18 SD), the past trials’ β was much smaller (average 
absolute value: 0.032±0.025 SD) and not consistently significant across animals, confirming that choices 
were mainly driven by the two cued attributes. A significant intercept implied a side bias for monkeys A, B 
and C (one-sample t test, FDR corrected; per animal: p=1.7⋅10-10 (A), p=5.1⋅10-3 (B), p=7.3⋅10-5 (C), 
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p=4.1⋅10-1 (D)). The side bias was accounted for by presenting each option on both sides of the screen, the 
same number of times. 
As a direct test of consistent choice behavior, we verified compliance with first order stochastic dominance 
(FSD). FSD is the probabilistic analogue of “more is better”, and represents a basic requirement of EUT and 
of the continuity axiom in particular (SI methods: Axioms of EUT): a gamble should be preferred if it 
contains outcomes at least as good as another gamble, with at least one strictly better outcome. FSD implies 
that an option with a more probable outcome should be preferred to one with a less probable outcome of the 
same reward amount. The higher probability gamble stochastically dominates the lower probability gamble 
and should thus be preferred. Due to choice stochasticity, a number of dominated choices are naturally 
expected, but to comply with FSD their proportion must be significantly below 0.5. We tested FSD in 
choices between a gamble and a safe option as well as between two gambles, using reward magnitudes 
(fixed for each presented pair of options) between 0.1 and 0.9 ml and reward probabilities ranging from 0.05 
to 0.97 (step 0.02, monkeys A and B) and from 0.25 to 0.75 (step 0.125, monkeys C and D). We found that 
all four animals complied with FSD by preferring the dominant option in more than 50% of trials across all 
FSD tests (Fig. 1g; binomial 95% CI above 0.5). We inferred from this behavioral compliance with FSD that 
the animals attributed higher reward value to higher reward probability, as prerequisite for testing the 
integration of reward probability and magnitude with the continuity axiom. 
A further prerequisite for testing the continuity axiom is compliance with the completeness and transitivity 
axioms. Completeness ensures that subjects have well-defined preferences for any presented pair of options. In line 
with general notions of discrete choice models (18), in every trial our choice set had a finite number of offered 
alternatives (two) with mutually exclusive (only one option could be selected) and exhaustive (the set 
included all possible alternatives) options. Animals were thus induced to express complete preferences. Still, 
they could choose not to select any option, avoiding expressing a preference, which would violate the 
completeness axiom. This was not consistently observed, except rarely for low-valued options pairs (which 
were excluded from subsequent testing). Thus, we tested the animals’ choices while they complied with the 
completeness axiom. 
The transitivity axiom ensures that all gambles can be univocally ranked. In line with stochastic choice 
theory, we tested two stochastic forms of transitivity, weak (WST) and strong (SST) stochastic transitivity 
(SI methods: Stochastic transitivity), using combinations of the A, B and C magnitudes ranging from 0 to 
0.5 ml (step: 0.05 ml) for monkeys A and B, and from 0 to 0.9 ml for monkeys C and D (step: 0.1 ml). In 
choices from all tested triplets, the four animals complied with both WST and SST (Fig. 1h). Individual 
transitivity tests revealed compliance with WST in all 141 tested magnitude combinations and compliance 
with SST in 125 (89%) tested triplets (average number of trials per test, per animal: 21 (A), 96 (B), 36 (C), 
105 (D)). This compliance with the transitivity axiom indicated that the animals made consistent choices and 
thus ranked the gambles unequivocally. 
 
Compliance with the continuity axiom. Following the formal definition of the continuity axiom (equation 
1), we assessed the existence of a unique IP in choices between a fixed gamble and a probabilistic 
combination of the other two gambles. We defined three degenerate gambles A, B and C with three different 
reward amounts; in each trial, the animal chose between the middle gamble (B) and the probabilistic 
combination of the most and least preferred gambles (A and C, respectively). Thus, we tried to obtain a pA at 
which choice indifference occurs: α=pA such that B ∼ pA(A) + (1- pA)C. 
All four animals preferred the middle gamble to at least one of the AC combinations, while also preferring at 
least one of the AC combinations to the middle gamble (Fig. 2): for different pA values, the proportion of 
choices for the AC combination was significantly below or above 0.5 (binomial test, p<0.05) (Fig. 2a,c), 
following an  increase in preference with increasing pA (rank correlation, p<0.05). Such a switch of revealed 
preference depending on probability pA indicated the existence of a unique IP and thus compliance with the 
continuity axiom (SI methods: Testing the continuity axiom). 
We defined the A, B and C gambles as degenerate gambles of varying reward magnitudes. All tested triplets 
showed a pattern of AC preferences compatible with the continuity axiom: the existence of both preferred 
and non-preferred AC combinations, together with gradually increasing preferences of the AC option, 
implied the presence of an IP. Monkeys complied with the continuity axiom when defining the C gamble as 
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0 ml (monkeys A and B, Fig. 2a,b) as well as when using a non-zero C gamble (monkeys C and D , Fig. 2c) 
in a different task (SI methods: Experimental setup) thus confirming the robustness of our results. 
Importantly, different initial gambles produced IPs varying in a meaningful and consistent manner: 
increasing only the reward magnitude of the middle gamble (B) (e.g. from 0.25 ml to 0.35 ml; Fig. 2a,b) 
produced larger α values; decreasing the magnitude of the most preferred gamble (A) (e.g. from 0.50 ml to 
0.40 ml (Fig. 2b)) resulted in higher α values (non-overlapping 95% CI, p<0.05). Such a pattern reflected the 
notion, central to the continuity axiom, of α being a measure of the subjective value of the middle gamble: 
the more B was considered close to A in value, the higher its α; the closer B was considered to C, the lower 
its corresponding α. While shifting consistently for different initial gambles, the α values were also different 
across animals, denoting the subjective quality of the measured IPs. In conclusion, testing the continuity 
axiom showed a coherent pattern of IPs, highlighting the joined contribution of reward magnitude and 
probability to the definition of subjective values. 
Lexicographic preferences represent a possible continuity axiom violation (Fig. S1b). Lexicography refers to 
the way words are ordered based on their component letters. In analogy, lexicographic preferences in risky 
decision making correspond to choices based on one component at a time (either reward magnitude or 
probability). They represent a specific choice heuristic in which the gamble components are considered 
separately and are not combined into a single quantity. This corresponds to a choice mechanism 
incompatible with the definition of numerical subjective values: lexicographic choices cannot be described 
by assigning a numerical value to each gamble, as in EUT (SI methods: Lexicographic preferences). By 
showing the existence of a coherent set of IPs, our data demonstrated that preferences were not 
lexicographic, implying that animals considered and combined both magnitude and probability information. 
Overall, these results support the core ideas arising from the continuity axiom: subjective values, which 
define preferences, are quantities (numbers) that depend on reward magnitudes and are modulated by reward 
probabilities. In other words, probabilities modify the subjective reward values in a graded and continuous 
way; a variation in reward magnitude can be compensated by a change in reward probability and vice-versa, 
establishing a continuous trade-off relation between magnitudes and probabilities. 

 
Indifference curves in the magnitude-probability space. To confirm the existence of a continuous trade-
off relation between reward magnitudes and probabilities, as implied by the continuity axiom, we 
represented the animals’ IPs in a two-dimensional diagram with reward magnitude and probability (MP) as 
variables. Such MP space was used to represent the continuity axiom tests, carried out in monkeys A and B, 
in which the B gamble is either a degenerate gamble or a true (non-degenerate) gamble, with degenerate A 
and C gambles and C = 0 ml. Each gamble used in a continuity test (B and AC combinations) corresponded 
to a single point in the MP space (Fig. 3a). Compliance with the continuity axiom was manifested as choice 
indifference between the B gamble and an AC combination, identifying a single point in the MP space 
(B∼AC in Fig. 3a). 
To test compliance with the continuity axiom for an extended set of degenerate gambles, we held the B 
gamble fixed but varied the magnitude of the A gamble. This test yielded a set of IPs that lined up as an 
indifference curve (IC). Importantly, there were no discontinuities (‘jumps’) in the IC while varying the A 
magnitude in 0.01 ml steps, thus fulfilling a requirement of the continuity axiom: as the magnitude of the A 
gamble increased, IPs gradually decreased without any apparent discontinuity (Fig. 3b). 
Repeating the IC elicitation procedure for different degenerate B gambles yielded a set of ICs, i.e. an 
indifference map, which captured the full pattern of relations between reward magnitudes and probabilities. 
To measure each animal’s indifference map we performed 14 continuity axiom tests, by systematically 
varying the magnitudes of gambles A and B between 0.15 and 0.50 ml in 0.05 ml steps. For each middle 
gamble (B1 to B4) we varied the value of gamble A, obtaining a set of IPs in each session (average sessions 
per continuity test, per animal: 64 (A), 48 (B)), thus confirming the compliance with the continuity axiom 
for a large set of A and B magnitudes. We modeled the resulting IC through a power function, which we 
identified as the best fitting function compared to linear and hyperbolic ones (Table S1). The fitted IC 
followed the gradual shift in IPs observed when varying the reward magnitude of gamble A. The 
indifference map, obtained by including ICs corresponding to all tested B gambles, captured the full pattern 
of relations between IPs, highlighting their smooth and continuous transitions (Fig. 3c). 
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As the EUT axioms should apply to any arbitrary set of gambles, we further tested compliance by using a set 
of truly risky B gambles (B5 to B7). These 14 experimental tests involved choices between pairs of 
probabilistic gambles with no option of getting a sure reward, making it a more general and more complex 
choice situation (average sessions per continuity test, per animal: 12 (A), 40 (B)). Nevertheless, IPs were 
still consistently observed, and the resulting ICs had qualitatively similar shapes to the ones involving a 
degenerate gamble (Fig. 3d). 
Altogether, these results confirm compliance with the continuity axiom in a broad class of choice situations 
and highlight the existence of an orderly trade-off relation between reward magnitudes and probabilities: 
even a small decrease in reward magnitude was compensated in revealed preference by an increase in 
reward probability and vice-versa. 

 
Economic modeling of indifference curves. We investigated whether our results were compatible with 
theoretical economic models of choice in the framework of EUT, particularly in relation to the existence of a 
utility function able to represent choices in agreement with the EU theorem. According to EUT, a gamble’s 
value stems from the product of the reward’s utility and its associated probability; this assumes the existence 
of a utility function over magnitude values, which fully defines the shape of the whole indifference map, 
uniquely identifying the subjective magnitude-probability trade-off relation (Fig. S2). Note that assuming a 
linear utility function results in choices depending only on the objective quantities: the EU model 
incorporates the objective EV model, which represents the objectively optimal preference pattern (Fig. S2a), 
as a special case. 
We estimated the utility function using single-trial choices from each session, through a maximum 
likelihood estimation (MLE) method. We defined a discrete choice model in standard fashion (18), with the 
probability of choosing one option described by a softmax function, dependent on the difference in EU 
between the two options. Each gamble’s EU was computed as the utility of the reward multiplied by its 
probability (SI methods: Economic models). 
We compared MLE results from three utility functions: linear, power and s-shaped. The power utility 
function captured the monkeys’ choice behavior better than the linear one (difference in Bayesian 
Information Criterion, BIC: 51.7±39.1 SD, p=2.9⋅10-18, Monkey A; 54.9±29.5 SD, p=1.7⋅10-27, Monkey B; 
one-sample t test), while the s-shaped utility function outperformed the power-shaped one (BIC difference: 
12.2±12.3 SD, p=2.1⋅10-13, Monkey A; 8.7±12.2 SD, p=1.4⋅10-8, Monkey B). The two recovered parameters 
for the s-shaped utility functions (Fig. 4a, histograms) were both significantly different from one (p<10-15 in 
both monkeys; one-sample t test), confirming that utility functions were non-linear and had a significant 
inflection point (i.e. a change in curvature), resulting in an s-shaped curve. 
We used the recovered s-shaped utility functions (Fig. 4a) to construct the corresponding indifference map: 
for each gamble B we computed its EU and obtained an IC as the set of points with equal EU in the MP 
space. It was thus possible to define a whole indifference map using a single utility function. Such a map, 
modeled from the MLE-estimated utility function, closely matched the behavioral IPs and the previously 
fitted ICs (Fig. 4b), which had been measured for each B gamble independently and had no link to the 
economic theory. The average distance between the modeled IPs and the behavioral IPs (red lines in Fig. 4b) 
was smaller for the EU model than for the objective-EV model (dashed curves in Fig. 4b) (square root of the 
mean squared error: 0.028 (EU model), 0.108 (EV model) for Monkey A; 0.052 (EU model), 0.274 (EV 
model) for Monkey B). Thus, the EU model was better at capturing the shape of the indifference map 
compared to the objective EV model by 3.9 times in Monkey A and 5.3 times in Monkey B. We quantified 
the ability of the model to describe the actual preferences (proportion of choices for the AC option), from 
which the IPs were calculated, using the variance in the deviation between predicted and measured 
proportion of choices (vertical dotted lines in Fig. 4c). A lower average variance for the EU model indicated 
that it was better at describing preferences compared to the EV model (Table S2). This was also confirmed 
using a standard model comparison analysis (BIC and AIC scores, Table S2). These results indicate that the 
non-linearity in the utility function was able to capture the subjective quality of the IPs and of the revealed 
preferences (Fig. 4b,c). 
Non-linear probability weighting is a further subjective factor explaining economic choices, as proposed in 
prospect theory and other generalized EU theories (4, 12). We found that a model incorporating utility and 
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weighted probabilities (PW model) improved the description of the measured IPs by 4.5 times in Monkey A 
and 4.4 times in Monkey B, compared to the EV model. Therefore, the PW model had similar descriptive 
power compared to the EU model. Overall, the PW model outperformed the EU model in 3 out of 4 
goodness-of-fit measures, in both monkeys (Table S2), suggesting that in the tested choice situation adding 
the subjective weighting of probabilities marginally improved the description of preferences compared to 
EUT, representing a possible refinement to our EU model for describing preferences (Fig. 4c).  
The mean-variance approach, an alternative economic model which approximates EUT without relying on 
the concept of utility (19), defines a gamble’s value as the sum of the corresponding EV and risk 
components (SI methods: Economic models). When fitting a mean-variance model to our data, the ICs could 
not be predicted as well as with any of the utility-based models (Table S2, Fig. S3), with an improvement in 
the ICs description over the EV model of 1.6 (Monkey A) and 1.4 (Monkey B) times, well below the 
performance of utility-based models. 
In support for the existence of a utility-compatible mechanism producing the indifference map, we 
investigated the variation of IPs across sessions. We computed the Pearson’s correlation coefficient (ρ) for 
all pairs of IPs. A significant ρ, both within each IC (one-sample t test, per animal: p=1.8⋅10-5 (Monkey A); 
p=5.4⋅10-4 (Monkey B)) and across different ICs (p=8.2⋅10-5 (Monkey A); p=1.5⋅10-3 (Monkey B)), 
confirmed that the variation of each IP  was associated with a variation of other IPs (average ρ, per animal: 
0.19±0.28 SD (A); 0.15±0.26 SD (B)). Across sessions, the indifference map changed shape as a whole: IPs 
were not varying independently from each other, but were linked by a common underlying root, identifiable 
as the utility function. 
In conclusion, the economic modelling of ICs and the correlation among IPs support the idea of choices 
resulting from a utility maximization process: the combination of a subjectively defined utility function with 
reward probabilities (possibly subjectively weighted) was able to describe the choice behavior and in 
particular the smooth trade-off relation between reward magnitudes and probabilities. 
 
Continuity axiom test in the Marschak-Machina triangle. The Marschak-Machina triangle (20, 21) has 
been extensively used in economic studies of human behavior for evaluating and comparing different 
generalized EU theories (22, 23). This approach graphically displays continuity tests by showing IPs in 
choices between test gamble B and probabilistic AC combinations containing multiple possible outcomes.  
We further tested the continuity axiom using A, B and C gambles defined as two-outcome gambles, which 
resulted in AC combinations being three-outcome gambles. To present such gambles to the animal, we used 
visual cues with three horizontal lines, which simultaneously represented all possible reward outcomes and 
their probabilities (Fig. 5a, inset). The Marschak-Machina triangle represents gambles with three fixed 
outcome magnitudes (defined in our experiment as 0 ml, 0.25 ml and 0.5 ml) and any combination of 
associated probabilities (p1, p2 and p3, defined as the probabilities associated with the low, middle and high 
outcome magnitudes, respectively). The x and y coordinates correspond to the probability of obtaining the 
lowest (p1) and highest (p3) outcome, respectively (Fig. 5a). 
We defined gamble A with 0.25 ml and 0.5 ml as possible outcomes and gambles B and C each with 0 ml 
and 0.25 ml outcomes; AC combinations then corresponded to gambles with possible reward magnitudes of 
0 ml, 0.25 ml and 0.5 ml (Fig. 5b). In the Marschak-Machina triangle, gamble A lay on the y axis while 
gambles B and C lay on the x axis. Consequently, the AC(pA) combinations lay inside the triangle, on a 
straight line between A and C, the position between bottom right and top left being proportional to the 
probability pA (Fig. 5b, bottom). Satisfaction of the continuity axiom would be manifested as a point on the 
line between A and C where the animal is indifferent between the B gamble and the AC combination 
(labelled B~AC in Fig. 5b, bottom). 
We defined four pairs of A and C gambles (A1C1 to A4C4, associated with increasing probability of the 
middle outcome (p2) between p2 = 0 and p2 = 0.6, in 0.2 increments); for each A-C pair we tested the 
continuity axiom using a fixed middle gamble B, for a total of four tests (Fig. 5c). Results showed the 
existence of IPs in all tested cases (Fig. 5d), confirming compliance with the continuity axiom in choices 
between two- and three-outcome gambles. Because reward magnitudes are fixed in the Marschak-Machina 
triangle, while probabilities vary across the full range, the pattern of IPs confirmed the role of reward 
probabilities as modifiers for the EU: a gradual change in A-C (in terms of p2) lead to a continuous increase 
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in IPs (in terms of the probability of the highest outcome, p3), also demonstrating the possibility of 
constructing ICs within the Marschak-Machina triangle (Fig. 5c). 
Through the unique graphical representation of the Marschak-Machina triangle, we showed that monkeys 
complied with the continuity axiom in choices involving three-outcome gambles, thus supporting the idea of 
a choice mechanism based on numerical subjective values also in more complex choice scenarios. 
 

DISCUSSION 
This study demonstrated compliance of monkey behavior with the continuity axiom of EUT, implying a 
magnitude-probability trade-off relation and determining a numerical utility measure able to describe 
choices. 
The continuity axiom, a necessary condition for the existence of a numerical utility, states that given three 
subjectively ordered gambles, a decision maker will be indifferent between the middle gamble and a 
probabilistic combination of the two other gambles. We experimentally tested the continuity axiom in 
choices between a two-outcome gamble and a safe option. Four monkeys exhibited a choice behavior 
consistent with the continuity axiom, making choices compatible with the existence of a unique IP. We 
generalized our results to more complex choice situations in two monkeys, confirming compliance with the 
axiom in choices between two- and three-outcome gambles, representable in the Marschak-Machina 
triangle. We showed how the IPs identified through the axiom test procedure could be interpreted as 
subjective evaluations of the choice options and used to construct an indifference map. Such a map revealed 
a congruent, subjective trade-off relation between reward magnitudes and probabilities, which supported the 
idea of choices being the result of a utility maximization process compatible with EUT. 
The four axioms of EUT represent the necessary conditions for the existence of a precisely defined utility 
quantity. In particular, the continuity axiom permits the definition of a numerical utility, while the 
independence axiom defines how to compute the utility measure. In our quest for investigating a utility-
based brain mechanism driving human decisions, we need to clarify if and to what degree the economic 
theories are generalizable across primates. Although the continuity axiom has not been tested in human 
subjects, it is accepted as a reasonable condition. On the other hand, humans have been shown to violate the 
independence axiom of EUT, which led to the creation of alternative economic choice theories. Though it is 
still unknown whether non-human primates violate the independence axiom similarly to humans, as a first 
step we showed that they comply with a more basic assumption, the continuity axiom. By sequentially 
testing the EUT axioms, we can verify up to which point their behavior can be described by the economic 
theory, and if monkeys’ preferences reflect the characteristics of human decision making. This approach can 
shed light on the existence of a common choice mechanism across primates. 
Past studies have shown that monkey decisions reflect both the magnitude and probability information of the 
choice options (24, 25), leaving two open questions: how are magnitude and probability, two physical 
quantities, transformed into subjective quantities? And how are such quantities combined into a single 
value? These questions naturally extend to the neurophysiological domain. The axiomatic approach allows 
to investigate such points, clarifying with a robust procedure if the gambles’ dimensions are subjectively 
combined as mathematically defined by modern economic decision theories. 
Lexicographic preferences and other classes of choice heuristics represent known continuity axiom 
violations. By showing compliance with the continuity axiom we could exclude an important class of 
heuristics (the lexicographic rules) as the driving mechanism for choices in the tested situation. This ensured 
that all presented information were used to make actual multi-attribute choices: reward probability and 
magnitude were both considered and combined when evaluating the options. However, we did not test 
further heuristic decision strategies. For example, a recent study observed a win-stay/lose-switch strategy, 
which only contributed marginally to single-trial choices while possibly contributing to long-term learning 
of values and probabilities (26). Thus, further tests should delimit the viability of continuity satisfaction in 
different choice situations. 
An important consequence of continuity axiom violations is that subjective preferences cannot be described 
by assigning numerical values to the options. IPs, and hence indifference maps, would be undetermined if 
the axiom is violated, as would the concept of utility as a subjective measure of an option’s value. An EUT 
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model could still be fitted to the data to recover a utility function; yet, such a function would not have the 
intended meaning of expressing the options’ subjective values. When the axiom is fulfilled, instead, we 
showed how the IPs could be expressed numerically as utility, and the resulting indifference map could be 
generated through s-shaped utility functions. Having a utility representation of values allows for the 
assignment of a specific numerical value to each indifference curve. The activity of a neuron encoding the 
options’ subjective values should comply with the indifference map: it should be proportional to the elicited 
numerical utility levels across indifference curves, while remaining constant within each indifference curve. 
According to theories relying on the continuity axiom, utilities are combined with probability information to 
give a gamble’s EU. The exact form of such combination remains to be tested: the independence axiom is 
required to define exactly how utilities and probabilities combine into EU. Although we did not yet 
explicitly test compliance with the independence axiom in monkeys, we observed that non-linear weighting 
of reward probabilities resulted in a marginally better description of choice behavior compared to EUT. 
Therefore, the present study points to non-linear probability weighting as a possible refinement to EUT in 
monkeys, compatible with the human experimental results that led to the development of prospect theory 
(3). The Marschak-Machina triangle framework could be used to directly investigate compliance with the 
independence axiom in monkeys, allowing for the quantitative investigation of the neural underpinnings of 
several generalized EU choice theories. 
In conclusion, by explicitly testing the continuity axiom we verified that, in the tested situation, the choice 
mechanism was compatible with the computation of finite, numerical utilities, gaining crucial information 
on the plausible mechanisms guiding choices toward the maximization of utility. 
 

 

METHODS 
Animals and Experimental Setup. Four male rhesus macaques (Macaca mulatta) were used in this study. 
During the experiment, the monkey sat in a primate chair (Crist Instruments) and made choices between two 
rewarding stimuli presented on a computer monitor. The animals reported their preferences with a left-right 
motion joystick (monkeys A, B) or through arm movements toward a touch screen (monkeys C, D). Task 
event-times were sampled and stored at 1 kHz on a Windows 7 computer running custom MATLAB (The 
MathWorks) code, using Psychtoolbox 3. All experimental protocols were assessed and approved by the 
Home Office of the United Kingdom. 
Axioms of EUT. The axioms of EUT are necessary and sufficient conditions for choices to be described by 
the maximization of EU. The continuity axiom requires the existence of an indifference in choices between a 
fixed gamble and a combination of two other gambles and implies the possibility of defining a numerical 
scale of subjective values. Being deterministic rules, the axioms assume perfectly constant preferences over 
time. In order to account for the stochasticity of choice behavior we interpreted the axioms in a stochastic 
sense: option A was considered preferred to option B when the proportion of A over B choices was larger 
than 0.5 (binomial test, p<0.05). For multiple comparisons, we applied a false discovery rate (FDR) 
correction (Benjamini-Hochberg procedure) (27). More details about behavioral training, task and data 
analysis are available in the SI Appendix, Methods section. 
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Figure 1. Experimental design and consistency of choice behavior. (a) Trial sequence. Monkeys chose between two options by 
moving a cursor (gray dot) to one side of the screen. After a delay, the reward corresponding to the selected cue was delivered. (b) 
Visual cues indicated magnitude and probability of possible outcomes through horizontal bars’ vertical position and width, 
respectively. (c,d,e) Continuity axiom test. The continuity axiom was tested through choices between a fixed gamble B and a 
probabilistic combination of A and C (AC). A, B and C were ordered reward magnitudes (c); AC was a gamble between A and C, 
with probabilities pA and 1-pA respectively (d); different shades of blue correspond to different pA values (darker for higher pA). 
The continuity axiom implies the existence of a unique AC combination (pA=α) corresponding to choice indifference between the 
two options (B~AC, vertical line in e), with the existence of a pA for which B≻AC and of a different pA for which AC≻B (vertical 
dashed lines). The value of α was identified by fitting a sigmoid function (red line) to the proportion of AC choices (blue dots). 
(f,g,h) Consistency of choice behavior. The standardized beta coefficients from logistic regressions of single trials’ behavior (f) 
showed that the main choice-driving variables were reward magnitude (mR, mL) and probability (pR, pL) for all animals, both for 
left (L) and right (R) choices; previous trial’s chosen side (preChR) and reward (preRewR) did not consistently explain animals’ 
choices (error bars: 95% CI across sessions; * p<0.05, one-sample t test, FDR corrected; no. of sessions per animal: 100 (A), 81 
(B), 24 (C), 15 (D)). In choices between options with different probability of delivering the same reward magnitude, the better 
option was preferred on average by all animals, demonstrating compliance with FSD (g) (error bars: binomial 95% CI; no. of tests 
per animal: 28 (A), 24 (B), 15 (C), 23 (D); average no. of trials per test: 12 (A), 13 (B), 11 (C), 34 (D)). In choices between sure 
rewards (bars: average across all sessions; gray dots: single sessions; error bars: binomial 95% CI) animals preferred A to B, B to 
C and A to C (h), complying with both weak and strong stochastic transitivity (WST: proportion of choices of the better option 
>0.5 (blue dashed line); SST: proportion of A over C choices (red line) ≥ other choice proportions). 
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Figure 2. Experimental test of the continuity axiom. (a,b,c) Compliance with the continuity axiom. The axiom was tested 
through choices between a gamble B and a varying AC combination (left: visual stimuli for an example choice pair with pA=0.5 
(a,b) or pA=0.375 (c)); increasing pA values resulted in gradually increasing preferences for the AC option. In each plot, gray dots 
represent the proportion of AC choices in single sessions, black circles the proportions across all tested sessions with vertical bars 
indicating the binomial 95% confidence intervals (filled circles indicate significant difference from 0.5; binomial test, p<0.05). 
The tests were repeated using different A and B values (b) as well as non-zero C values in a modified task (c). All four animals 
complied with the continuity axiom by showing increasing preferences for increasing probability of gamble A (rank correlation, 
p<0.05), with the AC option switching from non-preferred (pchoose AC<0.5) to preferred (pchoose AC>0.5) (binomial test, p<0.05). 
Each IP (α, vertical line) was computed as the pA for which a data-fitted softmax function had a value of 0.5 (horizontal bars: 95% 
CI); α values shifted coherently with changes in A and B values in all four animals, indicating a continuous magnitude-probability 
trade-off relation. 
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Figure 3. Indifference curves in the MP space. (a) Representation of the continuity axiom test in the MP space. The gambles 
used for testing the axiom can be mapped into the magnitude-probability diagram. Preference in choices between B (circle) and 
combinations of A and C (graded blue dots) is represented by an arrow pointing in the direction of the preferred option (bottom), 
consistently with the proportion of choices for the AC option (top). Each continuity axiom test resulted in an IP (vertical line, top), 
represented as a black dot in the MP space (bottom). (b) Indifference curve. IPs (gray dots: single sessions; black dots: averages; 
bars: SE) obtained using different A values (step 0.01 ml) shifted continuously, producing an IC in the MP space. Curve: best 
fitting power function. Data from monkey A (5 sessions, 1781 trials). (c,d) Indifference map. ICs for different B values (colored 
curves), described the gradual variation of the average IPs (colored dots, with SE bars) for each B. Small dots represent IPs 
measured in single sessions. Both sure rewards (c) and probabilistic gambles (d) as B options, produced coherent indifference 
maps, with smooth and non-overlapping ICs. 
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Figure 4. Indifference curves are compatible with economic models. (a) Utility functions. Single sessions’ utility functions (gray) 
and averages (black) estimated through MLE using single-trial choice data. The two estimated parameters (a and b in inset, 
histograms of log-values) were both significantly positive, indicating s-shaped utility functions. (b) EUT predicted indifference 
curves. Indifference map reconstructed using the estimated utility functions. The light-colored curves represent the measured 
indifference map (Fig. 3c); the red horizontal lines identify the distance between measured and modeled IPs. Dashed gray curves 
define points with equal EV, corresponding to a linear utility model. (c) Comparison of modeled and revealed preferences. 
Percentage of choices for the AC gamble (P(AC)) measured in the axiom test (black) and modeled using three models (red), for 
three example A-B-C triplets (top, A and B in ml, C=0 ml). The EV model could only predict IPs equal to the EVs (grey vertical 
lines), with a larger error in the prediction of the P(AC) (vertical dotted red lines) compared the EU model. The PW model, which 
included a subjective probability weighting, was better at capturing the revealed preferences only in specific cases (e.g. B=0.15, 
A=0.25 in Monkey B). 
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Figure 5. Continuity axiom test in the Marschak-Machina triangle. (a) Three-outcome gambles. Gambles with three fixed 
outcome magnitudes and any combination of outcome probabilities can be represented in the Marschak-Machina triangle. The 
visual cue (inset) for three-outcome gambles included three horizonal lines representing the three possible outcome magnitudes 
(vertical position) and the respective probabilities p1, p2 and p3 (line width). (b) Scheme of the continuity axiom test. Three-
outcome gambles used to test the axiom (top) can be represented in the Marschak-Machina triangle (bottom right) together with 
the B gamble (circle) and the resulting IP (red dot). The arrows point toward the preferred option, consistently with the proportion 
of AC choices (bottom left). (c) Continuity axiom in the Marschak-Machina triangle. Average IPs (black dots) and from single 
sessions (red dots) were consistently elicited, indicating compliance with the continuity axiom in choices between two- and three-
outcome gambles. (d) Continuity axiom test between two- and three-outcome gambles. Average measured percentage of AC 
choices as a function of the probability of obtaining the A option (graded blue dots). Other symbols as in Fig. 2. 
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SUPPLEMENTARY INFORMATION 
 

 
METHODS 

 
Experimental setup 
We trained (>10,000 trials) four male rhesus macaque monkeys (weight, per animal: 12.7 kg (Monkey A), 
13.8 kg (Monkey B), 10.3 kg (Monkey C) and 12.5 kg (Monkey D)) to express their preferences between 
pairs of probabilistic rewards, represented as visual cues on a computer monitor. Monkeys sat in primate 
chairs (Crist Instruments) and expressed choices through arm movements. Monkeys A and B moved a 
joystick (Biotronix workshop, Cambridge) restricted to left/right movements, to control a cursor on a 
computer monitor vertically positioned 30 cm in front of them; monkeys C and D made arm movements 
towards a touch-sensitive screen (EloTouch 1522L 15’; Tyco) horizontally mounted at arm-reaching 
distance. The possible choice outcomes were different amounts of liquid reward (fruit juice), ranging 0.00-
0.50 ml (Monkeys A and B) or 0.05-0.90 ml (Monkeys C and D). A computer-controlled solenoid valve 
delivered juice reward from a spout in front of the animal's mouth. 
Task design for monkeys A and B. The reward amount (magnitude) was represented though the vertical 
position of a horizontal white bar within a frame, composed by two thin vertical gray lines. A single option 
could contain up to three possible outcomes, each with a specific probability. The probability associated 
with each outcome was cued through the width of the horizontal bar. Each choice option could be either a 
safe option (i.e. a sure reward or “degenerate gamble”, with probability P=1), presented as a single 
horizontal bar filling the full width of the frame, or a probabilistic distribution of rewards (i.e. a risky 
gamble) presented as multiple horizontal bars. The horizontal position of the bars representing non-safe 
outcomes were randomly shifted horizontally within the frame to avoid that animals only considered a 
particular portion of the stimulus. 
To initiate a trial, the monkey held a joystick in the central position for a variable time interval (1-1.5 s). 
Two visual cues representing the choice options appeared to the left and right sides of the computer monitor. 
The monkey indicated the preferred option within 2 s by moving the joystick to the side of one option, at 
which time the unselected option disappeared. After holding the joystick for at least 1 s, the reward 
corresponding to the selected option was delivered (Fig. 1a). Visual cues were presented on a blank screen, 
indicating the amount (magnitude) and probability of receiving a reward (fruit juice) though white horizontal 
lines: each line’s vertical position indicated a reward amount, while the line width was proportional to the 
probability of obtaining that reward (Fig. 1b). 
Task design for monkeys C and D. The reward magnitude was represented by the vertical position of a 
horizontal black bar within a vertically oriented white rectangle. The probability of a reward was conveyed 
through a circular stimulus, presented adjacent to the bar stimulus, composed of two sectors distinguished by 
black-white shading at horizontal and oblique orientation; the amount of horizontal shading indicated the 
probability of obtaining the cued reward magnitude. On each trial, the animal made a choice between two 
gambles, one of which was a degenerate gamble (P=1), presented randomly in left-right arrangement on the 
monitor. For risky gambles, the cued reward magnitude could be obtained with P = cued probability and a 
fixed small reward (0.05 ml) could be obtained with P = 1 – cued probability.  
Each trial started when the background color on the touch screen changed from black to gray. To initiate the 
trial, the animal was required to place its hand on an immobile, touch-sensitive key. Presentation of the gray 
background was followed by presentation of an ocular fixation spot (1.3° visual angle). After 500 ms, both 
choice options appeared in left-right arrangement on the monitor, followed after 750 ms by appearance of 
two blue rectangles below the choice options at the margin of the monitor, close to the position of the touch-
sensitive key. The animal was then required to touch one of the targets within 1,500 ms to indicate its 
choice. Once the animal’s choice was registered, the unchosen option disappeared and after a delay of 500 
ms, the chosen object also disappeared and a liquid reward was given to the acting animal. Reward delivery 
was followed by a trial-end period of 1,000 ms which ended with extinction of the gray background. 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.18.953950doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.953950


Logistic regression 
To identify the key variables driving choice, we analyzed single trials’ data using the following logistic 
regression: 

Logit(PR) = β0 + β1 mL + β2 pL + β3 mR + β4 pR + β5 preCh⋅preRew + ε 

where PR is the probability of choosing the right-side option; m and p represent the reward magnitude and 
probability of options respectively, presented on the left (L) or right (R) side of the screen; preCh represents 
the previous trial’s choice (-1 for left-side and 1 for right-side choices) while preRew corresponds to the 
reward magnitude obtained in the previous trial; the product preCh⋅preRew thus increases for larger rewards 
obtained when choosing the right-side option in the previous trial; ε is the error term. Regression coefficients 
(β) were standardized by multiplying each coefficient with the ratio of the corresponding independent 
variable’s SD over the SD of the predicted variable. Standardized regression coefficients were tested for 
statistical significance through one-sample t test. 
 

Axioms of expected utility theory 
The axioms of EUT are necessary and sufficient conditions for choices to be described by the maximization 
of EU: if the axioms are fulfilled, a subjective value corresponding to the EU can be assigned to each choice 
option, and the option with the highest EU is chosen (1). 

Formally, 

I. Completeness: ∀ A, B either A ≻ B, B ≻ A, or A ∼ B 

II. Transitivity: A ≻ B, B ≻ C ⇒ A ≻ C 

III. Continuity: ∀ A ≻ B ≻ C, ∃! p ∈ (0, 1) such that pA+(1-p)C ∼ B 

IV. Independence: ∀ A ≻ B ⇒ pA+(1-p)C ≻ pB+(1-p)C; ∀C, ∀p ∈ (0, 1) 

Where A, B, C are gambles corresponding to known probability distributions over outcomes, “≻” is the 
preference relation and “∼” represents indifference. The operation pA+(1-p)C corresponds to combining the 
two gambles A and C with probabilities p and (1-p) respectively, thus representing itself a gamble different 
from A or C alone. 

The continuity of preferences (axiom III) can also be expressed as follows: 

III-a. Monotonicity: ∀ A ≻ B ⇒ A ≻ αA+(1-α)B ≻ B; ∀ α ∈ (0, 1) 

III-b. Archimedean property: ∀ A ≻ B ≻ C, ∃! p1, p2 ∈ (0, 1): p1A+(1-p1)C ≻ B ≻ p2A+(1-p2) 
Such an alternative expression (III-a, III-b) does not include any equality (i.e. indifference point) and is thus 
better suited for experimental hypothesis testing compared to III. 
Complete (I) and transitive (II) preferences are necessary for univocally and consistently ranking all choice 
options, representing a “weak ordering” condition. In this case, each possible choice option can be given a 
specific rank level, so that an option with higher rank will be preferred to one with lower rank. Although 
these rank levels can be defined as numbers, they have no cardinal meaning: any monotonic transformation 
of these values would still represent preferences. Such rank levels would give no information about the 
strength of preferences and could not predict choices between options defined as combinations of gambles. 
Conversely, if preferences are also continuous (axiom III), they can have a meaningful numerical utility 
representation. Thus, if A is preferred to B, the utility of option A (UA, a real number) is larger than the 
utility of B (UB) and vice versa if UA>UB, option A is preferred over option B: 

A ≻ B ⇔ UA > UB 
The independence axiom (IV) allows to go one step further, defining how to compute the utility of any 
gamble G from its attributes (magnitudes mi and associated probabilities pi): 

UG = EU({mi,pi}) = ∑ 𝑈(𝑚') ∙ 𝑝''  
making it possible to predict choices between any possible choice options. 
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Expected utility theorem 
Following the four axioms, the EU theorem states that given any two options A and B, A will be preferred to 
B if and only if the EU of A is larger than the EU of B: 

A ≻ B ⇔ EU(A) > EU(B) 

where 𝐸𝑈(𝑋) = ∑ 𝑈(𝑚') ∙ 𝑝''  
with X representing a gamble with outcomes mi and associated probabilities pi and U(m) representing the 
utility associated with the magnitude m. The EU of a gamble thus corresponds to the average utility of a 
gamble, weighted by the reward probabilities, representing the subjective equivalent of the objective 
(mathematical) expected value 𝐸𝑉 = ∑ 𝑚' ∙ 𝑝'' . 
The EU theorem links preferences to subjective evaluations: if option A is preferred to option B, the EU of 
option A will be greater than the EU of option B; vice versa, if the EU of A is greater than the EU of B then 
A will be preferred to B. 

 
Lexicographic preferences 
Lexicographic preferences represent a possible violation of the continuity axiom. Lexicography refers to the 
way words are ordered based on their component letters: the first letter defines which word comes first in the 
dictionary, unless words have the same first letter in which case the second letter will define the order, and 
so on. In choice theory, lexicographic preferences correspond to a decision strategy where the preference for 
one option is only based on one attribute, while a second attribute is considered only when the first attribute 
has the same value in both options. In risky choices, the attributes of an option correspond to reward 
magnitude and probability; in this context, lexicographic preferences imply that the option with the highest 
magnitude would always be chosen, independent of its probability, unless the two options had the same 
magnitude, in which case the option with the highest probability would be chosen. Inverting the roles of 
magnitude and probability would also result in lexicographic choices (Fig. S1, right). 
Lexicographic preferences, while complying with the completeness and transitivity axioms, represent a 
violation of the continuity axiom. They imply that reward magnitude and probability are not combined into a 
subjective value, indicating an underlying choice mechanism (and its neural implementation) incompatible 
with EUT and with the concept of utility. 

 
Testing deterministic axioms 
To experimentally test an axiom, which is an absolute rule that must hold for any possible gamble, it is 
necessary to test the largest possible number of different cases. We thus generalized our results by repeating 
the continuity test using different initial gambles: in one set of tests A, B and C were defined as sure rewards 
(degenerate gambles) varying over the range 0 to 0.9 ml; in a different set of tests B was defined as a 
probabilistic two-outcome gamble; in a final set of tests A, B and C were all defined as two-outcome 
gambles, resulting in the AC option being a three-outcome gamble. 
The EUT axioms were originally defined as deterministic rules, which assume that preferences do not 
change over time. In order to account for the variability in choice behavior (repeated choices between the 
same pair of options can yield different results) we interpreted the axioms in a stochastic sense: option A 
was considered preferred to option B when the proportion of A over B choices was larger than 0.5 (binomial 
test, p<0.05). 
 

Testing the continuity axiom 
We implemented a behavioral and statistical test of the continuity axiom as follows: 
We defined three starting gambles and verified that monkeys complied with the transitivity axiom; this 
allowed us to define A, B and C as the most preferred, middle and least preferred gamble respectively. 
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In each trial, monkeys chose between the middle gamble B and a probabilistic combination (AC) of the most 
and least preferred gambles: AC = pAA+(1-pA)C, where pA is the probability of obtaining the most preferred 
gamble. 
We statistically tested compliance with the axiom according to definitions III-a and III-b: we defined a series 
of AC combinations with specific probabilities (pA between 0 and 1, in 0.1 increments) and measured the 
proportion of choices for the AC option (PAC). We then tested if monkeys preferred the middle gamble to the 
AC combination for at least one pA (PAC < 0.5; binomial test, p<0.05, FDR corrected) while also preferring 
the AC combination to the middle gamble in at least one case (PAC > 0.5), as required by the Archimedean 
property (III-b); compliance with the Monotonicity rule (III-a) was ensured by the tested compliance with 
FSD, and tested in each continuity test by showing increasing preferences for increasing probability of 
gamble A (rank correlation, p<0.05). 
After testing for the existence of an indifference point (α), its numerical value was determined by fitting a 
softmax function to the choice data though non-linear least squares fit. The softmax function was defined as 
follows: 

𝑃@I(𝑝@) = 	1 (1 + exp	(− (𝑝@ − α) 𝜏⁄ ))⁄  

where 𝜏 (softmax “temperature” parameter) represents the steepness of the preference function. 
 

Data fitting of indifference points 
To obtain a set of curves approximating the ICs, for each middle gamble B we fitted the IPs corresponding 
to varying gamble A magnitudes, using three different functions: 

𝐿𝑖𝑛𝑒𝑎𝑟:	𝑓(𝑥) = 𝑎𝑥 + 𝑏 

𝑃𝑜𝑤𝑒𝑟:	𝑓(𝑥) = 𝑎(𝑥 − 𝑐)[ 

𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐:	𝑓(𝑥) = 𝑎 + 𝑏 (𝑥 − 𝑐)⁄  

where 𝑥 represents the reward magnitude, 𝑓(𝑥) the IC, i.e. the reward probability as a function of reward 
magnitude. A non-linear least squares method was used to minimize the error in the probability domain (x-
axis in Fig. 3 and Fig. 4b) 
 

Economic choice models 
We modeled the probability of choosing one option using a standard discrete choice model. The probability 
of choosing gamble A in choices between any two gambles (choice set: {A,B}) was defined through a 
binary logistic model: 

𝑃(𝐴|{𝐴, 𝐵}) = 1 (1 + exp	(− (𝑉@ − 𝑉b) 𝜏⁄ ))⁄  

where 𝑉@ and 𝑉b represent the subjective values of gamble A and B respectively, 𝜏 the temperature 
parameter. The gamble value was defined following EUT as 𝑉 = 𝐸𝑈 = ∑ 𝑈(𝑚') ∙ 𝑝'' , with utility 𝑈(𝑚) 
being a parametric function of reward magnitude 𝑚. 

A maximum likelihood estimation (MLE) procedure was used to estimate the free parameters (𝜏 and utility-
function parameters) to best approximate the measured proportions of choices. 

The MLE procedure involved computing and maximizing the log-likelihood (𝐿𝐿) in the parameters space.	
𝐿𝐿(𝑝𝑎𝑟𝑎𝑚|𝑐ℎ𝑜𝑖𝑐𝑒𝑠) = 	 c 𝐴_𝑐ℎ𝑜𝑠𝑒𝑛 ∙ logh𝑃(𝐴, 𝑝𝑎𝑟𝑎𝑚)i + (1 − 𝐴_𝑐ℎ𝑜𝑠𝑒𝑛) ∙ log(1 − 𝑃(𝐴, 𝑝𝑎𝑟𝑎𝑚))

jk'lmn

 

where the sum is defined across all trials in one session, 𝐴_𝑐ℎ𝑜𝑠𝑒𝑛takes the value of 1 if gamble A was 
chosen in one trial, zero otherwise, and 𝑃(𝐴, 𝑝𝑎𝑟𝑎𝑚) is the discrete choice model defined above with 
parameters 𝑝𝑎𝑟𝑎𝑚. We minimized the negative LL using the fminsearch Matlab function. 
We defined three possible utility functions: 

𝐿𝑖𝑛𝑒𝑎𝑟	𝑢𝑡𝑖𝑙𝑖𝑡𝑦:			𝑈(𝑚) =
𝑚
𝑚o
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𝑃𝑜𝑤𝑒𝑟	𝑢𝑡𝑖𝑙𝑖𝑡𝑦:			𝑈(𝑚|𝑎) = p
𝑚
𝑚o
q
l

 

S-𝑠ℎ𝑎𝑝𝑒𝑑	𝑢𝑡𝑖𝑙𝑖𝑡𝑦:			𝑈(𝑚|𝑎, 𝑏) = exp p−𝑏	 p− log
𝑚
𝑚o
q
l
	q 

with 𝑚o = 0.5	𝑚𝑙, representing the maximum reward magnitude, thus normalizing all utility functions 
between 0 and 1. 
A linear utility function could only explain choices based on the expected value of the options: it would 
perform as the best model only if monkeys were choosing by comparing the objective, mathematical 
expected value of the options. A power utility function would instead be able to describe choices with a 
specific risk preference: either risk seeking or risk aversion. Finally, an s-shaped utility function could 
accommodate a more complex pattern of risk attitudes, with the possibility of both risk seeking and risk 
aversion for different reward magnitudes. As the s-shaped function we used the two-parameter Prelec 
function, which is typically used as a probability weighting function, but can also represent a plausible shape 
for the utility function. 
Using the same binary logistic model with a different definition of the gamble value allowed us to test 
models from different economic choice theories. In prospect theory the gamble value is defined as 𝑉 =
∑ 𝑈(𝑚') ∙ 𝑤(𝑝')' ; we used the two-parameter Prelec function as the probability weighting function 𝑤(𝑝). 
According to the mean-variance approach, the value definition does not rely on the utility concept: 𝑉 =
𝐸𝑉 + 𝛽 ∙ 𝑅𝑖𝑠𝑘, where 𝐸𝑉 and 𝑅𝑖𝑠𝑘 are the first two moments of the gamble’s probability distribution, and 𝛽 
is a free parameter. We computed 𝑅𝑖𝑠𝑘 as the expected value of the squared deviation from the mean: 
𝑅𝑖𝑠𝑘 = ∑ 𝑝' ∙ (𝑚' − 𝐸𝑉)x' . 
In order to construct the full indifference map predicted by a model, for each IC we numerically computed 
the indifference points corresponding to finely spaced magnitude levels: for a selected model (using the 
average recovered parameters across all sessions), the subjective value of the B gamble was computed (VB); 
after increasing the magnitude by 0.001 ml (starting from the B gamble magnitude), the subjective value was 
then computed for a series of probabilities (step 0.001), and the probability corresponding to the value 
closest to VB was identified as the indifference point. This procedure, repeated for all B gambles, allowed us 
to obtain a distance measures between all the modeled and measured IPs, in the probability domain, which 
was used as one of the quantities for model comparison. 
To compare the five tested models (EUT with three possible utility functions, PT and mean-variance) we 
defined four goodness-of-fit measures: 1) the square root of the mean squared error, representing the average 
distance between modeled and measured IPs, in probability units; 2) the Bayesian information criterion 
(BIC) and 3) the Akaike information criterion, both introducing a penalty term when increasing the number 
of model parameters; the variance in the differences of modeled vs measured preferences, i.e. the proportion 
of AC vs B choices across all continuity tests. For each of these four measures, a lower value represented a 
better model compared to a higher value. 
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TABLES 
 

Monke
y 

Linear Hyperbolic Power 

A 1.1⋅10-2 9.9⋅10-5 9.6⋅10-5 

B 3.4⋅10-2 2.2⋅10-4 1.7⋅10-4 

 
Table S1. Comparison of ICs fit models. Mean squared error (MSE) resulting from fitting IPs to three 
different models. Bold face indicates the lowest MSE value for each animal. 
 

 

 
Goodness-of-fit 
measure 

Model 1: 
EV 

Model 2: 
EU (power) 

Model 3: 
EU (s-shaped) 

Model 4: 
PT 

Model 5: 
Mean-
variance 

M
on

ke
y 

A
 

√𝑀𝑆𝐸 

BIC 
AIC 

Var 

0.108 

2.64⋅104 

2.61⋅104 

0.154 

0.046 

2.25⋅104 

2.19⋅104 

0.122 

0.028 

2.22⋅104 

2.14⋅104 

0.117 

0.024 

2.24⋅104 

2.09⋅104 

0.113 

0.066 

2.34⋅104 

2.28⋅104 

0.129 

M
on

ke
y 

B
 

√𝑀𝑆𝐸 

BIC 

AIC 
Var 

0.274 

3.03⋅104 

3.00⋅104 

0.225 

0.093 

2.59⋅104 

2.54⋅104 

0.176 

0.052 

2.53⋅104 

2.44⋅104 

0.165 

0.062 

2.48⋅104 

2.34⋅104 

0.155 

0.193 

2.80⋅104 

2.75⋅104 

0.197 

 
Table S2. Comparison of economic models. Each row of values is a comparison across models using one 
goodness-of-fit measure (averaged across all tests and sessions), with bold face indicating the best fitting 
model according to that measure. EV corresponds to the EU model assuming a linear utility function. In 
prospect theory (PT) the gamble value was computed as V=U(m)⋅w(p) (valid, according to PT, for all 
gambles with one non-zero outcome), with w(p) being the probability weighting function (2-parameter 
Prelec function). The square root of the MSE represent the average distance between model and IP in 
probability units. Var represents the variance in the differences of modeled vs measured preferences (the 
proportion of AC vs B choices across all continuity tests). 
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Figure S1. Continuity axiom compliance and violation. Choice pattern compatible with the continuity 
axiom (a) and possible axiom violations (b). Red dots represent the proportion of AC choices when pA=0 or 
1, corresponding to the axiom’s initial requirement (A≻B and B≻C, implying P(A≻B)>0.5 and 
P(C≻B)<0.5). 
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Figure S2. Relation between the utility function and the corresponding indifference map. Sample 
indifference maps obtained from different utility functions, with a representing the single parameter of a 
power function (𝑈(𝑚) = (𝑚 𝑚o⁄ )l, with 𝑚o = 0.5	𝑚𝑙). The indifference curve for a degenerate gamble B 
was analytically obtained as a function of magnitude values, from the equation 𝐸𝑈b = 𝑈(𝑚) ∙ 𝑝. By solving 
the equation for p, the indifference curve equation can be obtained: 𝑝(𝑚) = (𝑚b 𝑚⁄ )l, where 𝑚b is the 
magnitude of a degenerate gamble B. The three utility shapes are directly related to different risk attitudes: 
risk neutrality for linear utility (a), risk seeking for convex utility (b), risk aversion for concave utility (c). In 
all plots, risk neutrality (i.e. choices based on the objective EV of gambles) is represented by grey curves. 
The indifference map globally warps according to the risk attitude.  
 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.18.953950doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.953950


 
 
Figure S3. Comparison of economic models. Recovered utility function, probability weighting function 
and corresponding indifference map for each economic model (rows). Grey curves represent single session 
estimates, black curves are means, plotted by averaging the recovered parameters across all sessions. Red 
lines represent linear utility and probability weighting (PW) functions, for comparison. The EV and EU 
models assume linear probability weighting. Note that the mean-variance model (EV-Risk) does not have a 
utility representation. Other conventions and symbols as in Fig. 4b. 
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