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Objective and automatic measurement 
of pain in mice remains a barrier for 
discovery in both basic and 
translational neuroscience. Here we 
capture rapid paw kinematics during 
pain behavior in mice with high-speed 
videography and automated paw 
tracking with machine and deep 
learning approaches. Our statistical  
software platform, PAWS (Pain 
Assessment at Withdrawal Speeds), uses 
a univariate projection of paw position 
over time to automatically quantify fast 
paw dynamics at the onset of paw 
withdrawal and also lingering pain-
related behaviors such as paw guarding 
and shaking. Applied to innocuous and 
noxious stimuli across six inbred mouse 
strains, a linear discriminant analysis 
reveals a two-dimensional subspace 
that separates painful from non-painful 
stimuli on one axis, and further 
distinguishes the severity of pain on the 
second axis. Automated paw tracking 
combined with PAWS reveals 
behaviorally-divergent mouse strains 
that display hypo- and hyper-sensitivity 
to mechanical stimuli.  To demonstrate 
the efficacy of PAWS for detecting 
hypersensitivity to noxious stimuli, we 
chemogenetically activated pain-
aversion neurons in the amygdala, 
which further separated the behavioral 
representation of pain-related 
behaviors along a low-dimensional 
path. Taken together, this automated 
pain quantification approach should 

increase the ease and objectivity of 
collecting rigorous behavioral data, and 
it is compatible with other neural 
circuit dissection tools for determining 
the mouse pain state. 
 
INTRODUCTION 
Numerous genetic and environmental factors 
shape the subjective experience of pain. 
While humans can articulate the intensity 
and unpleasantness of their perceived pain 
in the form of pain scales and 
questionnaires[1, 2], determining pain states 
in non-verbal animals remains a significant 
challenge. Rodents are the predominant 
model organism to study pain and there is an 
urgent need to develop high-throughput 
approaches that accurately measure pain. The 
past fifty years of pain research have relied 
on the paw withdrawal reflex metric to 
measure pain-related behaviors in rodents, 
which has contributed to important 
discoveries about nociception[3, 4]. However, 
the traditional approach of manually scoring 
paw lifting suffers from an inability to 
determine whether paw movement away 
from a stimulus is motivated by the 
experience of pain. Improving the resolution, 
and increasing the dimensionality, of the 
common paw withdrawal assay has the 
potential to increase the predictive validity of 
translational pain therapeutics, and to increase 
the rate at which basic science findings are 
translated to the clinic.  
 Animals generate rapid motor 
responses to somatosensory stimuli at 
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millisecond speeds that cannot be readily 
detected by eye[5, 6]. Therefore, significantly 
increasing the recording rate of the motor 
actions, coupled with sub-second mapping of 
behavioral signatures, will sharpen the 
resolution and confidence for assessing an 
animal’s internal pain state. For example, 
researchers recorded optogenetically-
induced nociceptive behaviors at 240 frames 
per second (fps), which facilitated the precise 
mapping of nocifensive behaviors including 
paw withdrawal, paw guarding, jumping, 
and vocalization [7]. Two additional studies 
recording between 500-1,000 fps using both 
natural and optogenetic nociceptive stimuli, 
demonstrated that nociceptive withdrawal 
latencies were on the order of 20-130 
milliseconds (ms)[8, 9]. More recently, we 
recorded mouse somatosensory behaviors at 
500-1,000 fps, coupled with manual 
behavioral mapping, statistical modeling, 
and machine learning to create a more 
objective “pain scale” [10]. Although these 
studies provide a framework for using high-
speed videography for fine-assessment of 
pain, a major limitation lies in the relatively 
low-throughput nature of manual scoring of 
the video frames, which adds potential 
human error, and limits the ease of platform 
adoption in other laboratories.  
 Recently, computational 
neuroethology platforms have introduced a 
suite of machine learning and deep neural 
networks to automatically track animal body 
parts during behavior for postural 
estimation [11]. Platforms such as Motion 
Sequencing (MoSeq) use 3-dimensional 
depth imaging, quantitative analyses, and 
fitting with unsupervised computational 
models to estimate animal posture within an 
open arena and can automatically reveal ~60 
unique sub-second behavioral signatures 
[12]. DeepLabCut and LEAP, train deep 
neural networks (DNN) with relatively 
limited training datasets, allowing the 
computer to accurately track unlabeled body 
parts such as a mouse paw, ear, or even a 
single digit through many frames of 
videography data [14, 15].  Alternatively, the 

markerless automated tracking software 
ProAnalyst, tracks moving objects across 
high frame rate videography data [16, 17]. 
This approach does not use deep learning but 
relies on built-in machine learning 
algorithms for automated tracking, which 
provides an easier point of entry for 
researchers with limited time for software 
development or computing power.  
  Here, we present an automated 
mouse pain scale that combines videography 
at 2,000 fps, automated paw tracking with 
ProAnalyst and Social LEAP, and new 
software called PAWS (Pain Assessment at 
Withdrawal Speeds), which scores eight 
defined behavioral endpoints. Beginning 
with six commonly used genetically inbred 
mouse strains we revealed stereotyped sub-
second paw trajectory patterns, with simple 
up-down lifts typifying the response to 
innocuous stimuli and elaborate sinusoidal 
patterns typifying the responses to noxious 
stimuli. By projecting paw position onto the 
time-varying principal axis of paw 
movement, we identified shaking behavior as 
simple sequences of peaks and valleys in this 
univariate time series, and paw guarding as 
extended periods of stasis devoid of shaking 
prior to returning the paw to the ground.  

After building an automated pain 
assessment platform, we used statistical 
modeling with linear discriminant analyses 
(LDA) and confirmed that the eight 
movement features we automatically 
measured were sufficient to separate 
behavioral responses to innocuous touch 
from noxious pinprick stimuli. The LDA 
further segregated noxious intensity. Cross- 
validation of our LDA modeling confirmed 
that PAWS performed better than an 
unsupervised machine learning approach for 
decoding the stimulus type and intensity 
based on the animal’s sub-second behavioral 
responses. Lastly, using our recently 
described protocol to gain genetic-access to 
basolateral amygdala (BLA) neurons that 
are responsive to pain [19], we 
chemogenetically activated the BLA pain 
ensemble to validate our platform’s ability to 
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detect pain hypersensitivity. Thus, we can 
automatically measure increases in 
mechanical pain responsiveness to noxious 
stimuli while manipulating central pain 
circuits. Taken together, this work reveals 
that automating paw tracking and 
subsequent quantification of pain behaviors 
with high frame rate videography provides a 
reliable method to objectively determine the 
mouse pain state.  
 
RESULTS 
 
High-speed videography and automated 
paw tracking during evoked behaviors  
In order to capture sub-second behavioral 
ethograms during somatosensory behaviors 
in freely behaving mice, we recorded mice at 
2,000 fps, with a particular focus on the 
stimulated paw. We reasoned that we could 
develop a pipeline where we first performed 
behavior experiments, followed by 
automated paw tracking and automated pain 
scoring, and lastly statistical modeling to 
transform multidimensional datasets into a 
single dimension that separated touch from 
pain (Figure 1A). To begin, we used 10 mice 
from six commonly used inbred lines and on 
separate days to avoid sensitization to the 
stimuli, we applied to one hind paw a static 
innocuous stimulus (cotton swab), a moving 
innocuous stimulus (dynamic brush), a weak 
noxious stimulus (light application of a 
pinprick), and an intense noxious stimulus 
(heavy application of a pinprick). Using 
traditional pain scoring, we noticed that the 
paw withdrawal frequencies to these four 
stimuli varied widely across these six 
strains. For example, Balb/cJ, DBA1/J, and 
CBA/J displayed high paw withdrawal rates 
to all mechanical stimuli, both the innocuous 
and the two noxious (Figure 1B). Conversely, 
C57BL/6J and AKR/J displayed high paw 
withdrawal rates to both the noxious stimuli 
and the innocuous dynamic brush, but not 
the cotton swab (Figure 1B). Lastly, the A/J 
mice displayed high rates of paw lifting to 
both pinprick stimuli and low withdrawal 
rates to the two touch stimuli (Figure 1B). 

Since mice will move their paw to both 
innocuous and noxious stimuli, it is hard to 
determine if these differences in withdrawal 
frequencies are driven by genetic differences 
in susceptibility to pain. What these data 
likely reveal using the common traditional 
approach is that this test in isolation may be 
an inadequate measurement of pain at 
baseline states.  
 Next we turned to automated 
tracking with the six mouse strains to 
determine the X,Y coordinates of the paw 
across approximately 5,000 frames – 
recording at 2,000 fps with total behavior 
time from stimulus application to paw lift 
and return back to the floor being 
approximately 2-3 seconds. Using machine 
learning algorithms embedded within the 
ProAnalyst motion tracking software, we 
manually labeled the center of the 
stimulated paw in each video and the 
machine automatically tracked the paw 
throughout each additional frame (Figure 
2A-X) (see Movie 1). While observing the 
automated paw trajectory patterns we 
noticed that stereotyped motor sequences 
defined the movement away from the four 
stimuli, regardless of strain background 
(Figure 2A-X). For example, the responses to 
the two innocuous stimuli were typically up-
down C-shaped movements (Figure 2A-X). 
Conversely, the responses to the two noxious 
stimuli were typically more elaborate 
movements,  often accompanied by orbital 
tightening of the eye, which is a known facial 
feature of intense pain (Figure 2A-X) [20]. In 
the majority of tested strains, we also noticed 
that the paw trajectory pattern in response 
to a weakly painful stimulus (light pinprick) 
often resulted in a figure-eight like sequence 
that may point towards a shared 
sensorimotor neural circuit that governs how 
animals respond to weakly painful stimuli 
given their body posture and space 
constraints (Figure 2A-X).  

Next, using the AKR/J strain we used 
a deep learning-based pose tracking 
algorithm called Social LEAP (in 
preparation, based on[14]), to predict mouse 
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toe and mid-paw positions during 
somatosensory behaviors recorded at high 
speed (Figure 2Y-Z¢). Our mouse paw-
tracking model was generated from a small 
training set of video frames collected from 
the four assays (~9.5% of video frames per 
assay).  In general, the paw trajectory 
patterns with Social LEAP resemble those of 
ProAnalyst, and the software package we 
describe below is compatible with automated 
tracking data from either tool. Taken 
together, our ability to detect clear 
qualitative distinctions in paw movements 
with automated tracking approaches, gave 

us confidence that we could use 
spatiotemporal data of paw position to 
automatically extract features that may be 
useful in determining the mouse pain state.   
 
Development of software to 
automatically score pain behavioral 
endpoints  
We developed software to systematically 
quantify seven pain-relevant features of the 
paw position time series based on existing 
measurements in the literature. Maximum 
paw height, lateral velocity, vertical velocity, 
and the total distance traveled by the paw, 
were all computed based on a polynomial 
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smoothing (Savitsky-Golay filter of order 3) 
of the original paw position time series. 
These four features were computed for two 
different windows of the paw trajectory time 
series: the time leading up to the initial paw 
peak (time t* in Figure 3A), and the time 
after the initial paw peak, which we refer to 
as pre-peak and post-peak, respectively. In 
the post-peak time window we additionally 
identified periods of “shaking” and 
“guarding” based on a threshold 
displacement along the principal axis of paw 
movement (Figure 3B and C). We used this 
delineation to quantify the total duration 
spent shaking or guarding as well as the total 
number of paw shakes across shaking 

periods. We refer to this software package as 
PAWS (Pain Assessment at Withdrawal 
Speeds).  
 
Automated scoring of rapid paw 
dynamics and lingering pain behaviors 
With software generated to automatically 
measure paw movement features related to 
the mouse pain state, we plotted and 
analyzed the data across the six mouse 
strains with the four mechanical stimuli 
described above. For plotting the individual 
behavioral endpoints, we separated the paw 
distance traveled measurement into pre-
peak and post-peak distances. To 
standardize across varying units and to 
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appreciate individual deviation from the 
median, we transformed the raw output 
measurements into Z-scores (Figure 4). The 
first readily apparent feature we noticed was 
that all measurements across these six 
strains were interspersed without clear 
separation amongst strains, despite the vast 
differences in paw withdrawal frequencies to 
these same stimuli (Figure 1B). In regards to 
pre paw peak behavioral endpoints, we 
observed a statistical separation in the 
stimulated paw’s velocity on both the X- and 
Y-axes between touch (CS,DB) and pain 
stimuli (LP,HP) as the paw withdrew 
upwards to reach its first highest peak 
(Figure 4A-D). Relatedly, the max height 
that the stimulated paw reached its first 
highest peak, as well as the distance the 
stimulated paw traveled to reach that peak, 
separated out statistically comparing the 
innocuous versus painful stimuli (Figure 4A-
D ). 
 We next plotted the pain behavioral 
endpoints that occur after the paw has 
reached its highest first peak and before the 
animal places its paw back to the surface. 
This time window corresponds to a time 
when the animal engages supra-spinal 
neural circuits and consciously decides 
whether to engage in coping behaviors like 
paw shaking or defensive behaviors like paw 
guarding. Similar to our observations with 
the four pre paw peak pain behaviors, the 
four post paw peak behaviors also show 
statistical separation between our innocuous 
and pain stimuli (Figure 4E-D). Although we 
are not the first research group to observe 
paw shaking and guarding behaviors in 
rodents, this is one of the first technologies to 
automatically score the number and duration 
of these paw movement dynamics. Taken 
together, these automated measurements 
extracted from paw time series data are 
sufficient to objectively separate touch from 
pain in genetically diverse mice.  
 
Statistical modeling with linear 
discriminant analyses separates touch 

versus pain across six inbred mouse 
strains  
We used linear discriminant analysis (LDA) 
to identify a linear subspace of the quantified 
behavioral features that best separates the 
four pain treatments: CS, DB, LP, and HP. 
We did this for two cases: first, restricting to 
just four features quantifiable pre-peak 
(t<t*), and then for all seven features 
quantified  post-peak (Fig. 5A and B, 
respectively). The proportion of the trace 
accounted for by each of the first two 
components of the linear discriminant 
analysis (LD1 and LD2) was 65.6% and 
34.2%, respectively, in the pre-peak LDA, 
and 90.9% and 8.5%, respectively, in the 
post-peak LDA. In both cases LD3 (not 
shown) accounted for < 1% of the trace. For 
both the pre- and post-peak paw features, the 
two non-pain stimuli (CS and DB) cover the 
same parts of the subspace and are largely 
indistinguishable. In contrast, the low and 
high pain conditions (LP and HP) separate 
from the non-pain stimuli and also separate 
from each other in this subspace. 
 
The relative importance of each standardized 
(mean subtracted, variance scaled) 
behavioral feature was quantified as the 
loading of that feature on a given axis of 
discrimination. The feature importance for 
the first two linear discriminant dimensions 
(Figure 5C and D, respectively) indicate that 
relatively simple properties of the paw 
trajectory, such as the maximum height of 
the paw and the total distance traveled 
before the paw returns to resting position, 
contribute substantially to separating pain 
from non-pain (LD1). The number of paw 
shakes further contributes to the separation 
of low versus high pain categories in LD2. 
 
Model performance was evaluated by leave-
one-out (LOO) cross-validation for individual 
mice (Figure 5E), and by leave-one-strain-out 
for strains (Figure 5F). We compared the pre- 
and post-peak paw LDAs to (1) an LDA based 
on automatic feature extraction, using 23 
features obtained from a generic method to 
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inferring features from variability in the 
time series themselves (see Methods); and (2) 
a null model that assigns pain classes 
according to their probability in the training 
data, without reference to measured 
behavioral features. For prediction, CS and 
DB were treated as a single “non-pain” class, 

while LP and HP were kept separate, 
resulting in three classes: non-pain, low pain, 
and high pain. For predicting the pain state 
of a given mouse, or all the mice in a strain 
(generalizing across strains), post-peak paw 
features consistently performed best.  The 
eight behavioral features we defined and 
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extracted from paw-tracked videography 
significantly outperform both a random null 
model as well as the 23 features identified 
automatically from the same data, in terms 
of cross-validated ability to discriminate pain 
stimulus.   
 
Validation of the automated tracking 
and scoring approach with new mouse 
lines 
In the process of testing the six inbred lines 
described above, we tested an additional two 

strains that appeared to have atypical 
behavioral responses to our four 
somatosensory stimuli. The first of these two 
strains, 129S1, appeared to have a pain 
hypo-sensitivity phenotype, responding to 
both innocuous and noxious mechanical 
stimuli with the same basic up-down paw 
trajectory pattern, and not the elaborate paw 
withdrawal pattern typically observed with 
noxious stimuli (Fig 6A-D) (compare to 
Figure 2A-X). Prior studies using traditional 
unidimensional assays to compare the 
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baseline mechanical pain sensitivity of 
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different 129 sub-strains to C57BL/6J mice 
revealed mixed results with some tests 
showing no differences between the strains, 
and either greater or reduced sensitivity to 
pain [21-23]. The second apparent outlier 
strain were the SJL mice, where we observe 
the opposite of what we found in 129S1, 
where this strain appears hypersensitive to 
mechanical pain – responding to the soft 
dynamic brush as if it were pinprick and 
having even more elaborate paw withdrawal 
stimuli (Figure 6E-H). The outlier patterns 
of these two strains were observed when 
scoring the individual eight pain behavioral 
endpoints (Table 1). Consistent with this 
finding, when we perform our LOO 
correlation testing to determine how 
accurate our training is from LDA modeling, 
for both 129 and SJL strains, our confidence 
in predicting the stimulus the animal 
received based on its response is low, proving 
the nature of the outlier phenotypes in these 
mice (Figure 6I). These data reveal that our 
automated pain assessment platform is 
capable of detecting individual strain 
differences in susceptibility to mechanical 
pain.   
 
PAWS reliably detects motivational 
changes in pain perception following 
chemogenetic brain circuit 
manipulation 
As another proof-of-principle to validate our 
ability to automatically measure acute 
mechanical pain, we next asked if our 
platform could reliably measure 
hypersensitivity to the four somatosensory 
stimuli used above during chemogenetic 
activation of a neural ensemble encoding 
pain. To accomplish this, we focused our 
attention on manipulating pain circuits in 
the BLA[19]. Briefly, we used the activity-
dependent transgenic TRAP2 mice (Fos-
FOS-p2A-iCre-ERT2) to gain permanent 
genetic access to BLA neurons that are 
responsive to a noxious pin prick to the left 
hind paw. The transgenic mice in 
combination with an AAV expressing an 
excitatory DREADD (AAV5-hSyn-FLEx-

hM3q-mCherry) allows the specific 
expression of the DREADD only in neurons 
responsive to the noxious pin prick stimulus 
(painTRAP2hM3; Figure 7A). We confirmed 
bilateral mCherry-labeled DREADD 
expression in the BLA with this strategy 
(Figure 7B,C). We first performed our 
analysis on Cre-negative control animals and 
observed no effects of CNO injections on 
behavior. Next, we performed our behavioral 
analysis on painTRAP2hM3 mice at baseline (-
CNO) and after activation of the BLA pain 
ensemble (+CNO) (Figure 7). Because 
activation of the BLA pain ensemble resulted 
in unilateral spontaneous guarding pain 
behaviors, we waited until mice were calm, 
not moving, and had all four paws on the 
surface before applying our sensory stimuli. 
We applied a cotton swab and dynamic brush 
on one day, and a light and heavy pinprick on 
a second day. We observed that the PAWS 
measurements at baseline (-CNO) mirrored 
those that we observed with the six strains 
described above, showing separation 
between innocuous and noxious stimuli. 
Conversely,  with activation of the BLA pain 
ensemble in painTRAP2hM3 mice  (+CNO), we 
noticed increased separation with the post 
paw peak pain measurements when 
delivering the heavy pinprick stimuli, most 
noticeable in the combined shaking/guarding 
measurement (Figure 7I). When we used 
LDA for statistical separation that combined 
our 8 behavioral endpoints, we clearly 
observe the emergence of a group of mice 
experiencing a heightened pain state in 
comparison to the other groups of mice 
(Figure 7L-O). Thus, PAWS automatically 
measures increased mechanical pain 
aversive responsiveness to noxious stimuli 
during chemogenetic activation of the BLA 
pain ensemble.  
 
DISCUSSION  
Here, we describe an automated approach to 
quantify the most salient behavioral 
endpoints following mechanical stimulation 
of the mouse paw for separating responses 
according to stimulus intensity. Scoring the 
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paw withdrawal reflex to a natural stimulus 
is the most commonly used assessment 
method in pre-clinical rodent models with 
yes/no responsiveness used as a proxy for 
inferring pain states. While this methodology 
for measuring pain in rodents is not 
fundamentally flawed, it lacks resolution – a 
limitation that can now be overcome with 
advances in videography and automated 
tracking. Here, by automatically tracking 
paw dynamics at sub-second speeds with 

high-speed videography coupled with 
machine learning approaches, we reveal 
stereotyped trajectory patterns in response 
to innocuous versus noxious stimuli 
spanning genetically diverse mice. With an 
accurate pinpoint of the paw at high 
spatiotemporal resolution, a freely available 
software package we term PAWS 
automatically quantifies eight behavioral 
endpoints that help to define the mouse pain 
state.  Notably, the eight behavioral features 
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we defined outperform both a random null 
model as well as 23 unsupervised features 

extracted from the same data, in terms of 
their ability to discriminate pain stimuli. 
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Thus, although machine learning is critical 
for the intermediate task of paw tracking, 
supervised feature definition still 
outperforms unsupervised learning for 
discriminating pain stimuli, and it has the 
benefit of quantifying pain response in terms 
of intuitive behaviors (such as paw shakes, 
guarding, etc).  Demonstrating the 
robustness of the platform, we identify two 
outlier mouse strains that display reduced or 
heightened pain sensitivity, and we 
accurately measure a heightened pain state 
when we simultaneously activate pain in the 
periphery and brain using chemogenetic and 
natural stimuli.  
 Behavioral neuroscience in model 
organisms is undergoing a renaissance with 
the emergence of new tools to automatically 
track and measure behavior [11]. This 
renaissance is coincident with many in the 
research community questioning the 
robustness of rodent models of pain, 
addiction, depression, anxiety, and other 
neuropsychiatric disorders. In kind, many 
researchers are taking steps backwards to 
first properly understand the component 
parts of a complex behavioral sequence 
before proceeding to identify the neuronal 
correlates that drive those motor patterns. 
Both supervised and unsupervised machine 
learning algorithms are now able to follow 
unlabeled individual limbs on an 
experimental animal and automatically 
define behaviors of interest [12, 14, 15, 24-
26]. Although the majority of these tools have 
yet to be adopted in mass by the pain 
research community, some of this technology 
is already in use by pain researchers. For  
example, the automated grimace scale 
developed by the Mogil and Zylka labs uses a 
convolutional neural network trained with 
6,000 facial images of mice in “pain” or “non-
pain”,  to make accurate predictions of the 
mouse pain state in novel datasets [27]. The 
automated grimace scale still requires 
additional customization to assess rodents of 
different coat colors and to measure chronic 
pain. Tools like the automated grimace scale 
that focus on the face, could be combined 

with the automated pain assessment 
platform described here that focuses on the 
paw, for a comprehensive picture of both 
evoked and spontaneous behavioral 
responsiveness.   
 Here, with our platform we observed 
both homogeneity in behavioral responses 
across six genetically distinct mouse lines, as 
well as two outlier strains with responses 
that mapped outside the range of those six.  
A wealth of prior literature demonstrated 
that individual differences in responsiveness 
to pain in both mice and humans, are driven 
in part by allelic variation in genes 
important for pain processing [28, 29]. In 
regards to the mouse, studies carried out 
twenty years ago testing pain sensitivity 
across 11 inbred lines using 12 behavioral 
read-outs, revealed that depending upon the 
sensory modality tested, and whether the 
test was performed before or after injury to 
the somatosensory system, genotype 
appeared to influence mouse pain behaviors 
[30]. A meta-analysis from ten years ago 
described over 400 papers from mouse pain 
research that implicated ~350 genes in pain 
and analgesia [31]. However, with the 
relatively limited resolution of some 
conventional pain behavior assays, it 
remains unclear how reliable some of these 
studies are and which potential target genes 
merit further development as novel 
analgesics. This assertion is underscored by 
the fact that only a handful of targets that 
have shown promise in rodents, have made it 
to the clinic as novel therapeutics, causing 
many to question the robustness of the 
animal models used in pain testing [32, 33]. 
Here, we uncover a pain hypo-sensitive 
phenotype in 129S1 mice where the animals 
respond to pinprick stimuli similar to a soft 
brush or cotton swab. This finding could have 
major implications on transgenic mouse lines 
built using embryonic stem cells from 129S1 
mice, especially if sufficient backcrossing to 
C57BL/6J is not performed. In other words, 
a pain phenotype may be mistakenly 
attributed to knocking out a specific gene, 
while the observed results may be the result 
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of contamination by lingering DNA from the 
129S1 donor strain.  

Conversely, we observe a phenotype 
in the opposite direction, where SJL mice 
respond to a soft brush as if it were a 
pinprick. To the best of our knowledge, this 
is the first report of a pain hyper-sensitivity 
phenotype for SJL mice at baseline. Of note, 
SJL mice are known to be an aggressor 
mouse line and even in our studies some 
animals had to be removed from testing due 
to excessive fighting between cage mates 
[34]. Therefore, future studies are necessary 
to determine if the genetic repertoire that 
makes these mice aggressive also contributes 
to their heightened pain responses. Together, 
with a more precise tool to measure acute 
mechanical pain at baseline, we can begin to 
use this platform as a behavioral screening 
tool followed by subsequent genetic mapping 
approaches.  
 As a proof-of-principle to test the 
robustness of our platform, we demonstrate 
that we can chemogenetically activate the  
BLA pain ensemble and detect 
hypersensitivity to peripheral stimuli. In 
addition to confirming the precision of our 
technology, these experiments raise an 
intriguing biological question: what is the 
emotional and sensory experience of 
activating pain-responsive neurons without 
a peripheral injury? Would tonic activation of 
this BLA pain ensemble be comparable to 
human experiences of chronic pain? Further 
studies to examine these questions are 
ongoing.  

In summary, we have developed a 
rapid and user-friendly automated pain 
assessment platform for measuring 
mechanical pain in mice. Since mechanical 
stimulation of the rodent hind paw remains 
the most common method to measure pain in 
mice, the tools described here, with the 
addition of a high-speed camera, are fully 
compatible with the setups that most labs 
currently use. As such, we do not foresee 
major hurdles in wide adoption of this 
methodology. To increase our fundamental 
understanding of the neurobiology of pain, 

and to translate our basic science findings in 
pain research to improved patient outcomes, 
the pain measurement tools in rodents must 
be robust. The platform described here 
should aid in that pursuit.  
 
FIGURE LEGENDS 
 
Figure 1. Automated pain assessment 
workflow in comparison to traditional 
unidimensional pain scoring. a, 
Workflow pipeline in following order 
consisting of: 1) high-speed videography of 
freely behaving mice, 2) machine/deep 
learning based approaches for automatic 
tracking of the stimulated paw, 3) PAWS 
software for automatic quantification of 
defined pain behavioral endpoints, 4) 
statistical modeling with LDA for separation 
of touch versus pain on trial-by-trial basis. b, 
Traditional scoring focused on paw 
withdrawal frequencies to four mechanical 
stimuli: cs=cotton swab, db=dynamic brush, 
lp=light pinprick, hp=heavy pinprick. N=10 
mice per strain. Images from Jackson 
laboratories.  
 
Figure 2. Automated paw tracking with 
high-speed recording of behavior. a-x, 
ProAnalyst machine learning based paw 
tracking. y-z¢, Social LEAP deep neural 
network based paw or toe tracking. All still 
images represent a single frame of ~5,000 
total frames. Green and blue lines display 
paw trajectory patterns during the entire 
behavior. N=10/mice per stimulus and 
images shown are representative of each 
strain. 
 
Figure 3. Quantification of behavioral 
features for mouse pain state. a, Raw 
paw positions (x,y) measured in the camera 
reference frame (anterior/posterior 
displacement and vertical height, 
respectively) as a function of time, with the 
time of first peak in paw height, t*, marked 
in red. b, The principal axis of paw 
displacement in a moving time window, 
shown as a function of time. c, Displacement 
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in the principal axis moving reference frame 
was used to quantify instances of paw 
shaking in terms of sequences of 
displacements above a given threshold 
relative to the maximum paw height 
displacement. 
 
Figure 4. Automated measurement of 
pain behavioral endpoints across 
strains with new software PAWS. 
Measurements are converted to Z-score to 
reveal deviation from mean of individual 
measures and to standardize units across the 
eight measures. a-d, Pain measurements of 
the stimulated paw from lift to max height. 
e-h, Pain measurements of the stimulated 
paw from max height to paw return. 
N=10/mice of each strain given each stimulus 
once. Statistical significance was computed 
by comparing CS+DB versus LP+HP with 
Wilcoxon matched-pairs signed rank test. ** 
represents p-value ≤ 0.01. **** represents p-
value ≤ 0.0001. On the violin plots, black 
horizontal lines represent quartiles and red 
horizontal lines represent the median. 
 
Figure 5. a, First two linear discriminant 
dimensions that best separate the four pain 
states studied: CS, DB, LP, and HP, for pre-
peak features only. Ellipses show Gaussian 
95% confidence region for each pain state. 
Univariate kernel density estimates for LD1 
and LD2 decomposed by pain state are 
shown at top and right, respectively. b, Same 
as a but for post-peak paw features only. c, 
Weights assigned to standardized (mean 
subtracted, variance scaled) behavioral 
features on the first linear discriminant 
dimension (LD1) of the post-peak paw 
features LDA. d, Same as c but for LD2. e, 
Leave-One-Out (LOO) cross-validation 
performance of the pre-peak and global 
LDAs, compared to automatically generated 
features via SVD, and a null model, for 
individual mice. f, Same as e, but leaving out 
an entire strain (colors) or an equivalent 
number of mice chosen uniformly at random 
(gray). 
 

Figure 6. Automated pain assessment 
platform uncovers two outlier strains. 
a-d, ProAnalyst tracking showing 129S1 
mice responding with similar up-down paw 
lifts to all stimuli, both innocuous and 
noxious. e-h, ProAnalyst tracking showing 
SJL mice have pain-like response to dynamic 
brush and heightened pinprick responses. i, 
Leave-out-one (LOO) cross validation 
performs poorly in predicting the stimulus 
received in 129 and SJL mice because their 
responses typically map outside of the 
normal range of the other 6 strains. 
 
Figure 7. Pain hypersensitivity with 
chemogenetic activation of the BLA 
pain ensemble automatically captured 
via PAWS. a, Schematic to permanently tag 
pain-active neurons in the BLA with an 
excitatory DREADD in transgenic 
painTRAP2hM3 mice B.  4X image of specific 
and robust expression of m-Cherry-labeled 
excitatory DREADD bilaterally in the BLA. 
c 20X image of BLA from b. Scale bars 
represent 500µm. d-g, Automatic 
measurement of pre paw peak features 
comparing mice at baseline (-CNO) to mice 
administered CNO. (H-K) Automatic 
measurement of post paw peak features 
comparing mice at baseline (-CNO) to mice 
administered CNO. Stimulus abbreviations 
same as above. Statistical significance was 
computed with student’s t-test. *represents 
p-value ≤ 0.05. ** represents p-value ≤ 0.01. 
l-o, Linear discriminant analysis (LDA) 
using similar factor loadings as described in 
Fig.5 reveals separation of innocuous vs. 
noxious stimuli at baseline (-CNO) and a 
further segregation of the HP group after 
CNO, only when using all 8 paw features. 
 
METHODS 
 
Mouse strains 
 
Mice for behavior testing were maintained in 
a barrier animal facility in the Carolyn 
Lynch or Translational Research Laboratory 
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(TRL) buildings at the University of 
Pennsylvania. The Lynch and TRL 
vivariums are temperature controlled and 
maintained under a 12 hour light/dark cycle 
(7am/7pm) at 70 degrees Fahrenheit with ad 
lib access to food (Purina LabDiet 5001) and 
tap water. All procedures were conducted 
according to animal protocols approved by 
the university Institutional Animal Care and 
Use Committee (IACUC) and in accordance 
with National Institutes of Health (NIH) 
guidelines. C57BL6/J, A/J, 129S1/SvlmJ, 
Balb/cJ, DBA/1J, AKR/J, CBA/J, SJL/J, and 
TRAP2 mice (Fos-FOS-2A-iCre-ERT2)  mice 
were all purchased from Jackson 
Laboratories.  
 
High speed imaging 
Mouse behaviors were recorded at 2000 
frames per second (fps) with a high-speed 
camera (Photron FastCAM Mini AX 50 
170K-M-32GB - Monochrome 170K with 
32GB memory) and attached lens (Zeiss 
2/100M ZF.2-mount). Mice performed 
behavior in rectangular plexiglass chambers 
on an elevated mesh platform. The camera 
was placed at a ~45° angle at ~1-2 feet away 
from the Plexiglas holding chambers on a 
tripod with geared head for Photron AX 50. 
CMVision IP65 infrared lights that mice 
cannot detect were used to adequately 
illuminate the paw for subsequent tracking 
in ProAnalyst. All data were collected on a 
Dell laptop computer with Photron FastCAM 
Analysis software. 
 
Somatosensory behavior assays 
 
Mice were habituated for a minimum of 5 
days, for one hour each day, in the Plexiglas 
holding chambers before testing commenced. 
During baseline, mice were tested in groups 
of five and chambers were placed in a row 
with barriers preventing mice from seeing 
each other. On testing day, mice were 
habituated for an additional ~10 minutes 
before stimulation and tested one at a time. 
Stimuli were applied through the mesh to the 

hind paw proximal to the camera. Testing 
only occurred when the camera’s view of the 
paw was unobstructed. Mice only received 
one stimulus on a given testing day (cs, db, 
lp, or hp) and were given at least 24 hours 
between each stimulus session. Stimuli were 
tested from least painful to most: cotton 
swab, dynamic brush, light pinprick, heavy 
pinprick.  Cotton swab tests consisted of 
contact between the cotton Q-tip and the 
hind paw until paw withdrawal. Dynamic 
brush tests were performed by wiping a 
concealer makeup brush (e.l.f.TM, purchased 
at the CVS) across the hind paw from back to 
front. Light pin prick tests were performed 
by touching a pin (Austerlitz Insect Pins®) to 
the hind paw of the mouse. The pin was 
withdrawn as soon as contact was observed. 
Heavy pinprick tests were performed by 
sharply pressing this pin into the paw so that 
it was pushed upwards, without the breaking 
the skin barrier. The pin was withdrawn as 
soon as approximately 1/3 of the pin’s length 
had passed through the mesh.  
 
Automated paw tracking 
We used ProAnalyst software to 
automatically track hind paw movements 
following stimulus application. This software 
allowed us to integrate automated and 
manually scored data, possible through the 
‘interpolation’ feature within ProAnalyst. We 
were able to define specific regions of interest 
(paw), track, and generate data containing ‘x’ 
and ‘y’ coordinates of the paw through time, 
as well as velocity, speed, and acceleration 
information. In a subset of videos, additional 
manual annotation was performed for 
increased accuracy. For deep learning-based 
paw tracking with the Social LEAP 
algorithm, we pseudo-randomly chose a 
small set of training frames from each video 
and hand-labelled the paw and  toe. We 
trained Social Leap to predict toe and paw 
positions in unlabeled video frames (>~90% 
of total video frames). To generate 
trajectories, we overlaid the inferred x, y 
positions of the toe and paw in each video 
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frame on a single still image corresponding 
to the apex of the mouse’s paw during the 
assay. 
 
Development of PAWS software to 
quantify pain behaviors 
 
Behavioral features were extracted from raw 
paw position time series in an automated and 
standardized procedure. First, the start and 
end of paw movement (paw at rest on the 
ground) were identified, and analysis was 
restricted to this time window. Peaks in paw 
height were then determined based on 
Savitsky-Golay smoothed estimates of paw 
velocity, and the first peak identified. The 
time of the first peak (designated t*) was 
used to separate pre-peak behavioral feature 
calculations from post-peak calculations. To 
differentiate shaking from guarding in the 
post-peak period, we constructed a moving 
reference frame based on the principal axis 
of paw displacement across a sliding window 
(0.04 seconds in duration) for each time 
point, and identified periods of consecutive 
displacements above a specified threshold 
(35% of maximum paw height) as periods of 
shaking. Note that in the construction of the 
moving reference frame the principal axes of 
variation were recovered via PCA, which is 
not invariant to the sign of the recovered 
axes. Since displacement is measured over 
time it is sensitive to reversals in sign along 
the axis we measure it. We therefore ensured 
consistency by using the axis direction 
minimizing the angular deviation from the 
axis recovered at the previous time step. 
 
Automated behavioral feature selection 
method using SVD 
As a point of comparison for the behavioral 
measures quantified as pre- and post-peak 
paw features using common measures from 
the literature, we employed a simple, 
unsupervised machine learning technique to 
generate candidate behavioral features 
based directly on variation in the paw 
trajectory timeseries themselves. Time series 
were aligned by the time of the first peak in 

paw height, t*, resulting in time series of 
4000 discrete measurements per paw 
dimension (sampled at 2000fps). This 
representation was then compressed by a 
factor of 87.5% by retaining only the first 500 
coefficients per spatial dimension of its 
discrete cosine transform (DCT-II), which 
nonetheless maintained paw position 
accuracy to within 1.5 and 0.11cm RMSE in 
x (anterior/posterior) and y (height), 
respectively. A singular value decomposition 
of this compressed description (both x and y 
dimensions combined per time series) was 
used to load the correlated variation within 
time series onto a small number of 
dimensions ordered by decreasing variation 
capture. The number of SVD dimensions 
ultimately retained, 23, was determined by 
choosing the dimensionality that maximized 
the LDA probability correct under strain 
leave-one-out cross-validation. 
 
Drugs 
4-hydroxytamoxifen (Hello Bio, #HB2508) 
prepared in Kolliphor EL (Sigma, #27963), 
Clozapine-N-oxide (Hello Bio, #HB6149), and 
0.9% sodium chloride (Sigma, #S3014). 
 
Viral Reagents 
For chemogenetic manipulation of BLA pain-
active neurons, we intracranially injected 
200 nL of AAV5-hSyn-DIO-hM3D(Gq)-
mCherry (Addgene, titer: 7 x 1012) into both 
the left and right BLA at coordinates AP: -1.4 
mm, ML: ±3.1 mm, DV: -4.2. 
 
Stereotactic injections and surgical 
procedures 
We conducted surgeries under aspetic 
conditions using a small stereotaxic 
instrument (World Precision Instruments). 
We anesthetized mice with isofluorane (5% 
induction, 1-2% maintenance) during the 
entire surgery and maintained body 
temperature using a heating block. We 
injected mice with a beveled 33G needle 
attached to a 10 µL syringe (Nanofil, WPI) for 
delivery of 200 nL of viral reagent at a rate 
of 40 nL/min. After viral injection, the needle 
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remained at the injection depth for 10 
minutes before slow withdrawal over 2 
minutes. After surgery, we maintained the 
animal’s body temperature using a heating 
pad. 
 
Targeted recombination in active 
populations (TRAP) of BLA pain 
ensemble 
Transgenic female TRAP2 mice were injected 
with an AAV at P46-73. Two weeks after 
injection, mice were stimulated with a 
noxious pin prick on the left hind paw every 
30 seconds for 10 minutes. One hour later, 
mice were injected with 4-hydroxytamoxifen 
(4-OHT) to induce genetic recombination. 
Eight weeks following 4-OHT 
administration, behavior of mice was 
examined. Mice were sacrificed via 
transcardial perfusion 4 months after viral 
injections. Brains were collected and 
sectioned at 50 µm on a cryostat. Tissue was 
mounted and imaged on a fluorescent 
Keyence microscope. 
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