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Abstract 
Nanopore sequencing provides a great opportunity for direct detection of chemical DNA 
modification. However, existing computational methods were either trained for detecting 
a specific form of DNA modification from one, or a few, specific sequence contexts (e.g. 
5-methylcytosine from CpG dinucleotides) or for allowing de novo detection without 
effectively differentiating between different forms of DNA modifications. As a result, none 
of these methods supports de novo, systematic study of unknown bacterial methylomes. 
In this work, by examining three types of DNA methylation in a large diversity of 
sequence contexts, we observed that nanopore sequencing signal displays complex 
heterogeneity across methylation events of the same type. To capture this complexity 
and enable nanopore sequencing for broadly applicable methylation discovery, we 
generated a training dataset from an assortment of bacterial species and developed a 
novel method that couples the identification and fine mapping of the three forms of DNA 
methylation into a multi-label classification design. We evaluated the method and then 
applied it to individual bacteria and mouse gut microbiome for reliable methylation 
discovery. In addition, we demonstrated in the microbiome analysis the use of DNA 
methylation for binning metagenomic contigs, associating mobile genetic elements with 
their host genomes, and for the first time, identifying misassembled metagenomic 
contigs. This novel method has broad utility for discovering different forms of DNA 
methylation from bacteria, assisting functional studies of epigenetic regulation in bacteria, 
and exploiting bacterial epigenomes for more effective metagenomic analyses.
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Introduction 

Third generation sequencing, represented by Single Molecule Real-Time (SMRT) and 
nanopore sequencing, provides a great opportunity for the direct detection of multiple 
types of DNA methylation and other chemical modifications to DNA1. In SMRT 
sequencing, the instrument monitors not only the pulse fluorescence associated with 
each nucleotide, but also records the time it takes for the DNA polymerase to translocate 
from one nucleotide to the next, termed inter-pulse duration (IPD). Deviation of IPD, 
calculated by comparing native DNA with methylation free DNA (e.g. produced by whole 
genome amplification, WGA), is correlated with the presence of some DNA 
modifications2. In nanopore sequencing, chemical modification to DNA in the native 
library can affect current signals near modified bases, which can be detected using a 
similar native versus WGA design3, 4. While SMRT sequencing has already played a 
foundational role in the recent bloom of bacterial methylome studies1, 5 as well as in the 
study of eukaryotic methylomes6-8, the application of nanopore sequencing in mapping 
DNA methylation events are under active development1. 

Great progress has been made in methods development for DNA modification 
detection using nanopore sequencing. Two early studies showed differences in current 
at multiple consecutive positions near the modified base when comparing nanopore 
sequencing signals from the same genomic regions with or without DNA methylation3, 4. 
Recently, a method using hidden Markov model (HMM) trained to detect 5-
methylcytosine (5mC) in CpG islands was successfully applied to 5mC calling from 
human genome9. Another method coupling a hierarchical Dirichlet process with HMM 
demonstrated improved performance for detecting 5mC, 5-hydroxymethylcytosine 
(5hmC) and N6-methyladenine (6mA) on synthetic oligonucleotides or specific 
methylation motifs in the E. coli genome (C5mCWGG, and G6mATC)10. Three recent 
works developed classification models that can capture the difference between 
methylated sites (6mA/5mC) and non-methylated A’s/C’s,11-13. While encouraging, these 
model-based approaches remain limited in their ability to de novo identify diverse 
modification types at various sequence motifs. Following the design first proposed for 
SMRT sequencing2, two studies described nanopore-based methylation detection 
methods using a statistical comparison of current signal between native and methylation-
free WGA DNA samples14, 15. While these methods have the advantage of not requiring 
a priori knowledge of the impact of specific types of DNA modification on ionic current, 
they do not de novo identify the specific methylation type or the precise modified 
position16. 

To summarize, existing methods were either trained for detecting a specific type 
of DNA methylation from one of few specific sequence contexts (e.g. 5mC at CpG or 
6mA at GATC) or allow more general detection without effectively differentiating 
between different forms of DNA methylation or identifying the exact modified position. To 
date, none of these methods have been applied to de novo characterize unknown 
bacterial methylomes in full extent (i.e. de novo methylation detection of all three major 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.18.954636doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.954636
http://creativecommons.org/licenses/by-nc-nd/4.0/


types of DNA methylation in bacteria), de novo identification of methylation type (i.e. 
assigning methylation type: 4mC, 5mC or 6mA), and de novo fine mapping of the 
methylated nucleotide. 

In this work, by examining three types of DNA methylation (4mC, 5mC, and 6mA) 
in a large diversity of sequence context, we observed large variation and complex 
heterogeneity in terms of their impact on ionic current levels captured in nanopore 
sequencing. This observation has important implications suggesting that detection 
methods are best developed using a diverse collection of species. Bacterial epigenomes 
are highly motif-driven given the nature of restriction modification systems; nearly all 
occurrences (mostly >95%; often >99%) of a motif recognized by an active 
methyltransferase in a given prokaryotic genome are methylated1, 17, 18. Following this 
rationale, we built a training dataset and developed a novel, extensible method for de 
novo methylation typing and fine mapping of the three forms of DNA methylation at 
constitutively methylated motifs using a multi-label classification framework. We 
evaluated the methods and then applied it to individual bacteria and mouse gut 
microbiomes for reliable methylation discovery. For microbiome analysis, we also 
demonstrated the use of DNA methylation information for binning metagenomic contigs, 
associating mobile genetic elements with their host genomes, and for the first time, 
identifying misassembled metagenomic contigs. 

Results 
Heterogeneous signal variation induced by DNA methylation in 
nanopore sequencing 

In the bacterial kingdom, DNA methylation has three primary forms: 6mA, 4mC and 5mC, 
all of which occur in a highly motif-driven manner: on average, each bacterial genome 
contains three methylation motifs, and nearly every occurrence of the target motifs is 
methylated1, 5. In order to comprehensively examine the variation of different types of 
DNA methylation within a broad scope of sequence context as measured by nanopore 
sequencing, we collected 46 well-characterized unique methylation motifs from a set of 
bacterial species with diverse methylation motifs (Supplementary Table 1; Methods). 
According to a previous study5 and REBASE curated database19 (Methods), these 
strains have a total of 46 unique and confident methylation motifs covering the three 
major methylation types (6mA motifs: 28; 4mC motifs: 7; 5mC motifs: 11; 308,773 
methylation sites in total; Fig. 1; Supplementary Table 2). Nanopore sequencing was 
conducted on MinION with R9.4 flow cells achieving 175x coverage on average 
(Supplementary Table 3) for both the native DNA samples and their WGA samples. 

Read events and associated current levels (picoampere, pA) were aligned to 
reference genomes using Nanopolish9. After normalization and filtering, current 
differences between native and WGA datasets were computed for each genomic 
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position (Methods). To examine the variation of current differences across different DNA 
methylation types and motifs, we extracted current differences around each methylated 
base ([-6 bp, +7 bp]) and computed the methylation motif signatures (distribution of 
current differences at relative distance from methylation motif, see Methods; Fig. 2a). 
Generally, the widths and amplitudes of perturbation in the methylation motif signatures 
vary between different motifs and methylation types (Supplementary Fig. 1a-c). The 
broadness of signal perturbation suggests that methylation induces current differences 
across multiple flanking bases, essentially due to DNA methylation disturbing the ionic 
current of multiple consecutive events while ratcheting through the nanopore3, 4. It is 
worth noting that this broadness contrasts with the deviations of kinetic DNA polymerase 
confined to a single base for 4mC and 6mA in SMRT sequencing2, 20-23. 

To obtain an overall view of the current differences across all the methylation 
types and methylation motifs, we subjected the 14 bp vectors ([-6 bp, +7 bp]) capturing 
current differences across 183,818 non-overlapping methylation motif occurrences to t-
distributed stochastic neighbor embedding (t-SNE)24, a nonlinear dimensionality 
reduction algorithm (Fig. 2b,c, Supplementary Fig. 2). There is a general clustering 
pattern where methylation motif occurrences from the same methylation type tend to 
cluster together (Fig. 2c and Supplementary Fig. 2b), although there are apparent 
overlaps. Importantly, we observed that current differences associated with different 
methylation motifs of the same methylation type often form different clusters, some 
individual motifs form distinct sub-clusters, i.e. current differences generally varies 
between different motifs of the same methylation type (e.g. T4mCTTC and GTA4mC; 
Fig. 2c and Supplementary Fig. 2b), and even between methylation events within the 
same methylation motif (e.g. GGW5mCC; Fig. 2a,b and Supplementary Fig. 2a). 
Further analysis of signatures for subsets of the same motif suggests that this across-
motif and within-motif variation can be in a large part explained by sequence variation 
from degenerated position in motifs as well as sequences flanking the consensus motifs. 
In Fig. 3a,b, we showed an illustrative example where signature sub-clusters for a 5mC 
motif (GGW5mCC) can be partially explained by sequence diversity near methylated 
bases (within-motif sequence variation). Similar observations were made with respect to 
sequence variation outside of consensus methylation motif (e.g. GAT5mC; Fig. 3c). 

We explore other potential sources of variation by comparing general signal 
characteristics using t-SNE projection with different base caller versions (Albacore 1.1.0 
vs 2.3.4), and different signal processing workflows (Tombo, and outlier removal). The 
base caller versions tested did not significantly change the signal characteristics 
(Supplementary Fig. 3a) and give consistent methylation detection performances 
(Supplementary Fig. 3b). Regarding signal processing workflow comparison, similar 
methylation signal properties were obtained when bacterial datasets were processed 
with Tombo compared to our pipeline, suggesting that no significant bias was introduced: 
motif signatures are similar (Fig. 2a and Supplementary Fig. 4a), methylation sites 
cluster by type (Fig. 2c and Supplementary Fig. 4c), by motif (Fig. 2b and 
Supplementary Fig. 4b), and also by local sequence context (Fig. 3b and 
Supplementary Fig. 4d). The outlier removal procedure reduces noise in the motif 
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signatures (Supplementary Fig. 3c-e), and does not introduce significant bias in our 
signal processing as indicated by the high similarity with signal processed with Tombo 
(Fig. 2a and Supplementary Fig. 4a). Finally, we also confirmed that current 
differences obtained using a de novo assembled genome (E. coli at 200x; Methods) 
were consistent with the one obtained from matching reference genome ruling out the 
possibility that observed clustering pattern could be explained by an inaccurate 
reference genome (Supplementary Fig. 3f,g). 

In summary, these analyses show that current differences induced by DNA 
methylation of the same type have great variation and heterogeneity in nanopore 
sequencing. This observation has important implications on methods development for 
nanopore sequencing based detection of DNA methylation. Specifically, it suggests that 
a broadly applicable method for methylation discovery is best trained using a 
comprehensive dataset with methylation motif diversity rather than a dataset of one or 
few specific motifs. This motivated us to develop the novel method that we will describe 
in the next section. 

A new method that enables de novo methylation typing and fine 
mapping 

To account for the great signature diversity of methylation induced current differences 
across sequence contexts, we developed a novel method for the following two 
challenging tasks yet unaddressed by existing methods: 1) methylation typing, where the 
goal is to identify the type of DNA methylation, and 2) fine mapping, where the goal is to 
identify the position of the methylated base. 

Methylation motif enrichment. Before introducing the novel method, we need to first 
describe the procedure we used for methylation detection and motif enrichment analysis 
building on existing methods9, 14, 25. In brief, 1) current levels are compared between 
native and WGA datasets for each genomic position (Methods); 2) p-values are 
combined locally with a sliding window-based approach followed by peak detection 
(Methods); 3) flanking sequences around the center of peaks are used as input for 
MEME motif discovery analysis (Methods). Overall, 45 of the total 46 well-characterized 
methylation motifs from seven bacteria were successfully re-discovered 
(Supplementary Table 2). The only undetected motif, GT6mAC from H. pylori, has 
much fewer occurrences (i.e. only 198 in the entire genome) than other 4-mer motifs 
(7169 occurrences on average). The motif discovery analysis also found six additional 
motifs not among the 46 well-characterized motifs (Methods, Supplement text), which 
were not included in subsequent analysis of our new method that is focused on 
methylation typing and fine mapping. 

A novel method for de novo methylation typing and fine mapping. Although 45 of the 46 
known motifs have already been re-discovered de novo in the above analysis, two 
critical additional features have yet to be defined: methylation type and methylated base 
within each motif. Despite the fact that the t-SNE analysis reveals a lack of a common 
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signature for each methylation type and a large variation in current differences across 
different motifs of the same methylation type, it shows that DNA methylation events of 
the same type generally cluster well (Fig. 2c). We hypothesized that a classification 
model trained using diverse methylation types and motifs may serve as a reliable 
approach for categorizing de novo detected methylation into a specific methylation type. 

In standard applications of classification models, both training and test samples 
need to be defined with respect to a consistent feature vector (e.g. current differences 
near methylated bases in our case). However, while both methylation type and 
methylation position are known for the well-characterized training samples (i.e. feature 
vectors can be consistently defined relatively to the methylated base for classifier 
training), features vector for the test samples cannot be aligned consistently because the 
methylated position is yet to be predicted. Essentially, methylation type classification and 
methylation fine mapping are coupled problems that need to be approached 
simultaneously. 

Encouragingly, although the methylated base is not always at the center of the 
current differences, we did observe a relatively narrow window of no more than +/- 3 bp 
offsets from peak centers across the 46 well-characterized motifs (Supplementary Fig. 
5a). This motivated us to design a novel multi-label classifier training strategy in which 
each well-characterized methylation occurrence is represented by multiple feature 
vectors with offsets relative to the known methylation position (+/- 3bp). Each 
methylation occurrence from a wide range of sequence context is learned 7 times by the 
classifier, each time using current differences at a specific offset from the methylated 
base. For a given test sample with unknown methylation type and unknown methylated 
position, the classifier will first use the center of current differences as an approximation 
of the methylated position and then predict the methylation type and the exact 
methylated position (Methods; Fig. 4a-c). This is the core design of our method that 
enables completely de novo methylation typing and fine mapping, which is critical for 
practical applications to unknown bacterial genomes. 

A set of nine different classifiers was separately trained using current differences 
flanking known methylated bases following the offset strategy described above (Methods; 
Fig. 4a-c; Supplementary Table 4; Supplementary Fig. 5b,d). For classifier evaluation, 
we used leave-one-out cross validation (LOOCV) strategy where one motif is held out for 
testing while all the other 45 motifs are used for training. With all held out individual 
methylation sites belonging to a single methylation motif classified, predicted methylated 
type and position within motif was determined by using the consensus across tested 
occurrences (Methods). Overall results are largely consistent across the nine classifiers 
both in terms of accuracy for classifying individual methylation sites (Supplementary 
Fig. 5c) and methylation motifs, although k-nearest neighbors, random forest, and 
neural network had relatively better performances with at least 95.7% of motifs correctly 
typed and fine mapped (consensus accuracy of 97.8%; Supplementary Fig. 6 and 7). 
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Motif typing and fine mapping performances were further assessed on two 
independent bacterial samples: N. otitidiscaviarum and T. phaeum. All the 12 known 
methylation motifs were de novo re-discovered as well as accurately typed and fine 
mapped (Supplementary Table 5). In addition, we observed similar method 
performances when we used a de novo assembled genome (E. coli sample at 200x, 
99.94% consensus accuracy) for motif detection (Supplementary Fig. 3g), and for the 
motif typing and fine mapping procedures (Supplementary Fig. 3h). We also evaluated 
the impact of genomic coverage using subsampled datasets of H. pylori, and observed 
improvement in motif enrichment (from 5x to 75x and then plateaued; Supplementary 
Fig. 8a; Supplementary text), as well as in motif typing and fine mapping across studied 
motifs (from 10x to 30x; Supplementary Fig. 8c). 

In summary, we developed a new classification-based method that not only 
captures the complex variation of current differences across methylation types and 
motifs, but is also trained using a multi-label classification design that allow fine mapping 
of the methylated base. While we expect the method is highly reliable for de novo 
methylation typing and fine mapping for a methylation motif (97.8% consensus accuracy), 
we would like to note that the accuracy for individual methylation event varies 
dramatically across different motifs, ranging from 24% for G6mAGG, the only motif that 
was not accurately classified, to 99.5% for G5mCCGGC (median >76% for k-nearest 
neighbors, random forest, and neural network; Supplementary Fig. 5c, 6, and 7), which 
is consistent with the observation that motifs of the same methylation type can have 
different signatures (Fig. 2c and Supplementary Fig. 2,3,8b). 

Methylation discovery from microbiome and methylation-
enhanced metagenomic analyses 

Uncultured bacteria represent a significant proportion of the overall diversity of the 
bacterial kingdom and thus a great source for DNA methylation discovery. Therefore, we 
attempted to perform de novo methylation discovery and characterization from a mouse 
gut microbiome using nanopore sequencing. For microbes with fairly high abundance, 
metagenomic assembly often generates reasonably long contigs, which can be 
technically treated as individual genomes for methylation analysis using the procedure 
described in the last section. However, for microbes with relatively lower abundance, 
metagenomic assembly often results in fragmented genomes where contigs are short 
hence including only a limited number of occurrences of each motif, which makes 
methylation motifs discovery statistically underpowered if each metagenomic contig is 
examined separately. 

Fragmentation related issues can be mitigated by using diverse binning methods 
intended to group related contigs together (species or strains level). Those methods 
encompass sequence composition features binning26-29, contig coverage binning30-33, as 
well as chromosome interaction maps34-36. Recent work by Beaulaurier et al. 
demonstrates that microbial DNA methylation can be exploited to enhance the grouping 
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of metagenome contigs (i.e. methylation binning) using SMRT sequencing37. Instead of 
trying to discover precise methylation motifs from individual contigs, the methylation 
binning method presented in this recent work computes 6mA profiles (methylation 
scores for putative 6mA motifs) for each contig and then groups contigs together into 
bins based on methylation profiles similarities. We hypothesized that methylation binning 
of metagenomic contigs could be done using nanopore sequencing, which holds great 
promise due to its sensitivity for detecting all three types of common DNA methylations 
(4mC, 5mC, and 6mA) beyond the scope of work by Beaulaurier et al. that focused on 
6mA alone37, especially because SMRT sequencing does not effectively detect 5mC. 

We first developed a new methylation binning approach specifically for nanopore 
sequencing data considering the fundamental differences from SMRT sequencing 
(Methods; Supplementary Fig. 9). In a nutshell, several important technical steps 
needed to be developed for nanopore sequencing data because the current differences 
associated with each of the three types of methylation are spanning multiple events near 
methylated bases (Fig. 2a, Fig. 3a, and Supplementary Fig. 1) rather than confined to 
a single base for 6mA or 4mC as in SMRT sequencing. After prototyping and evaluation 
on a mock community (Supplement text; Supplementary Fig. 10), we applied the 
methylation method to new nanopore sequencing data of the same mouse fecal sample 
used in the SMRT sequencing-based study (MGM1; Supplementary Table 6). To 
summarize, after the de novo metagenome assembly using nanopore sequencing data 
only, we computed methylation feature vectors for a large set of candidate methylation 
motifs (n=210,176; Methods). Motifs with informational feature (i.e. significant current 
differences) were first selected based on large contigs, and methylation feature vectors 
were then computed in remaining contigs. Methylation feature vectors are then arranged 
in a methylation profile matrix, which is subjected to clustering analysis based on 
similarity among contigs (Methods). This initial automated binning resulted in ten bins 
(Supplementary Fig. 11a), which were further refined by per-bin motif detection 
followed by de novo motif guided binning (Methods; Supplementary Fig. 11b-d). The 
final methylation binning round of the mouse gut microbiome sample with nanopore 
sequencing data was performed using the 80 de novo detected methylation motifs 
(Supplementary Table 7) and revealed thirteen bins containing from 3 to 43 contigs in 
each (Fig. 5a; Supplementary Fig. 11d; Supplementary Table 6). The unique 
methylation profiles for each bin are displayed in Figure 5c. The method was further 
tested with a second microbiome sample, MGM2 (Supplementary Table 6), in which 
eleven bins with unique methylation profiles were identified (Fig. 5b; Supplementary 
Fig. 12; Supplementary Table 9). 

We also performed the analysis using the SMRT metagenomic assemblies 
reported in the recent study1 to ease the comparison between nanopore sequencing and 
SMRT sequencing (Methods). Through a bin-level comparison, bins from nanopore 
sequencing data closely matched those from SMRT sequencing data, and none of the 
nanopore sequencing bins contained misclassified contigs (Supplementary Fig. 13a 
and Supplementary Table 10). Consistent between the two technologies, methylation 
binning effectively separated the multiple Bacteroidales species that are usually hard to 
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distinguish from each other due to their highly similar genome sequence composition 
and abundance37. 

Through the methylation binning analysis, 80 methylation motifs (62 unique 
recognition sequences) were discovered from the thirteen bins from MGM1 sample 
(Supplementary Table 7). We applied the methylation typing and fine mapping method 
trained in the previous section to these 80 methylation motifs and compiled classification 
results from the consensus across k-nearest neighbors, random forest, and neural 
network classifiers. Methylation typing and fine mapping predictions are consistent with 
the motif recognition sequences for 64 motifs: 18 are identified as 6mA, 45 as 5mC and 
1 as 4mC (Supplementary Table 11). The rarity of 4mC motifs is consistent with a re-
analysis of SMRT sequencing data from the recent study37, which also confirmed every 
6mA motif discovered with our method. The de novo detection of a large number of 5mC 
motifs is very encouraging because previous large-scale bacterial methylome studies 
were almost exclusively based on SMRT sequencing, which is known to be ineffective 
for detecting 5mC methylation. However, not every 6mA motif found with SMRT 
sequencing was detected in the analysis of nanopore sequencing data. The missing 
ones are mostly bipartite 6mA motifs, which are usually not frequent and thus more 
challenging to detect using nanopore sequencing. This is probably due to the diffuse 
nature of current differences around 6mA (Fig. 2a and Supplementary Fig. 1) in 
contrast to the highly specific signal right on top of 6mA in SMRT sequencing. 

We further attempted to link mobile genetic elements (MGEs) to their host 
genome based on their methylation profiles. Using the SMRT metagenomic assembly 
with de novo discovered methylation motifs, we were able to bin 11 of the 19 annotated 
MGEs from this microbiome sample according to their methylation profiles (five plasmids 
and six conjugative transposons; Supplementary Fig. 13b; Supplementary Table 12), 
while nine were binned with the SMRT analysis37. With eight MGEs binned as with 
SMRT analysis and three newly binned MGEs, nanopore sequencing increased MGEs 
linking potential compared to SMRT methylation binning likely owing to its better 
sensitivity to 5mC motifs. From our nanopore-only de novo metagenome assembly, 
fewer MGEs were identified (eight), although similar results were obtained in terms of 
linking MGEs to their host genomes, i.e. four out of the eight MGEs identified were 
binned correctly (Fig. 5a). 

In addition to contig binning, we hypothesized that the microbial DNA methylation 
pattern can also be used to discover misassembled contigs. In a nutshell, the 
methylation pattern is expected to be largely consistent across different regions of an 
authentic metagenomic contig. Following this rationale, we discovered two contigs from 
SMRT sequencing based metagenomic assembly of the MGM1 sample (marked by an 
asterisk in Supplementary Fig. 13a) that both show inconsistent intra-contig 
methylation status (Fig. 5d). By comparing methylation patterns from methylation motif 
sets from the other bins, we found that the contigs in question are chimeric contigs both 
representing Bacteroidales species (Supplementary Fig. 14, Bin 2 and Bin 7). This is 
consistent with the previous examination of coverage uniformity and contamination 
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through single-copy gene count37, confirming that those contigs annotated as Bin 7 were 
misassembled by HGAP2 combining parts of Bin 2 and Bin 7 genomes. Generally, this 
analysis highlights the benefit of incorporating DNA methylation status (ideally all three 
types: 6mA, 4mC and 5mC), which not only help better distinguishing microbes species 
but also help assess contig homogeneity revealing eventual misassemblies, an 
application particularly useful for the characterization of complex microbiome samples. 

Discussion 
In this work, we developed a novel method for de novo discovery (methylation typing 
and fine mapping) of three forms of bacterial DNA methylation, namely 4mC, 5mC, and 
6mA. We demonstrated that it enables the much-needed de novo characterization of 
unknown bacterial methylomes from both individual bacteria and microbiome samples. 
Our comprehensive motif profiling and analysis showed that different methylation motifs 
of the same methylation type could differently impact current levels captured in nanopore 
sequencing. This observation has important implications for nanopore sequencing based 
detection of DNA methylation confirming that a rich collection of methylation sequence 
context is necessary to develop broadly applicable computational methods for 
methylation discovery, which we achieved through aggregation of a diverse assortment 
of methylation motifs from bacteria. As increasing number of researchers start to employ 
nanopore technology for microbial genome sequencing, we expect our new method to 
be widely used for methylation discovery from bacteria. 

As we attempted to use the novel method to directly detect DNA methylation and 
discover methylation motifs from a microbiome, we demonstrated two valuable utilities of 
DNA methylation analysis by nanopore sequencing for helping to characterize 
metagenomes. First, we developed a novel approach for methylation binning of 
metagenomic contigs and linking of MGEs to host genomes building on the method 
reported for SMRT sequencing data37 and designing multiple technical procedures 
addressing the unique properties of nanopore sequencing, i.e. the diffuse nature of 
current differences around methylation events in contrast to the highly specific signal 
right on top of 6mA and 4mC events in SMRT sequencing. Second, we demonstrated 
that examining the methylation pattern along assembled metagenomic contigs could 
help identify chimeric contigs due to metagenomic misassemblies. The long reads from 
nanopore sequencing holds great promise in metagenome analysis, so we expect our 
new method to further help researchers exploit microbial DNA methylation for high-
resolution metagenomic and MGE analyses. 

While both SMRT sequencing and nanopore sequencing have great promise of 
direct detection of DNA methylation without the need for chemical conversions, there 
has not been an in-depth comparison between the two methods in terms of their 
advantages and disadvantages. In this aspect, our comparative analysis over the 
metagenomic contigs binned by methylation motifs detected by the two technologies 
from the same microbiome sample provided important insights. First, while 5mC is very 
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challenging to detect using SMRT sequencing, nanopore sequencing provides reliable 
5mC detection. The large number of 5mC motifs discovered from the mouse gut 
microbiome sample using nanopore sequencing suggests the prevalence and diversity 
of 5mC motifs could have been largely underestimated in the >2,000 bacterial 
methylome analyses that were almost exclusively based on SMRT sequencing1. Second, 
we found that multiple long and rare methylation motifs well detected by SMRT 
sequencing in the metagenome analysis were missed by nanopore sequencing, which 
can be explained by the current differences associated with each of the three types of 
methylation diffusion to multiple flanking bases in contrast to the fairly high IPD ratios 
confined to a single methylation site (4mC or 6mA) for SMRT sequencing2, 20-23. 
Collectively, these comparisons suggest that SMRT sequencing and nanopore 
sequencing have their own strengths and limitations, hence the two technologies are 
expected to complement each other in various applications. 

In this work, we focused on bacterial methylomes of individual microbes and 
microbiomes, and we expect the method to be highly reliable for de novo methylation 
typing and fine mapping for methylation motifs. For individual methylation sites, we 
would like to highlight that the accuracy of the current method for methylation typing and 
fine mapping varies across different motifs, which calls for development of more 
accurate methods in future work. Also, because motif occurrences are almost 100% 
methylated in bacterial methylomes, the current method did not attempt to estimate the 
fraction of molecules methylated at each genomic position. In practice, existing tools 
such as Tombo allow the estimation of partial methylation at individual methylation sites, 
thus are complementary to our method. 

Last but not least, although the current study was focused on three types of DNA 
methylation, similar design could be extended for the detection of additional forms of 
DNA methylation (5hmC, 5fC and 5caC) as well as other forms of DNA chemical 
modification such as the various forms of DNA damage38, 39, and possibly diverse forms 
of RNA modifications40, 41 owing to the unique promise of nanopore technology for direct 
RNA sequencing42-44.  
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Figure captions 
Figure 1: Schematics for method design and applications. (a) Using isolated bacteria 
with a wide variety of methylation motifs we explore the signal of DNA methylation in 
nanopore sequencing and characterize the major types of DNA methylation (4mC, 5mC, 
and 6mA). We observed a large variation and complex heterogeneity of current 
differences (native versus WGA) between methylation sequence context, which 
motivated us to develop a broadly applicable method for classifying DNA methylation 
into specific methylation type (4mC, 5mC, and 6mA) and fine mapping of the methylated 
base. (b) We performed comprehensive method evaluation and demonstrated the 
application of our method for methylation discovery from individual bacterial species (7 + 
2 species) and microbiomes (methylation motif detection, classification, and fine 
mapping), as well as methylation-assisted metagenomic analysis (methylation binning 
and misassembly identification). 

Figure 2: Systematic examination of three main types of DNA methylation with nanopore 
sequencing. (a) Variation of current differences across methylation occurrences as 
illustrated by motif signatures from three motifs (AG4mCT, GGW5mCC, and 
GCYYG6mAT). For each motif, current differences near methylated bases ([- 6 bp, + 7 
bp]) from all isolated occurrences are plotted with conservation of relative distances to 
methylated bases. Distributions of current differences for each relative distance are 
displayed as a violin plot. Current differences axis is limited to -8 to 8 pA range. (b) 
Variation of current differences across methylation occurrences as illustrated by 
projection with t-SNE for 46 well-characterized motifs (Supplementary Table 2). Each 
dot represents one isolated motif occurrence colored by methylation motif. For each 
motif occurrence, current differences from 22 positions near methylated bases ([- 10 bp, 
+ 11 bp]) were used. (c) Similar to b but colored by DNA methylation type with additional 
processing to reveal cluster density indicated by relief. 

Figure 3: Local sequence context effect on motif signatures. (a) Sequence-dependent 
variation in current differences for GGW5mCC methylation motif occurrences. Current 
differences from violin plots of GGW5mCC in Fig. 2a were plotted as a heatmap with 
each row representing current differences flanking a methylation occurrence ([-5, +6] 
relative to methylation). GGW5mCC motif occurrences were split into two groups 
according to degenerated base (W=[A|T]) and ordered, within groups, using hierarchical 
clustering to highlight current difference patterns. (b) t-SNE projection of motif 
occurrences from a with cluster density displayed as relief. Clusters are colored 
according to degenerated base within the methylation motif. (c) Another example of 
sequence-dependent variation for GAT5mC motif occurrences with cluster density 
displayed as relief. Clusters are colored according to the first base following GAT5mC 
motif. 

Figure 4: Classification and fine mapping of three types of DNA methylation. (a) 
Schematic representation of dataset building for classifier training. For each motif 
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occurrence, we produced 7 training vectors of length 12 with +/- offsets from 0 to 3 
position(s) relative to current differences core defined as [-2, +3] (Supplementary Fig. 
1a-c). (b) Each training vector is labeled with the corresponding methylation type and 
offset used. They are then gathered into a large training dataset of current differences 
flanking 183,818 methylated bases from 46 distinct motifs (Methods). This dataset of 
current differences near the methylated base can be used to train classifiers. (c) 
Classifiers performances were evaluated using leave-one-out cross validation (LOOCV). 
(d) Subset of classifier evaluation results. Nine models were trained for each holdout 
combination to evaluate their performance for classifying holdout motifs. We classify 
every individual occurrence of each holdout motif and compute percentage of 
occurrences for each of the 21 labels using each classifier separately. Results for six 
selected motifs are shown as an illustration. Only within motif predictions are displayed, 
and the raw classification results for all motifs are presented in Supplementary Fig. 6,7. 
Filling colors correspond to percentage of occurrences classified to a specific class 
ranging from blue (0%) to red (100%). Prediction percentages of expected classes are 
displayed in italics and fine mapped methylated positions in each motif are displayed in 
bold. 

Figure 5: Methylation analysis of mouse gut microbiome samples. (a) Methylation 
binning of MGM1 metagenome contigs using de novo discovered motifs (after three 
rounds of binning followed by motif discovery; Methods, Supplementary Fig. 9, 
Supplementary Fig. 11). Methylation features computed from de novo discovered 
motifs are projected on two dimensions using t-SNE. Contigs are colored based on bin 
identities with point sizes matching contig length according to the legend. (b) Methylation 
binning of MGM2 metagenome contigs using de novo discovered motifs (after one round 
of binning followed by motif discovery; Methods, Supplementary Fig. 9, 
Supplementary Fig. 12). Methylation features computed from de novo discovered 
motifs are projected on two dimensions using t-SNE. Contigs are colored based on bin 
identities with point sizes matching contig length according to the legend. Non-zoomed 
plot (with visible Bin 6 and Bin 7) is presented in Supplementary Fig. 12b. (c) Heatmap 
representation of methylation feature values across binned contig from MGM1 sample. 
Methylation features were computed from all the de novo discovered motifs in MGM1 
bins. Only the significant features with absolute values above 1.5 pA in the bin of origin 
(where the corresponding motif were discovered) were selected. Missing methylation 
features from contigs (less than 5 motif occurrences) are colored in grey. (d) Detection 
of misassemblies using methylation motif information along contigs. Left and middle 
panels: misassembled contigs mislabeled as Bin 7 in SMRT analysis (PDYJ01003082.1 
and PDYJ01003083.1, contigs marked with an asterisk in Supplementary Fig. 13a. 
Right panel: an example of a properly assembled contig from Bin 7 (PDYJ01000763.1). 
We selected some de novo detected motifs from Bin 7, and scored their methylation 
sites along the three contigs. Methylation scores were then smoothed using locally 
estimated scatterplot smoothing and displayed with one color per motif. Smoothed 
methylation scores are consistent in the contig from the right panel, but not in the 
misassembled contigs shown in the two left most panels. A switch of methylome occurs 
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near 800 kbp and 300 kbp in the left two panels respectively, supporting the existence of 
misassemblies (detailed in Supplementary Fig. 14a,b).  
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Methods 
Software and data availability 

Software of the novel methods and a detailed tutorial with supporting data are available 
at http://github.com/fanglab/nanodisco. All sequencing data generated in this study will 
be made available upon publication. 

Samples collection and DNA extraction 

A set of nine bacteria was rationally selected using a previous study5 and REBASE19 to 
provide a large diversity of methylation motifs, in particular for the less frequent 4mC and 
5mC methylation motifs: Bacillus amyloliquefaciens H, Bacillus fusiformis 1226, 
Clostridium perfringens ATCC 13124, Escherichia coli K-12 substr. MG1655 ATCC 
47076, Methanospirillum hungatei JF-1, Helicobacter pylori JP26, Neisseria 
gonorrhoeae FA 1090, Nocardia otitidiscaviarum NEB252, and Thermacetogenium 
phaeum DSM 12270. 

B. amyloliquefaciens H, B. fusiformis 1226, and N. otitidiscaviarum NEB252 DNA 
samples were obtained from New England Biolabs (NEB, Ipswich, MA). Those for C. 
perfringens ATCC 13124, M. hungatei JF-1, H. pylori JP26, N. gonorrhoeae FA 1090 
and T. phaeum DSM 12270 were obtained from the Human Health Therapeutics 
Research Area at National Research Council Canada, the Department of Microbiology, 
Immunology, and Molecular Genetics at University of California Los Angeles, the 
Department of Medicine at New York University Langone Medical Center (NYUMC), the 
University of Oklahoma Health Sciences Center, and the Department of Biology at the 
University of Konstanz (Germany), respectively. Finally, we obtained E. coli K-12 substr. 
MG1655 ATCC 47076 directly from the American Type Culture Collection (ATCC, 
Manassas, VA). 

The adult mouse gut microbiome DNA samples (MGM1 and MGM2) were 
obtained from the Department of Medicine at NYUMC. MGM1 DNA sample was 
extracted from the fecal pellets used in the SMRT sequencing study37 while MGM2 DNA 
sample comes from fecal pellets of the same mouse after antibiotic treatment with tylosin. 
Fecal DNA extraction was performed using QIAamp DNA Microbiome Kit (QIAGEN, 
Hilden, Germany) followed by cleanup with DNA Clean & Concentrator – 5 elution buffer 
(ZYMO Research, Irvine, CA) and final elution in 10 mM Tris-HCl, pH 8.5, 0.1 mM EDTA. 

Library preparation and sequencing 

The quality of input DNA was controlled with Nanodrop 2000 and concentration 
measured using Qubit 3.0 (Thermo Fisher Scientific, Waltham, MA). Native libraries 
were prepared following 1D Genomic DNA by ligation protocol (SQK-LSK108; version 
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GDE_9002_v108_revT_18Oct2016) with minor modifications described below. Whole 
genome amplification samples were prepared using REPLI-g Mini Kits (QIAGEN, Hilden, 
Germany) according to the protocol with 12.5 ng of input DNA and 16 h incubation. Next, 
WGA samples were treated with T7 endonuclease I (NEB) to maximize nanopore 
sequencing yield according to ONT documentation. WGA libraries were prepared 
following Premium whole genome amplification protocol from T7 step (version 
WAL_9030_v108_revJ_26Jan2017) with minor modifications described below. Bacteria 
(other than E. coli and H. pylori) and mouse gut microbiome DNA samples, native and 
WGA, were RNase A treated (FEREN0531, Thermo Fisher Scientific) then fragmented 
at 8 kbp with g-TUBEs (Covaris, Woburn, MA) to homogenized DNA fragments lengths 
increasing accuracy of input DNA molarity calculation to maximize yields. Final fragment 
length distributions were determined using Bioanalyzer 2100 (Agilent Technologies, 
Santa Clara, CA). Samples were sequenced on R9.4 and R9.4.1 flow cells 
(Supplementary Table 3 and 6). 

E. coli and H. pylori libraries (native and WGA) were prepared without 
fragmentation or Formalin-Fixed, Paraffin-Embedded (FFPE) DNA repair. E. coli and H. 
pylori WGA input DNA was increased to 3 µg in T7 step with 20 min incubation. 
Remaining steps were performed according to corresponding ONT protocol and final 
libraries sequenced on 3 flow cells with a maximum of two consecutive runs per flow cell. 
Flow cells were washed between runs using the Flow Cell Wash Kit (EXP-WSH002) 
from ONT. An additional WGA was produced for H. pylori, and referred to as 
independent WGA. Sequencing of native and WGA libraries for E. coli and H. pylori 
generated from 289 to 2630x genomic coverage but were down sampled at 200x to 
more accurately represent common yield targets. 

DNA samples for the additional bacteria (B. amyloliquefacien, B. fusiformis, C. 
perfringens, M. hungatei, N. gonorrhoeae, N. otitidiscaviarum, and T. phaeum) were 
pooled in equimolar quantity for library preparation. Pooling possibility was confirmed by 
mapping mock nanopore reads datasets generated using Nanosim45 (version 1.0.0; 
simulator.py linear -r <path_to_fasta> -c <error_model> -o <path_output> -n 50000 --
min_len 200 --max_len 50000 using the E. coli error model provided by the authors on 
03/23/17) on the combined references and verifying accurate separation of reads into 
genome of origin. Any reads mapping on more than one genome were discarded from all 
the analysis presented in our study, independently of the mapping type. Native and 
WGA library preparations were performed using aforementioned ONT protocol and 
sequenced on separate flow cells (Supplementary Table 3). Sequencing of native and 
WGA generated datasets with coverage ranging from 65 to 297x. 

Finally, mouse gut microbiome libraries (MGM1 and MGM2) were generated 
according to the One-pot ligation protocol for Oxford Nanopores libraries 
(dx.doi.org/10.17504/protocols.io.k9acz2e) including the FFPE DNA repair step with 
exception for the room temperature incubation times that were increased from 10 to 20 
minutes. 300 fmol of input DNA were used in FFPE DNA repair steps. Native and WGA 
libraries were sequenced on separate flow cells for 48 h (Supplementary Table 6). 
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Nanopore sequencing signal processing 

Nanopore sequencing reads are base called using ONT Albacore Sequencing Pipeline 
Software (version 2.3.4). Reads are mapped to corresponding references using BWA-
MEM (version 0.7.15 with –x ont2d option)46. The following steps are performed using R 
(version 3.5.3)47. Reads are separated by strand according to the initial alignment 
(package Rsamtools; version 1.34.1)48, and both groups are processed as forward 
strand reads by mapping reverse strand reads on the reverse complement of the 
reference genome using BWA-MEM. Supplementary and reverse strand alignments are 
then filtered out with samtools (version 1.3; flags 2048 and 16)49. Next, events are 
associated to genomic positions according to alignment coordinates from reads and 
expected current levels with Nanopolish eventalign (version 0.11.0)9. Event levels are 
normalized across reads by correcting signal scaling and shifting. Both normalization 
factors are computed for each read by fitting events level to ONT 6-mer model 
(nanopolish configuration file r9.4_450bps.nucleotide.6mer.template.model) using robust 
regression (rlm function). Event level outliers are removed using Tukey’s fences 
methods based on interquartile range (IQR=1.5) for each genomic position. Finally, 
mean event current differences (pA) were computed by comparing event levels between 
native sample (maintained methylation state) and WGA sample (essentially methylation 
free) at each genomic position for both strands separately. This metric is simply referred 
to as current differences in our manuscript. Associated p-values from two-sided Mann-
Whitney U test are also computed (wilcox.test function) which was proposed in Stoiber 
et al.14. Only genomic positions with sufficient coverage are considered in later analysis 
(min_cov=5). 

Motif enrichment analysis 

DNA methylation affects nanopore sequencing signal at multiple positions around the 
methylated base (Fig. 2a and Supplementary Fig. 1a-c)3 meaning detection of 
methylated sites can be reinforced by combining information from consecutive genomic 
positions. As in Stoiber et al., consecutive p-values are combined with Fisher’s method 
(sumlog function) in sliding windows (5 bp) smoothing statistical signal along the 
genome14. It combines the methylation related signal near methylated bases and 
reduces signal noises from spurious genomic positions. Resulting smoothed statistical 
signals form peaks near methylated positions. Detected peaks are ranked according to 
their smoothed p-value and the top 2000 peaks are then selected for motif discovery. An 
alternative strategy is to randomly sample peaks from more than the top-2000 positions 
(Supplementary text). Corresponding genomic sequences are then extracted (22 bp) 
and used as input for de novo motifs discovery with MEME software (version 4.11.4; 
parameters: -dna -mod zoops -nmotifs 5 -minw 4 -maxw 14 -maxsize 1000000)25. 
Selection of region of interest based on combined p-values followed by motif detection 
using MEME was initially proposed in a preprint by Stoiber et al.14. However, we 
enhanced the motif discovery potential by closely integrating MEME in our pipeline as 
described in next paragraphs. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.18.954636doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.954636
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running time for motif discovery with MEME rapidly increases with size of the 
sequence dataset to such extent that we had to limit the number of input sequences 
used. To address this constraint, we adopt a repeated procedure of back and forth 
between peak detection and motif discovery steps. For each pass, a limited number of 
input sequences are analyzed with MEME and motifs achieving a sufficient confidence 
(E-value <= 10-30) are reported. After each motif discovery step, peaks explained by 
discovered motifs, whose corresponding genomic sequence contains at least one of the 
de novo detected motifs, are removed making it possible to discover less frequent motifs 
and ones with weaker signals. This repeated procedure is adapted for detecting any 
number of methylated motifs while decreasing processing time. 

Raw motifs called by MEME were further refined by leveraging current difference 
information. For each motif reported by MEME, we generated a list of mutated motifs by 
introducing a substitution (one substitution at a time; analysis of GATC will give 12 
mutated motifs: AATC, CATC, TATC, GCTC, GGTC, GTTC, GAAC, GACC, GAGC, 
GATA, GATG, GATT). We then compute each mutated motif signature (see Motifs 
typing and fine mapping) with associated scores representing total divergence from non-
methylated signature (sum of absolute average current differences).  

Parameter tuning for signal processing and motif detection 

To assess our methods performance for de novo motif discovery and tune parameters, 
we evaluated the enrichment of MEME input sequences for expected motifs as the 
chosen smoothed p-value threshold varies. Method development and choice of default 
parameters was guided by evaluating various metrics including Precision-Recall (PR), 
Receiver Operating Characteristic (ROC) curves and area under curves (AUC). We used 
the following two comparisons to define contingency table classes: native versus WGA, 
and independent WGA versus WGA. True positives (TP) and false negatives (FN) are 
respectively defined as motif occurrences with or without signal peak above threshold in 
native versus WGA. False positives (FP) are genomic regions without motifs and with 
signal peak above threshold in native versus WGA as well as motif occurrences with 
signal peak above threshold in independent WGA versus WGA. Finally, true negatives 
(TN) are defined as genomic regions without motifs and without peak above threshold in 
native versus WGA as well as motif occurrences without peak above threshold in 
independent WGA versus WGA. State of motif occurrences were defined whether a 
peak was detected above the chosen threshold in a 22 bp window encompassing 
expected methylated base of motif occurrences. For genomic regions devoid of motif, 
those were split in 22 bp consecutive units, and used as FP and TN with similar status 
definition. Performances were computed on the first 500 kbp of the reference genome 
only. When comparing performances for de novo detection between individual motifs, we 
took into consideration variation in frequencies (i.e. a rare motif will be more difficult to 
detect). Therefore, in order to make the evaluation more generally applicable, we fixed 
the ratio of positive regions (22 bp windows from motif occurrences in native versus 
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WGA) over all queried regions to one third by random subsampling, effectively avoiding 
variation in frequencies across the set of H. pylori motifs.  

Using the aforementioned method, we evaluated parameter performances for de 
novo methylation detection for the following steps or parameters: read mapping, event 
current normalization, outlier removal (Supplementary Fig. 3c,d), statistical test, p-
value combining function, smoothing window size, and peaks window size. We also 
evaluated the impact of coverage by subsampling at 10 depths ranging from 5x to 200x 
as well as the impact of motif frequency and the motif specific context (i.e. how 
methylation type and sequence context affect detection potential; Supplementary Fig. 
8). 

Validation of methylation motifs used for classification 

E. coli and H. pylori were sequenced with SMRT sequencing in order to confirm 4mC 
and 6mA methylation motifs using the RS_Modification_and_Motif_Analysis protocol 
from SMRT Analysis Server (v2.3.0). Methylation status summaries for the remaining 
bacterial species (modifications.csv and motif_summary.csv files) were obtained from 
the U.S. Department of Energy Joint Genome Institute and NEB. We confirmed effective 
methylation of 4mC and 6mA motifs individually by checking if IPD ratio consistently 
peaked on expected methylated bases. Finally, REBASE annotation was used as a gold 
standard for 5mC motifs. Methylation motifs with an ambiguous status (e.g. weak or 
partial IPD ratio peaks) or not reported in REBASE annotation were not used for the 
classifier training and the performance evaluation. 

Motif typing and fine mapping 

For each bacterial genome, we list methylated genomic positions from each strand 
based on motif recognition sequences. Methylated positions in close proximity are 
discarded to avoid introducing unwanted complexity (at least 22 bp apart, each strand 
considered independently as current signal is strand specific). Ambiguous motifs are 
removed from downstream analysis (see Validation of methylation motifs used for 
classification in Methods). We extract current differences in [- 10 bp, + 11 bp] range 
relative to methylated base positions. Each occurrence is labeled with genome of origin, 
recognition sequence, methylation type, methylation position within motif, and genomic 
coordinates. This dataset constitute our methylation motif signatures for motif typing and 
fine mapping, while we use a range of [- 6 bp, + 7 bp] to examine the variation of current 
differences across different DNA methylation types and motifs. Note that for de novo 
detected methylation motif and refinement function, signatures are generated 
considering every position in the motif as potentially methylated, which produced a 
longer signature not necessarily centered on the methylated base. 

The training dataset for classification is generated from methylation motif 
signatures to permit labeling of methylation type and position within motifs 
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simultaneously (Fig. 4a). For each vector of current differences from a methylated site, 
we generate 7 smaller vectors, lengths 12, offseted by one position so that each of them 
still contains the [- 2 bp, + 3 bp] range relative to the methylated base. In other words, 
those 7 vectors contain current differences from the [- 2 bp, + 3 bp] range with up to 3 
additional position(s) before or after (i.e. [- 5 bp, + 6 bp] +/- 0 to 3 bp). Each of those 
vectors is labeled with the type of DNA methylation from corresponding motifs as well as 
corresponding offset used (from - 3 to + 3) resulting in 21 different labels (7 offsets x 3 
types DNA methylation). 

For the testing datasets, methylated base position is unknown and current 
difference vectors cannot be defined in the same way. However, methylated base 
position can be approximate by computing the center of current differences from a motif 
signature. For that, we average absolute current differences from a motif signature using 
a sliding window of length 5 and the position with the largest variation is used as an 
approximation of methylation position within the motif (Supplementary Fig. 5a). In 
practice, approximations are not further than 3 bp from the methylated position meaning 
that the vectors of current differences centered on those approximations will match one 
type of vector offset used for training because they are generated with - 3 to + 3 bp 
offsets. 

Prior to any model fitting, the training dataset is balanced by random sampling to 
contain a similar number of vectors for each label in order to avoid bias toward the more 
common methylation type. Classifier hyperparameters (Supplementary Table 4) were 
tuned on the balanced training dataset containing all motifs using repeated 10-fold cross 
validation (n=3) with balanced accuracy (mean and standard deviation) as the main 
metric. Robustness of chosen hyperparameters was confirmed by comparing 
performances from three classifiers (k-nearest neighbors, random forest, and neural 
network) when using parameters either tuned on a dataset containing all motifs (as 
described above) or a dataset only containing H. pylori motifs only. Both sets of 
hyperparameters gave similar results when tested on a dataset without H. pylori motifs 
(Supplementary Fig. 5d). 

Classifier performance evaluation was performed using leave-one-out cross 
validation strategy (LOOCV) by holding out current differences vectors from one motif 
and training on remaining vectors (from all motifs except one). The resulting model is 
then used to predict the label of held out vectors from the tested motif. The LOOCV 
strategy simulates models behavior when faced with an unseen motif signature. For 
testing, we only used the set of vectors corresponding to the approximated methylation 
position found as described previously. Predicted methylated base type for a motif is 
defined using consensus across all tested motif occurrences. As for methylated base 
position, the classifier prognosticates the offset between the approximated methylation 
position chosen as input and the predicted methylation position, which is then converted 
into a position within tested motifs. 

Nanopore sequencing based de novo assembly 
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Genome assembly for E. coli was performed using Canu50 (version 1.8; -nanopore-raw 
genomeSize=4.7m overlapper=mhap utgReAlign=true) with the native nanopore reads 
(200x dataset). Next, we generated the genomic consensus with Racon51 (version 1.3.3; 
default parameters) to correct raw contigs, and correct contig ends using nucmer52 
(version 4.0.0beta; --maxmatch –nosimplify and show-coords -lrcTH) to identify and trim 
remaining overlaps. Then, we polished the assembly consensus using Nanopolish9 
(version 0.11.0; variants --min-candidate-frequency 0.1 for five rounds) with the native 
nanopore reads. Finally, we performed another round of polishing with Nanopolish using 
nanopore WGA reads (methylation free) to correct remaining assembly error caused by 
DNA methylation signal in the native reads (same parameters for five rounds). 

Metagenome methylation binning 

While methylation motif detection could be performed as for individual bacteria, 
metagenome assemblies often result in many contigs from multiple organisms with 
various lengths making individual contig analysis lacking power. Instead, we propose to 
first bin contigs with similar methylation profiles then perform the motif detection. 
Nanopore sequencing native and WGA datasets are processed in the same way as for 
individual bacteria (except that supplementary alignment were conserved) generating 
current differences alongside metagenome contigs using the nanopore sequencing-only 
de novo metagenome assembly. 

De novo metagenome assemblies for MGM1 and MGM2 were performed using 
Flye53 (version 2.4.2; --meta –nano-raw –genome-size 100M) with the native nanopore 
reads. Next, the metagenome consensus was computed using Racon51 for four 
consecutive rounds (default parameters). Then, the resulting metagenome assemblies 
were polished using Nanopolish9 with first the native, then with the WGA nanopore reads 
(variants --min-candidate-frequency 0.1 for five rounds with each set of reads). 

For a candidate motif, an associated methylation feature vector is computed by 
averaging current differences from aggregated occurrences on a metagenomic contig 
(Supplementary Fig. 9). Unlike well-characterized methylation motifs, the methylated 
position in a candidate motif is unknown. Therefore, we consider every position in motifs 
as potentially methylated by including all potentially affected current differences in the 
methylation feature vector calculation. For a motif of length k, we compute a methylation 
feature vector of length k + (2 + 3), which corresponds to the length of current 
differences that are possibly affected by a methylated base in a k-mer motif (the core 
current differences is defined as [- 2 bp, + 3 bp] range flanking a methylated base, 
Supplementary Fig. 1). This procedure results in a methylation feature vector of 
average current differences of length k + 5 representing a motif methylation status for a 
contig. This step represents a major difference from SMRT sequencing based 
methylation binning method where a single methylation score is generated for a motif on 
a contig37. 
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The next step is to create a methylation profile matrix comprising methylation 
feature vectors for each motif of interest in each metagenomic contig, which will be used 
for methylation binning (Supplementary Fig. 9). A set of 210,176 candidate motifs is 
generated according to common structures (4-, 5-, and 6-mers, as well as bipartite 
motifs with 3 to 4 bp specificity part separated by 5 to 6 bp gaps). In order to select 
motifs of interest, an initial round of motif evaluation is performed on a subset of longer 
contigs (100 kbp using nanopore sequencing de novo assembly) with sufficient coverage 
(10x; Supplementary Fig. 10) with the rationale that results will have a higher statistical 
power. Uninformative methylation features are filtered out by discarding the ones with 
small absolute current difference values across the initial contig set (< 1.5 pA; chosen 
based on our mock metagenome analysis) as well as the ones computed from fewer 
than 20 motif occurrences. Next, we additionally filtered out uninformative methylation 
features from bipartite motifs by removing methylation feature vectors with fewer than 
two significant features across the initial contig set (significant if current difference >= 1.5 
pA) to account for the longer vector and generally lower motif frequency. Finally, 
methylation features from bipartite motifs that overlap with any remaining 4 to 6-mer 
motifs are also discarded. The resulting list of informative methylation features is then 
evaluated in each contig of the metagenome assembly to construct a methylation profile 
matrix (Supplementary Fig. 9). This two-step approach effectively reduces the initial 
research space on the set of large contigs speeding up the analysis, and reduces noise 
by only considering methylation features selected from contigs with higher statistical 
power. The resulting methylation profile matrix (significant methylation features 
computed across all contigs) is then processed using t-SNE dimensionality reduction 
method to visualize contig clusters (Supplementary Fig. 9). Missing methylation 
features and ones computed from fewer than 5 motifs occurrences are set to small 
random pseudovalues in the [- 0.2, + 0.2] range (reducing correlation from missing 
methylation features; random number generation seeds are set at 2, 3, and 4 for MGM1, 
MGM2, and the SMRT assemblies respectively). Small contigs are not considered for 
methylation binning (<25 kbp for the nanopore sequencing de novo assembly analysis), 
and remaining ones are weighted according to their length. Weighting factors are 
defined as quotient of contig length divided by 50,000 and capped at a percentage of the 
number of remaining contigs to avoid extreme imbalance (only contigs with coverage >= 
10x for both native and WGA are weighted). We set the capping value at 5% for 
metagenome with high diversity (large number of metagenome contigs, MGM1) and 10% 
for simpler metagenome (<500 contigs, MGM2). Finally, bins are defined after t-SNE 
dimension reduction using DBSCAN (package dbscan version 1.1-4), an automated 
clustering method, with additional manual annotation of visible bins that can be missed 
by DBSCAN. 

The analysis using the SMRT metagenome assembly (GCA_002754755.1) is 
performed as described previously using thresholds of 500 kbp and 10x of coverage for 
initial methylation feature selection (contigs from Bin 3, Bin 4, and Bin 9 are not covered 
sufficiently due to the use of a different DNA extraction kit than the SMRT study). 
Contigs smaller than 10 kbp are not considered. 
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Motif detection from bins is performed the same way as for individual bacteria. 
With de novo detected motifs, methylation feature vectors used for binning are not 
filtered, keeping the full-length methylation feature vectors. Missing methylation features 
from individual contigs are handled as described previously and contigs are also 
weighted. We performed three rounds of binning and motif detection for MGM1 
(Supplementary Fig. 11), while one was sufficient for MGM2 (Supplementary Fig. 12). 
Confirmation of de novo discovered motifs in MGM1 sample (potential 6mA and 4mC 
motifs) from nanopore sequencing analysis were realized with per bin motif detection 
from SMRT sequencing data using the SMRT portal pipeline 
(RS_Modification_and_Motif_Analysis.1). 

Binning focused on associating mobile genetic elements (MGEs) to host genome 
(Supplementary Fig. 13b) was performed using metagenome reference from the SMRT 
study where binned contigs were replaced by per-bin reassemblies37. MGEs contigs 
from the nanopore-only de novo metagenome assemblies were identified according to 
the alignment of MGEs sequences from the SMRT study using minimap2 (version 2.15; -
ax asm20)54. 

Detection of metagenome contigs misassemblies 

The rationale is to examine the consistency of methylation signal for a motif across 
different occurrence of the motif along a metagenomic contig. For every single motif 
occurrence, we calculate a score by taking the average of absolute current differences 
from six consecutives positions with the most perturbation. Then, these individual scores 
are averaged using a sliding window across the contig to examine the continuity. Motif 
occurrences from both strands are used in this analysis. However, if a motif occurrence 
overlaps with another motif site being examined (<15 bp) then both are discarded. 
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