
1

“Sulcus Sink”: A Compact Binary and
Semi-Automated Inverse Dijkstra-based System

for Describing Sulcal Trajectories
Rudolph Pienaar1,3†, Christian Hasselgrove4, Kiho Im1,3, David Kennedy4, P Ellen Grant1,3, Denise Boriel2,

Lena Tang5, Nikos Makris2,3

† Corresponding author: Rudolph Pienaar,rudolph.pienaar@childrens.harvard.edu, +1-781-640-1096
1 Children’s Hospital Boston, Radiology Department, 300 Longwood Ave, Boston, MA, 02115
2 Center for Morphometric Analysis, Massachusetts General Hospital, Neurology Department, 149 13th Street, Charlestown, MA, 02129
3 Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115
4 Child and Adolescent NeuroDevelopment Initiative (CANDI), Department of Psychiatry, University of Massachusetts Medical School Biotech One,

Suite 100 365 Plantation Street Worcester, MA 01605
5 Respiratory Acute Care Unit, Department of Anesthesia, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02115

Abstract

We present a description of a system that uses a compact binary representation to describe and trace sulci on a reconstructed
human cortical surface, based on a set of human-generated targets. The inputs to the system were manually created on a
training set of 20 normal subjects (11 females, 9 males) with ages 22 – 40 years. T1 weighted MPRAGE images were collected
on a Siemens 3T Trio scanner, with TR/TE = 2530/3.3, matrix = 256x256, FOV = 256mm, slice thickness 1.33mm. The
resultant images were reconstructed with Freesurfer, and 10 sulci on each hemisphere were traced by an expert human operator
and independently assessed for accuracy. Presented with these input trajectories in its training phase, the system attempted to
determine a compact binary feature vector of each sulcus on each subject using as descriptor a binary parametrized function
of several surface-geometry variables (such as mean curvature, sulcal depth, edge length, etc.). This function was optimized
in a supervised learning fashion using a Dijkstra-based graph theory formulation, in which the binary weights were used to
define graph edge costs. In the setup phase, the system was presented with sulcal trajectories already defined on surfaces,
and then adjusted its parametrized weights in a binary fashion to minimize differences between the training input path and its
Dijkstra-generated output path. Once the setup phase was complete and sulci had been described in a per-sulcus, per-subject
manner, we generalized the per-sulcus description across all the subjects to construct a template binary word for each specific
sulcus. The performance of the system for each subject and each sulcus, and for each template sulcus group was measured
against the original human reference in both a quantitative and qualitative manner. Individual subjects generally showed
very good optimization to their manually traced training samples across all sulci, with 91% average overlap within 4mm
of the human target. Generalized group results, as expected, showed less overlap with the original human targets, but still
performed on average with 80% overlap. Quantitatively, the group results were nonetheless for the most part quite acceptable
to an independent human evaluator. The parametrized binary weight description that drives the Dijkstra path optimization is
presented as a mechanism to succinctly and compactly describe individual human sulci and groups of sulci.
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I. I NTRODUCTION

THIS paper presents a description of a methodology called “sulcus sink” that has been developed at the Massachusetts
General Hospital’s (MGH) Center for Morphometric Analysis (CMA). Sulcus sink attempts to describe sulci using a

compact binary parametrized description. Presented with a human generated reference sulcal trace, the method searches in
a binary fashion through a parametrized weight space of graph edge costs and uses Dijkstra’s algorithm to optimize the
sulcal traces that result from a given weighting. The system attempts to find a weight parametrization that minimizes the
error between the human reference and Dijkstra-generated trajectories.

This methodology arose from the very practical need to aid human operators as they manually traced sulcal lines on
reconstructed surfaces. The operational use of the system would allow human operators to simply and relatively quickly
select sulcal start and terminal points on a reconstructed surface. The sulcus sink system, trained on a cohort of human
generated references, would complete the sulcal trace, based on a generalization of earlier optimization analyses.

The purpose of the system is therefore not to automatically extract sulci, but rather to attempt to capture the relative
weighting that human operators might place on components of cortical geometry as they generate manual traces, and encode
this information in a compact binary word. An important implication of such a weight parametrization description is that it
allows us to attempt to propose unbiased sulcal-specific descriptions that have been generalized from an underlying set of
per-subject and per-sulcus optimal parametrization. Given such a binary parametrization that weighs graph edges between
vertices of the reconstructed cortical mesh, the optimization engine searching through this graph-based representation
naturally lends itself to processing by Dijkstra’s algorithm [7]. The system is considered “semi-automated” in that it does
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require, for a given sulcus, start and terminus points. A complete description, therefore, is the binary parametrization, sulcus
start and terminus points, and Dijkstra’s algorithm on resultant edge costs.

While the emphasis of the paper is on the technical and operational aspects of the methodology itself, preliminary results
on the semi-automated tracing of sets of twenty sulci on twenty subjects is also presented. Based on the characteristics of
individually optimized sulcal traces, we also attempt to generalize over all similar sulci in all the subjects.

The automatic (or semi-automatic) tracing of sulci on the cortical surface is useful in a number of neurological
applications, from surgical planning to cortical parcellation and morphometric analysis [10, 25, 16, 26, 9, 20], brain
registration [13] and exploring brain development during pathologies [39].

A large volume of literature seeks to address the problem of automatically detecting sulci based around geodesics
generated by various methods – from dynamic programming [17] using local shape measures (but still requiring the
manual selection of sulcal start and end points), through the optimal calculation of geodesics on triangulated mesh surfaces
[2] to generate isotropic geodesics. Such geodesics have also been computed by a skeleton extraction approach that solves
an Eikonal equation [35] – itself a special type of a Hamilton-Jacobi equation [36]. A refinement to such isotropic geodesics
has recently been extended to anisotropic conditions which are more highly adaptive to the anisotropic nature of cortical
surface shape and which can lead to sulcal lines lying more accurately within sulcal valleys [34]. Statistical methods based
on mean curvature values have also been considered [38] – these require surface registration and statistical training sets.

Geodesic approaches are intuitively appealing since they map to our understanding of the geometry of surfaces. Indeed, a
geodesic is by definition a locally length minimizing curve. However, in order to better explore a more abstract parametrized
description (including not only curvature, sulcal depth, and distance but also products of the same), we believe a more
graph-theoretical approach wherein edge weights can be arbitrarily (and possibly less intuitively obviously) defined affords
us better representational power. Such a graph-theoretical approach is ideally suited to Dijkstra’s algorithm.

The geodesic and statistical approaches for the most part attempt to solve or model geometric properties using a relatively
small subset of available geometric properties – often the mean curvature. Extending these approaches to less intuitive
geometric properties or considering the behavior of these systems under such circumstances is often not explored. Our
approach here is to explicitly formulate our problem from the perspective of generating a compact binary weight description
of multiple geometric properties, and to use this formulation as a descriptor of a given sulcus.

Using Dijkstra’s algorithm [7] in this manner as an optimizer for tracking human-traced sulcal paths is a relatively novel
approach. In the context of cortical parcellation, Dijkstra’s algorithm has previously been used to calculate lengths on
the cortical surface [3], and also as a basis for exploring geometric invariants in Hurdal’s analysis in classifying cortical
sulci [22]. Conceptually, there are some broad similarities between our approach and Hurdal’s, however Hurdal attempts
to describe sulci using invariant shape descriptors such as the writhe number, ropelength, and moment-based measures of
a sulcal trajectory curve. Our work here parametrizes sulci not as complete curves, but rather as a vector of weights that
define a cost function to a Dijskstra-based path search. The weight vector uses features calculated from the reconstructed
cortical surface, primarily the mean curvature (using methods of discrete geometry [23][37][8]), distance between vertices,
direction to end-point, etc.).

In some respects, this work touches on issues relating to the complexity of folded cortical surfaces. Several studies have
previously attempted to quantify folding and/or complexity. Fractal dimension analysis has often been used as a technique
for measuring “complexity” (14; 18; 15), as well as folding measures derived from cortical thickness analysis ( 41; 40) and
metric distortions that arise from registering surfaces to an average template [42]. Although fractal measures are interesting
in the abstract, we find them difficult tools to use as a means of understanding the topology of cortical folding, and hence
sulcal paths. Numerous studies based on cortical thickness employ regional shape measures based on functions of mean
curvature.

Other means of describing sulci using Mangin’s “sulcal roots” have also been proposed. These “sulcal roots” correspond
to the first folding locations during antenatal life (4; 5; 27; 28; 29; 33; 1) and are objects derived from mean curvature
minima and saddle points. The highly variable pattern of folding noted across adult brains can be recovered from successive
scale-space analysis. Folding patterns are decomposed and their core embedded patterns simplified. Conceptually, Mangin’s
work constructs “tree-like” structures tracing the development of simple folds to complex pattern at different scales. Our
work is a complement to this approach. Sulcal roots provide a means for logically constructing how simple folds become
complex patterns without focusing on the detailed curvature characteristics of the final patterns. Our work is less concerned
with the exact location of the maximal sulcal depth and its branching pattern, and more focused on the surface topology
which we analyze using several curvature functions.

Additional studies have attempted to consider the intrinsic geometry of the cortex from a more purely mathematical
and computational basis [12], but followup studies in a similar vein using contemporary computing power have not been
pursued. Moreover, these studies have focused on adult, not pediatric or developing newborn brain surfaces.

More recently, spherical wavelets have also used to quantify cortical folding [43, 31]. Development of surface folding
was modeled through increasing wavelet powers and these wavelet coefficients were fitted to the Gompertz function, a
model of self-limited growth. This allows predictions as the when sulcal trajectories might occur during development, and
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sulcus name abbreviation aspect

calcarine calc medial
central ce lateral

cingulate ci medial
inferior frontal if medial

olfactory ol lateral
post. horizontal ramus of Sylvian phr lateral

parieto-occipital po inferior
pre-central prc lateral

superior frontal sf superior
superior temporal st lateral

Table I
A LIST OF SULCI THAT WERE MANUALLY TRACED, AND SUBSEQUENTLY COST-FUNCTION OPTIMIZED.

also provides measures as to the differential folding rate across developing surfaces. The Gompertz function has been
used successfully in the past to describe brain volumetric growth (30; 19). A more direct methodology based on surface
curvature features and functions of principle curvature has also been proposed to quantify the shape structure of the cortical
manifold [32].

From an organizational perspective, Section II focuses on the experimental methods, describing the data set itself, details
on the segmentation and the reconstruction process, and the sulci that were traced. Section III describes the Dijkstra based
optimization process, and the sulcus sink system itself. The weight vector space, and search methods through this space
are presented, and the creation of general templates from a set of optimal weights is considered. Section IV presents and
discusses the results of the optimization, with specific examples of sulcal correlation to the training templates, as well as
the generalization of the sulcal weights across all subjects. Finally, the paper is concluded in Section V.

II. EXPERIMENTAL METHODS

The Experimental Methods section presents and discusses the main data collection and preparation steps required by the
sulcus sink system. Information specific to the data collection and preparation stream are presented, and the software tools
that process the data are discussed.

A. Data Collection and Surface Reconstruction

For this paper, twenty subjects were imaged. This population was age and gender balanced, with 11 males and 9 females,
and ages ranging from 22 – 40 years old. All images were acquired on a 3T Siemens Trio system, T1 weighted MPRAGE
images with TR/TE = 2530/3.3, matrix = 256x256, FOV = 256mm, slice thickness 1.33mm, and in-plane resolution of
1x1 mm2.

Once collected, these images were processed using Freesurfer [11, 6] and surfaces reconstructed. The gray/white junction
(or simply, “white matter”) surface was used as the primary analysis surface. For each subject, each sulcus of interest was
manually traced on an inflated representation of the white matter surface. FreeSurfer surfaces are tessellated wire-frame
structures, typically consisting of more than 120,000 vertices for an average adult brain and provides an isotropic resolution
of 1 mm3. In this study, the average vertex separation distance between individual mesh vertices was about 0.79mm.
The mesh structure contains vertex-specific data, including: list of neighboring vertex indices; distance (in mm) to each
neighboring vertex; Cartesian coordinates of each vertex in an anatomical space; and surface curvature along each link
connecting a vertex to its neighbors.

Table I enumerates the sulci that were considered on each hemisphere, and Figure II.1 shows some manual traces on an
example subject.

Initially, the system was “trained” in a supervised learning fashion that guided the optimization process. For each sulcus
on each subject under consideration, an expert human operator manually traced the path of the sulcus using projections on
the reconstructed brain surface. These paths were cross-checked against planar slices in a volumetric space to assure that
they lay along anatomically correct parts of the sulcus [24].

III. O PTIMIZATION METHODS

This section describes the actual optimization method used to minimize error between the human specified sulcal path,
and the path generated by the “sulcal sink” software. It will describe the binary weight space, the cost function, and its
overlap with the human reference from a Dijkstra graph-theory perspective.
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Figure II.1. Sulci as traced by a human operator on a sample reconstructed right hemisphere inflated surface. In the top row, on left, is the lateral view.
The sulci shown, from bottom and moving up in a clockwise direction:sf, ce, prc, sf, if, phr. On the top right is the medial aspect, dominated by the
long ci, with the po (above) andcalc (below) at the occipital pole. On the bottom left is the superior aspect showing thece and prc (right to left) and
the sf and if (top to bottom). The bottom right shows theol on left. The same sulci were also traced on the contra lateral hemisphere. The background
coloration of red and green denote curvature values of the white matter surface projected onto the inflated reconstruction. Red curvatures are positive
denoting “inward” depression into the surface; green curvatures are negative, denoting “outward” bulges from the surface.

A. Dijkstra development and weight vector

The reconstructed surface structure generated by Freesurfer is a tessellated mesh that lends itself both visually and
conceptually to a graph-theory based approach and in turn to processing by Dijkstra’s algorithm [7]. Dijkstra’s algorithm is
a greedy algorithm that solves the single-source shortest path problem for a directed graph with non-negative edge weights.
Essential components are (1) the fact that it is a “locally greedy” algorithm, i.e. operates under the assumption that a global
optimum can be found by at each step in an iterative algorithm by choosing the local optimum, and (2) that connections
(or weights) between nodes in the graph are non-negative values of some underlying cost function. Dijkstra’s algorithm
will optimize for the lowest cost path in this connected graph.

Figure III.1 shows a part of the wire-frame mesh for a typical Freesurfer surface reconstruction, and a path running
along this mesh. Given ana priori path connecting two points in a directed graph as shown, we attempt to find an edge

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.02.18.955096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955096


Figure III.1. A path connecting two vertices on a Freesurfer surface mesh. The green and red colored faces denote “outward” and “inward” mean
curvature respectively.

weighting that maximizes the overlap between the given path and a Dijkstra optimization,

In the general case, we can create a cost function that is a multi-variable function that contains the vertex edge, a weight
vector, and a conditional penalty matrix:

Cij = N {Pij , Eij , wl} ∀i, j ∈ S (III.1)

wherePij is a penalty weight matrix,Eij the edge itself between each vertex pointVi and its neighborVj , wl a weight
vector, and surfaceS . The cost function should have low (positive) values for graph edges that are deep within the sulcus,
and higher cost values elsewhere. The connecting edge structureEij contains several important fields, viz:

Eij : cij = curvature between nodesVi andVj

Eij : hij = sulcal height of neighboring nodeVj

Eij : dij = distance between nodesVi andVj

Eij : cmax = maximumcurvature of wholemesh

Eij : hmax = maximum sulcal height of wholemesh (III.2)

Within Freesurfer, both curvature and sulcal height are signed quantities. Since Dijkstra’s algorithm depends on non-
negative cost values between nodes, we re-cast Freesurfer’s signed curvature and sulcal height values to be meaningful
in the optimization context we are attempting to solve. This simply entailed shifting the sulcal displacement and surface
curvature values upwards by the their respective maximum values for the whole surface:

Cij = Eij : {cmax − cij}

Hij = Eij : {hmax − hij} (III.3)

which casts high positive curvatures and sulcal heights close to zero and assigns highly negative curvatures and sulcal
heights high positive values.
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1) Fundamental cost function parameters: For the purposes of this paper, we use three fundamental edge parameters,
the edge length,dij , the edge curvaturecij , and the edge sulcal height,hij . Within a typical Freesurfer reconstruction,
these parameters are all of the same magnitude – hence normalization of these values to some arbitrary reference was not
necessary. Derived parameters are all the multiplicative combinations of these three fundamentals.

2) Locally Greedy Component: Ignoring for the moment the non-locally greedy penalty matrix of the cost function in
Equation III.1, we can express the locally greedy component as a product between the weight vectorwl and a set of edge
parameters:

lCij =
[

w1 w2 · · · wn

]











Eij : p1
Eij : p2

...
Eij : pn











(III.4)

These edge parameters, dropping for notational simplicity theEij : suffix, are described by the seven element set of all
combinations of curvature, sulcal height, and distance, as well as an additional parameter,pie, which is the alignment of
the current edge directioni with the vector linking the current vertex node to the end vertex nodee. The edge parameters
are therefore (with reference to Equation III.2):

pij,ie =
[

[

d c h dc dh ch dch
]

ij
pie

]

(III.5)

where compound parameters imply the product of each underlying parameter, i.e.dc implies distance times curvature.
Note that thepie parameter is in fact1−Pie wherePie is the actual projection of the current edge the linking vector (for
complete co-linear projection,Pie = 1, which we would weigh as zero in a Dijkstra context, while a tangential direction
would have zero projection, and hence a highpie). Our locally greedy cost function is therefore:

lCij =
[

wd wc wh wdc wdh wch wdch wp

]

pT
ij,ie

= wlp
T
ij,ie (III.6)

with the ij subscript denoting the parameters for the edge connecting vertexi andj, and theie subscript denoting the
direction from the current vertexi to the end vertexe. The first component of Equation III.6, the locally greedy edge
weight vectorwl, is the component that we seek to optimize.

3) Penalty Matrix: The non-locally greedy component of the cost function is a penalty matrix is triggered by curvature
transitions along the trajectory path. These arise when strict adherence to the underlying Dijkstra “greedy” behavior is in
fact a bad strategy. This might arise if “bumps” or interruptions are found along a sulcal path - particularly when a gyrus
“interrupts” or crosses over a sulcus. A purely locally “greedy” algorithm might routearound this interruption instead of
continuingover it to reach the remainder of the current sulcus. The non-linear component consists of a penalty matrix that
toggles between unity and a penalty value based on any changes in curvature sign that are encountered along a path,

Pij =











1 0 · · · 0
0 1 · · · 0

0 0
. . .

...
0 0 · · · 1











∀cij < 0











∆w1 0 · · · 0
0 ∆w2 · · · 0

0 0
. . .

...
0 0 · · · ∆wn











∀cij ≥ 0 (III.7)

where the∆wk penalties weigh the original weight vector with an additional per-edge weight to counter the locally
greedy nature of Dijkstra’s algorithm. The final cost function follows from Equations III.1, III.6, and III.7:

Cij = wlPijp
T
ij,ie (III.8)

and has as diagonal penalty vector

diagonal =
[

∆wd ∆wc ∆wh ∆wdc ∆wdh ∆wch ∆wdch ∆wp

]

=
[

1 10 10 10 10 10 1 1
]

(III.9)
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Figure III.2. A series of ISO-regions about each target path were used to evaluate the utility of a candidate weight vector. On the left, the original path
surrounded by its ISO Regions, shown projected on a wire-frame. On the right, a candidate path in blue that attempts to track the original path. Notice
how different parts of the candidate path intersect different ISO Regions. The “fitness” of a candidate path is determined by how many vertex points
along its length are outside successive ISO regions. Thus, an exact match would have 0 points outside all the ISO regions.

Since the penalty diagonal matrix was kept constant throughout, and only the weight vector was variable across a whole
Dijkstra path, we can simplify Equation III.8 as

Cij = wlPpT
ij,ie (III.10)

and the total cost for a given Dijkstra pathP as the sum of all individual edge costs for a given route:

C =
∑

ij∈P

Cij

4) Goodness of Fit: Given the cost function described in Equation III.8, we now need to develop a “goodness of fit”
metric relative to the problem at hand. Referring back to Figure III.1, we are trying to find a weight vector,wl, that when
used by Dijkstra’s algorithm with an edge cost defined by Equation III.8 will yield a path that is co-linear (or very-almost
co-linear) with the original reference path specified.

Consider now Figure III.2 which shows part of a target path about which are successive colored regions. Each region is
one vertex removed from its immediate inner region – hence they are referredISO-regions. The target path occupies the
inner-most region. About it, and at a distance of one vertex removed, is ISO Region 1. ISO Region 1 therefore defines
a strip that is three vertices wide – the inner target path itself, and a single vertex wide strip on either side of this path.
In a similar manner, the single-vertex region about ISO Region 1 defines ISO Region 2, and so forth until ISO Region 6,
which is a ribbon patch 13 vertices wide with the original path at its very center.

Conceptually, the most straightforward “goodness of fit” measure is simply the error distance between our reference
signal and the Dijkstra generated signal. We can computationally simplify this measurement without needing to calculate
distances, but consider instead an ISO region weighted function of the number of mesh vertices of the Dijkstra trajectory
that lie in each ISO region. For a given ISO regionr, we can express a percentage overlap of the Dijkstra path in this
region as

fr =
1

d

N
∑

k=1

Vk where Vk =

{

1 ∀Vk ∈ r
0 ∀Vk /∈ r

(III.11)

whered is the length of the original reference path, andVk is a straightforward membership function of vertexk in the
Dijkstra generated path for ISO regionr about the reference path. Given this overlap fraction for ISO Regionr, we can
express the combined weighted overlap across all regions as
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F =
1

R

R
∑

r=1

(1− fr (1 + δ (r − 1))) (III.12)

whereδ is a weight penalty that penalizes overlap in higher ISO regions. This simpler calculation provides the same
benefit to using a more complex distance metric: a Dijkstra path that meanders further away from the human reference has
a lower overlapF . An example Dijkstra path is shown in blue on the right of Figure III.2, projected on the original path
and with the ISO Regions shown. Notice how the Dijkstra path travels through several different ISO Regions.

B. Weight vector optimization

The underlying nature ofCij is highly non-linear in its greedy weight vector,wl – in other words smallδwl perturbations
have no or little practical effect onCij . This negated the use of gradient-based search methods. Moreover, the stated purpose
of this paper is to describe sulci as a binary weight vector. This design decision considerably simplified our optimization
regime – specifically for our nine-dimensional weight vector, a binary search needs only consider29 = 512 possible weight
factors, which lay comfortably within the realm of exhaustive exploration. For each of the 512 possible weight vectors
for a given sulcus on a given subject, we generated a shortest path using Dijkstra’s algorithm off the weight vector, and
calculated the percentage overlap between the generated path and our reference using the weighted ISO method of Equation
III.12. The weight vector with the highest overlap was chosen as the optimal for the particular subject and particular sulcus.

C. Generalizing optimal weight vectors to templates

Each sulcus of each subject of each hemisphere can potentially have its own weight vector (or a set of weight vectors
that map to the same “best” fitness value). One of the goals of this project was to determine if there is any “similarity”
in terms of weight vectors for a given sulcus. In other words, is it possible to generalize features of a particular sulcus’s
weight vector across all similar sulci from all the subjects?

One possible way to generate a template weight vector from a set of subject’s weights is to simply find the median value
of all the relevant individual weight vectors, based on the assumption that this is the most representative sampling of the
solution space. In order to evaluate the utility of this template with reference to the entire space of “best” vectors, we also
perform a clustering based analysis to determine that the median vector lies within the larger “cloud” of solution vectors.

Such a clustering methodology is well established in statistical theory, and in fact is available as a set of tools and
function calls in MatLAB. For this project, we considered each solution vector as a point in a nine dimensional space,
and using a Hamming distance metric, generated a hierarchical cluster tree. We then partitioned the cluster tree using a
cutoff value of10, i.e. partitioned the space into a maximum of10 clusters. The largest cluster was then determined, and
a the overlap between the median template vector and this cluster was calculated, i.e. we determined how many bits were
in common between the template and the largest cluster space of all the weight vector data. This overlap was used as a
measure of confidence for the template vector’s validity.

IV. RESULTS AND DISCUSSION

For each of the twenty subjects in this study, ten sulci on each hemisphere were optimized. This resulted in20×10×2 =
400 sulcal trajectories. We considered three conditions: (1) the trajectory fit for each sulcus as optimized to each subject;
(2) the trajectory fit for each sulcus using a single template weight generalized from the optimal weights of each subject;
and (3) the trajectory fit using a NULL (or zero) weight vector. If a given subject and given sulcus as parametrized by the
weight vector exactly “fits” over the human generated example, the trajectory fit is 100%. An overview of all the results
for each of theses conditions is show in Figure IV.1. The percentage overlap is shown per subject and per sulcus, with a
blue-red colormap (bluer colors represent worse overlap, redder colors better overlap). Sulcal indices are as defined in the
Figure.

Figure IV.1 shows that the per-subject optimals are close to overlap with the human examples; the generalized sulcal
templates had less good overlap; and the NULL weight baseline showed generally poor behavior. Note that we immediately
see in the NULL template the poor performance of the cingulate (indices 3 and 13).

The results and discussion are organized into three sub-sections. First, we consider the system behavior on a per-sulcus
manner evaluated across all patients. This is followed by a perspective taken from each subject considering all sulci for
that subject. Finally, we present a blinded human expert evaluation of all sulcal traces.
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Figure IV.1. Percentage overlap of generated sulcal trajectories per subject and per sulcus. On top left, the overlap of the per subject, per sulcus optimals;
on top right the overlap of the per sulcal group binary template weights; on bottom left the baseline NULL weight vector results. Subject indices are
from left-to-right, and sulcal indices from top-to-bottom in order: 1: lh_calc; 2: lh_ce; 3: lh_ci; 4: lh_if; 5: lh_ol; 6: lh_phr; 7: lh_po; 8: lh_prc; 9: lh_sf;
10: lh_st; 11: rh_calc; 12: rh_ce; 13: rh_ci; 14: rh_if; 15: rh_ol; 16: rh_phr; 17: rh_po; 18: rh_prc; 19: rh_sf; 20: rh_st.

A. Overlap results from a sulcus perspective

Table II explores Figure IV.1 from the perspective of each sulcus. For each group (optimal, template, and NULL), three
result columns are shown. In the “optimal” group, the weight values for a a single example subject and the percentage
fit for this subject are presented, followed by the percentage fit averaged over all subjects. Thus, we see that for the
“lh_calc” sulcus, one example subject had an optimal binary weight descriptor of “010000011” which resulted in a 99.68%
weighted overlap. By comparison, taken across all subjects, the average for the optimal “lh_calc” sulcus weight resulted
in a 94.20% overlap over the human reference (and each subject had a uniquely optimized sulcal weight). Also notable
are some comparative observations evident between our chosen example and the whole subject group. For this example,
the “lh_st” sulcus only optimized to a 70.50% overlap, and was the worst performing sulcus in this case. Taken across
all subjects, however, this sulcus averaged 91.56% overlap. Clearly this example performed worse than the group average.
The lowest overlap across all subjects was for the “rh_prc” at 81.48%, which also scored low for the subject shown.
These observations might indicate that certain specific sulci optimize with more difficulty than others and might do so in
a consistent manner.

In the middle part of Table II, the template binary weight for each sulcus is shown, followed by the percentage sulcal
trajectory overlap that this template resulted in for the same example subject as the “optimal” part of the table. The “% fit
all” column shows the overlap of each template weight sulcus averaged over all subjects. Each sulcus now had the same

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.02.18.955096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955096


OPTIMAL (O) TEMPLATE (T) NULL (N)
sulcus ŵ % fit % fit w̄ % fit % fit w̄0 % fit % fit

example example all template example all template example all

lh_calc 010000011 99.68 94.20 010101001 94.12 85.07 000000000 61.23 47.97
lh_ce 000010011 91.76 92.27 010000000 74.75 58.53 000000000 85.57 52.66
lh_ci 000000110 86.22 92.33 100001010 62.94 80.24 000000000 23.94 22.37
lh_if 011010000 97.32 94.21 010010000 85.05 85.59 000000000 33.33 59.26
lh_ol 000000000 92.01 93.97 100000000 92.01 82.40 000000000 92.01 82.40
lh_phr 010010000 95.31 93.33 111010000 88.01 88.15 000000000 85.42 84.32
lh_po 010001001 96.61 86.07 010010001 93.45 76.81 000000000 92.42 67.31
lh_prc 010010101 93.71 91.23 010000000 34.31 77.07 000000000 55.97 50.83
lh_sf 011001010 97.73 91.57 111010000 80.71 71.45 000000000 50.22 54.81
lh_st 010000000 70.50 91.56 010000000 70.50 71.75 000000000 39.20 67.07

rh_calc 110010001 93.78 92.73 111000001 90.60 77.80 000000000 62.08 39.81
rh_ce 111001000 81.82 92.35 110010000 79.55 81.06 000000000 71.46 63.58
rh_ci 110011000 97.64 90.85 100000110 94.57 87.14 000000000 11.76 18.51
rh_if 010010000 97.86 94.18 000001010 72.22 86.37 000000000 31.87 55.46
rh_ol 001000010 78.48 89.90 101010110 72.67 83.13 000000000 40.35 40.58
rh_phr 001010011 94.60 95.29 010010000 91.78 91.92 000000000 89.91 81.54
rh_po 000110100 88.89 86.11 011000001 74.87 68.93 000000000 76.46 61.45
rh_prc 011010000 77.32 81.48 010000001 73.75 54.85 000000000 25.53 41.99
rh_sf 010001001 90.37 89.20 010000000 65.00 69.32 000000000 27.13 55.11
rh_st 010000011 87.94 91.46 011010000 76.67 81.21 000000000 35.74 58.24

mean 90.48 91.22 78.38 77.94 54.58 55.26
std 7.98 3.36 14.40 9.69 26.12 17.52

Table II
THE OPTIMAL VS TEMPLATE VS NULL BINARY WEIGHT DESCRIPTOR BEHAVIOR FOR EACH SULCUS. IN THE OPTIMAL CASE (COLUMNS ON LEFT),
THE BINARY SULCUS DESCRIPTOR FOR A SPECIFIC SULCUS IS SHOWN IN̂w FOLLOWED BY THE PERCENTAGE OVERLAP THIS SULCUS DESCRIPTOR

GENERATED COMPARED TO THE HUMAN REFERENCE IN THE“% FIT EXAMPLE” COLUMN. THE “% FIT ALL ” COLUMN SHOWS THE AVERAGE

OVERLAP OF EACH OPTIMAL SULCUS FOR ALL THE SUBJECTS(EACH SUBJECT HAD ITS OWN DESCRIPTOR). IN THE TEMPLATE COLUMNS (CENTER),
THE TEMPLATE DESCRIPTOR FOR EACH SULCUS IS SHOWN IN̄w. THIS SAME DESCRIPTOR WAS USED FOR EACH SULCUS ACROSS ALL SUBJECTS.

THE “% FIT EXAMPLE” SHOWS THE OVERLAP THAT THE TEMPLATE GENERATED WHEN USED FOR AN EXAMPLE CASE, FOLLOWED BY THE AVERAGE

“% FIT ALL ” THAT THIS TEMPLATE RESULTED IN ACROSS ALL SUBJECTS. IN A SIMILAR FASHION , THE NULL WEIGHT VECTOR IS SHOWN ON RIGHT

FOR A SPECIFIC EXAMPLE AND ACROSS ALL SUBJECTS.

template weight for all subjects, for example the “lh_calc” had a binary template of “010101001” which was applied to
all “lh_calc” sulci on all subjects. Overall, the relative overlap percentages for the templated weights scored lower, which
given that we have generalized away from a set of optimals matches our expectations. The deviation in overlap for the
template weights, however, was lower than the subject-specific optimals, suggesting that generalization was preserving
certain underlying properties of sulci across all subjects. Certain sulci, such as the “rh_prc” performed uniformly badly.
The template binary resulted in an average 54.85% overlap across all subjects. It also scored comparatively low on the
per-subject optimal shown in the first part of the table at 77.32% overlap, with also the lowest group optimal at 81.48%.

Figures IV.2 provides a comparative “real world” references for the overlap percentages of Table II, with human traced
sulcal references compared to the optimally weighted sulci on left, and also the human reference sulci compared with the
templated binary sulci descriptions on right for the same subject.

The final component of the Table shows the resultant behavior using the NULL template. In this case, all sulcus weights
were set to zero, and the algorithm essentially showed no bias to any cost weight, and merely traveled along each mesh edge
until it happened to connect the start and terminus vertices. The NULL templates are used to define a baseline reference
against which the optimal and templated weights can be compared. The mean overlap in this case for all sulci across all
subjects was 54.58%, with a 26.12% standard deviation. Note though how sensitive some sulci can be to weights. The
NULL “lh_ce” sulcus had for the example shown in the table, a surprising 85.57% overlap with the human target. The
template weight for this sulcus differed in only one bit, thewc bit. This template weight for the example subject shown,
dropped the overlap to 74.75% (and in fact, for this subject, the optimal “lh_ce” weighting was from a Hamming distance
measure quite distal).

B. Overlap results from a subject perspective

Using a similar organization as in Section IV-A, Table III presents overlap results organized per subject and shown across
all sulci for that subject. Some additional information is also shown. Instead of weight vectors, we present the fractional
degradation in performance:T

O
is the ratio of the Template overlap to the Optimal overlap, andN

T
the ratio of the NULL

overlap to the Template overlap. The product of these represents the overall degradation in overlap between the Optimal
and the NULL weights.

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.02.18.955096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955096


Figure IV.2. Human traced sulci (yellow) vs. binary weightedDijkstra paths (blue) for the subject of Table II, and shown on the right hemisphere inflated
surface. On left, lateral, medial, and superior aspects comparing the human references to the optimal binary descriptions. On right, human reference
traces compared with the binary template description. The background coloration of red and green denote curvature values of the white matter surface
projected onto the inflated reconstruction.
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OPTIMAL (O) TEMPLATE (T) NULL (N)
subject v̄sep %fit %fit T

O
%fit N

T
T
O

N
T

2787_5 0.7959 90.48 78.38 0.87 54.58 0.70 0.60
2859_4 0.7950 91.23 75.53 0.83 47.40 0.63 0.52
2884_5 0.7927 92.09 78.07 0.85 54.04 0.69 0.59
2979_5 0.7965 90.80 77.67 0.86 56.53 0.73 0.62
2980_5 0.7882 93.00 75.92 0.82 50.97 0.67 0.55
2981_5 0.7949 91.76 78.79 0.86 60.30 0.77 0.66
2982_5 0.7910 91.84 77.86 0.85 60.61 0.78 0.66
2997_5 0.7959 94.24 79.26 0.84 53.09 0.67 0.56
2998_5 0.7905 90.09 78.80 0.87 62.67 0.80 0.70
3042_5 0.7990 91.41 80.05 0.88 60.07 0.75 0.66
3156_5 0.7975 92.76 83.97 0.91 59.64 0.71 0.64
3157_5 0.7847 86.90 72.93 0.84 49.34 0.68 0.57
3161_6 0.7946 89.56 73.07 0.82 63.58 0.87 0.71
3181_5 0.7905 91.52 78.88 0.86 60.68 0.77 0.66
3279_5 0.7819 91.38 81.40 0.89 50.03 0.61 0.55
3280_5 0.7968 91.96 73.97 0.80 46.62 0.63 0.51
3305_5 0.7946 90.36 80.46 0.89 58.02 0.72 0.64
3320_5 0.7981 92.00 79.54 0.86 50.88 0.64 0.55
3321_5 0.7963 90.42 76.47 0.85 51.62 0.68 0.57
3322_5 0.7937 90.51 77.76 0.86 54.59 0.70 0.60

mean 91.22 77.94 0.85 55.26 0.71 0.61
std 1.50 2.74 0.026 5.21 0.064 0.058

Table III
THE OPTIMAL VS TEMPLATE VS NULL BINARY WEIGHT DESCRIPTOR BEHAVIOR FOR EACH SUBJECT. THE v̄sep COLUMN INDICATES THE AVERAGE

VERTEX SEPARATION FOR A PARTICULAR SUBJECT. THE OPTIMAL % FIT COLUMN PRESENTS THE RESULTS OF ALL THE OPTIMAL OVERLAPS FOR A
GIVEN SUBJECT AVERAGED OVER ALL SULCI FOR THAT SUBJECT. SIMILARLY FOR THE TEMPLATE %FIT AND NULL %FIT. THE T

O
COLUMN SHOWS

THE TEMPLATE FIT AS A PERCENTAGE OF THE OPTIMAL FIT. SIMILARLY FOR THE N
T

COLUMN . THE FINAL COLUMN PRESENTS THE OVERLAP OF
THE NULL WEIGHT DESCRIPTOR AS A PERCENTAGE OF THE OPTIMAL BEHAVIOR.

As before, we note that the per-subject optimal weight vectors scored the highest overlap with the human reference sulci,
with expected decreases when using sulcal template weights and a low scoring NULL reference. Taken over all subjects
and sulci, the Template weights performed 85% as good as the optimal weights. The NULL weights performed 61% as
well.

Subjects 2997_5 and 3156_5 scored the highest overlaps for their optimal weighting against their human generated
references. In fact, subject 3156_5 scored the highest when using template weights, and (considering standard deviation)
also high with the NULL reference weights – indicating that this specific subject’s sulci were perhaps geometrically more
easily captured by this paper’s weight vector formulation and hence better conserved by the generalization process than
the structural description of subject 3280_5 which had high optimal overlap, but comparatively low template and NULL
weight overlap with its human traced sulcal references.

C. Sulcal-template Optimizations

The template weights are an attempt to generalize the binary weight pattern for a given sulcus across all the subjects.
Table IV shows summary results for each sulcus considered by this project. The first column presents the template weight
vector, and the second indicates the correlation of this template to within the largest cluster of the space defined by all the
individual weight vectors for that sulcus. In general we see that the correlation is 100%, except for 5 sulci that had 88%
correlation, meaning that only 1 bit of the weight vector was not within the cluster space.

It is important to note that the binary template description in and of itself is not a complete specification of a sulcus.
Note in the table that the “lh_phr” and the “lh_sf” have the same template. While this does suggest that an underlying
geometric similarity might exist between these sulci, each of these sulci are only fully specified in conjunction with their
start and end vertices. Since Dijsktra’s algorithm is locally greedy, different start and end vertices for a sulcus, provided
that they do not drift too much, would not change the overall sulcal weight description. We evaluated the effect of locally
varying the start and end vertices on a sulcus’s weight optimization, and for variations within a range of 10 vertices, no
changes in the optimal weights were observed.

The remaining columns of Table IV show the standard deviation of each particular weight bit from the median. For cases
where the deviation is very close to 0.50, we can conclude that the underlying variation in that bit’s value ranged evenly
between 0 and 1. Nonetheless, seen as a whole, some bits over the entire subject space showed less variation that others.
In fact, the deviation in theσd, σh, σdh, σch, σdch, σp were all less than 0.45 while the remaining weights variations, i.e.
σP, σc, σdc were all higher. We can interpret lower deviation values to imply a relative “bit strength” - the closer to zero
deviation, the better the generalization of that particular bit.
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sulcus w̄ correlation σP σd σc σh σdc σdh σch σdch σp

lh_calc 010101001 1.00 0.49 0.47 0.49 0.48 0.50 0.50 0.49 0.49 0.42
lh_ce 010000000 1.00 0.49 0.46 0.44 0.40 0.46 0.47 0.36 0.49 0.46
lh_ci 100001010 1.00 0.46 0.48 0.46 0.35 0.49 0.50 0.50 0.44 0.35
lh_if 010010000 1.00 0.47 0.34 0.36 0.00 0.50 0.49 0.00 0.50 0.44
lh_ol 100000000 1.00 0.50 0.45 0.42 0.46 0.49 0.47 0.40 0.50 0.49
lh_phr 111010000 1.00 0.50 0.49 0.50 0.39 0.50 0.31 0.43 0.40 0.48
lh_po 010010001 1.00 0.49 0.42 0.49 0.46 0.50 0.47 0.32 0.37 0.44
lh_prc 010000000 1.00 0.48 0.24 0.37 0.00 0.49 0.37 0.17 0.30 0.44
lh_sf 111010000 0.88 0.50 0.47 0.50 0.34 0.50 0.40 0.18 0.40 0.44
lh_st 010000000 1.00 0.50 0.47 0.44 0.50 0.49 0.49 0.30 0.22 0.48

rh_calc 111000001 0.88 0.48 0.46 0.50 0.48 0.47 0.29 0.46 0.32 0.46
rh_ce 110010000 1.00 0.49 0.48 0.49 0.38 0.48 0.50 0.35 0.50 0.50
rh_ci 100000110 0.88 0.43 0.39 0.45 0.36 0.43 0.50 0.45 0.48 0.00
rh_if 000001010 0.88 0.47 0.47 0.49 0.47 0.50 0.49 0.49 0.50 0.37
rh_ol 101010110 1.00 0.49 0.49 0.49 0.50 0.49 0.50 0.49 0.49 0.49
rh_phr 010010000 1.00 0.50 0.43 0.47 0.16 0.49 0.40 0.23 0.44 0.41
rh_po 011000001 0.88 0.49 0.49 0.49 0.45 0.49 0.17 0.45 0.28 0.49
rh_prc 010000001 1.00 0.44 0.37 0.43 0.35 0.49 0.15 0.15 0.15 0.50
rh_sf 010000000 1.00 0.49 0.50 0.41 0.40 0.47 0.45 0.47 0.46 0.35
rh_st 011010000 0.88 0.49 0.50 0.50 0.49 0.50 0.47 0.49 0.48 0.48

mean 0.48 0.44 0.46 0.37 0.49 0.42 0.36 0.41 0.42
Table IV

PER-SULCUS TEMPLATE WEIGHTS, CORRELATION, AND DEVIATION . THE CORRELATION COLUMN INDICATES WHAT FRACTION OF THE WEIGHT
TEMPLATE VECTOR WAS CONTAINED IN THE LARGEST CLUSTER OF POINTS GENERATED BY ALL THE OPTIMAL WEIGHT VECTORS FOR A

PARTICULAR SULCUS. THE REMAINING COLUMNS SHOW THE DEVIATION FOR INDIVIDUAL WEIGHT VECTOR BITS. THE LESS DEVIATION IN A

WEIGHT BIT, THE BETTER THE GENERALIZATION OF THAT BIT.

D. Human-expert evaluation

Although we can measure the deviation from the human-generated “gold standard” example templates of this “sulcus
sink” system, a basic question remains as to how acceptable such generated sulcal paths are to a human expert. To this end,
an independent expert anatomist who was not involved in the generation of the original sulcus paths, was presented with
three sets of results for each hemisphere of each subject. Each set showed a complete grouping of projections of ten sulcal
traces. One set showed the original traces as created by a human (the “target” set); a second set showed the subject-sulcus
specific optimal, i.e. the best weight candidate for each sulcus on the particular subject as generated by the Dijkstra-based
optimization (the “optimal” set); and a final set showed, for each sulcus, the trajectory resultant from a generalization of
all weight vectors for each sulcus (the “template” set).

Without any knowledge of which set corresponded to which generation process, the evaluator was tasked with rating
each sulcus of each set on a four-point (1 – 4 ) scale:

1) sulcus trajectory was completely unacceptable with significant portions of its path measurably far away from target
2) sulcus trajectory was unacceptable – typically the trajectory followed a neighboring, i.e. non-target, sulcus
3) sulcus trajectory was largely acceptable with portions of its path tracking along sulcal banks and not necessarily

along the sulcal trough
4) sulcus trajectory was completely acceptable

Although there is of course a certain evaluator bias in such a rating system, generally speaking sulcal traces of “3” and
“4” are acceptable, while those of “1” and “2” are not. Examples of these rating are shown in Figure IV.3 .

In the top row of Figure IV.3, the “1” rated cingulate was the result from using the generic cingulate template generated
from all the optimal cingulate sulci of all subjects. The “4” rating on the right was the target trajectory as traced by a
human. Interestingly, for the bottom row, the “2” rated cingulate on the left was in fact the trace as originally made by the
human operator, and the “4” rated cingulate on the right was the same generic cingulate template that failed so completely
for the top row subject.

Consider Table V which summarizes the sulcal trace evaluation on a per-subject basis. For each set of “target”, “optimal”,
and “template”, the average rating for all sulci per subject per set was calculated. For the most part, the “target” set had
the highest mean across all the subjects, followed by the “optimal”, with the “template” performing worst – a general trend
that conforms with our expectations. Note however, some interesting deviations, particularly with the right hemisphere
rankings. In some subjects (2859_4, 2884_5, 3156_5, and 3161_6) the trend for one or other hemisphere was reversed
with the human target rated lowest, and the sulcus trace generated from the generic template rated highest. In these cases,
several sulcal traces on these subjects made by the humans were not drawn well. How can the template perform better if
some of its underlying domain set descriptors have errors? Examining these cases, we noted that only a small number of
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Figure IV.3. Examples of sulcal trace ratings using the cingulate sulcus (the long trace running length-wise along the medial aspect). Along the top
row: “1” on left; “4” on right – notice that the “1” trace completely misses the anterior portion of the cingulate. Along the bottom row: “2” on left; “4”
on right – in this case the “2” trace runs along the neighboring sulcus for most of its anterior component.

the sulci were traced badly. Our nine-bit binary descriptor had enough descriptive power to capture relevant features from
the remaining larger pool of correctly drawn sulci to mitigate the errors in the training set.

Table VI organizes the summary rankings on a per-sulcus manner across all subjects. As with Table V, we note that the
general trend is with the human “target” ranked highest, followed by the “optimal” track, with the “template” performing
the worst. The human “target” also had the lowest score deviation, while the “template” sulcus had a measurably higher
standard deviation.

Note however, that in the “rh st” sulcus (right hemisphere superior temporal), and “rh/lh ol” (left and right hemisphere
olfactory) cases, the human “target” was ranked lower than the “template” sulcus. In conjunction with Table V, this
highlights subjects and sulci where the human operators might have made minor errors in creating the initial “target” traces
for the system. For both hemispheres the “ci” (cingulate) sulcus had the lowest “template” rank – attesting to the fact that
several “template” cingulate traces suffered from significant errors. This might suggest that the overall sulcus length might

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.02.18.955096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955096


Left Hemisphere Right Hemisphere
subject Human Optimal Template Human Optimal Template

2787_5 3.90 3.80 3.60 3.80 3.90 3.70
2859_4 4.00 3.90 3.90 3.60 3.60 3.80
2884_5 4.00 3.90 3.70 3.90 3.90 4.00
2979_5 3.90 3.70 3.70 4.00 4.00 4.00
2980_5 4.00 3.90 3.90 4.00 4.00 3.70
2981_5 4.00 4.00 4.00 3.80 3.80 3.80
2982_5 4.00 4.00 3.70 4.00 4.00 4.00
2997_5 4.00 4.00 4.00 4.00 4.00 3.90
2998_5 4.00 4.00 4.00 4.00 4.00 3.80
3042_5 3.90 4.00 3.70 4.00 3.90 4.00
3156_5 4.00 4.00 4.00 3.80 3.90 4.00
3157_5 3.90 4.00 4.00 3.80 4.00 4.00
3161_6 4.00 4.00 4.00 3.80 3.80 4.00
3181_5 3.80 3.80 3.80 4.00 4.00 4.00
3279_5 3.90 4.00 4.00 3.80 3.70 3.80
3280_5 3.80 3.80 3.70 4.00 3.90 3.80
3305_5 4.00 4.00 4.00 3.90 3.90 3.90
3320_5 3.80 3.50 3.50 4.00 4.00 4.00
3321_5 4.00 4.00 4.00 4.00 3.90 3.80
3322_5 4.00 4.00 4.00 3.90 3.90 3.70

mean 3.95 3.92 3.86 3.91 3.91 3.89
std 0.0759 0.135 0.167 0.115 0.110 0.118

Table V
SULCUS TRACE EVALUATIONS ON A FOUR POINT SCALE BETWEEN1 (WORST) AND 4 (BEST) AS RANKED BY AN INDEPENDENT HUMAN EXPERT

UNAWARE OF WHICH SULCAL SET IS THE RESULT OF WHICH PROCESS. RESULTS ARE SUMMARIZED ON A PER-SUBJECT BASIS, I .E. THE AVERAGE OF

ALL RANKINGS FOR A SUBJECT/HEMISPHERE/SET.

Left Hemisphere Right Hemisphere
sulcus Human Optimal Template Human Optimal Template

calc 3.900 3.90 3.91 3.90 3.90 3.85
ce 4.00 4.00 4.00 4.00 4.00 4.00
ci 3.90 3.75 3.05 3.90 3.95 3.65
if 4.00 3.85 3.91 3.90 3.90 3.90
ol 3.80 3.95 3.95 3.90 4.00 4.00
phr 4.00 4.00 4.00 4.00 3.95 4.00
po 3.90 3.90 3.91 3.85 3.85 3.85
prc 4.00 3.95 3.91 3.95 3.95 3.85
sf 3.95 3.90 3.95 3.95 3.95 3.95
st 4.00 3.95 3.95 3.70 3.60 3.80

mean 3.95 3.92 3.85 3.91 3.91 3.89
std 0.0685 0.0747 0.285 0.0864 0.117 0.11068

Table VI
SULCUS TRACE EVALUATIONS ON A FOUR POINT SCALE BETWEEN1 (WORST) AND 4 (BEST) AS RANKED BY AN INDEPENDENT HUMAN EXPERT

UNAWARE OF WHICH SULCAL SET IS THE RESULT OF WHICH PROCESS. RESULTS ARE SUMMARIZED ON A PER-SULCUS BASIS, I .E. FOR A GIVEN

SULCUS, THE AVERAGE ACROSS ALL SUBJECTS FOR A GIVEN HEMISPHERE/SET COMBINATION.

be an important factor in how well this system could generate optimal and hence template paths. The cingulate was by far
the longest sulcus, and was consistently the lowest ranked.

V. CONCLUSION

This paper described a methodology for compactly describing and tracing sulcal paths on reconstructed cortical surfaces.
Using a sample set of 400 human-traced sulci paths, an optimization process attempted to find a weight vector that
minimized the error between a sulcus target trajectory and a sulcus path generated by a Dijkstra-based search using the
weight vector to define edge weights in the reconstructed cortical mesh. The system operated thus in a semi-automated
supervised fashion since its optimization targets were provideda priori – and the optimization process itself was aninverse
search since we were attempting to solve for weight factors that best mapped to a target path through Dijkstra’s algorithm.

The weight vector was a nine-element binary word that simply toggled on or off a set of contribution various features
in the three dimensional surface space of a reconstructed brain. As such, the optimal weight vector for a specific sulcus
represented along with the sulcus’s start and end points, a succinct binary parametrization or description of that sulcus.

Our approach with the methods of this paper is somewhat complimentary or tangential to the tendency to use highly
automated methods. Fully automated methods tend to sacrifice a component of robustness while increasing repeatability and
dramatically reducing analysis time compared to manual methods. To our knowledge, however, automatic sulcal extraction
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suffers from reliably identifying sulci and hence struggle to define starting and ending points of sulci. Moreover, automatic
sulcal extraction methods do not only find major sulcal lines but also small and very minor sulcal lines (secondary or
tertiary sulci) which can further complicate sulcal labeling and even introduce unwanted noise [21]. Sulcal lines can also
be defined in wrong sulcal regions, or not defined in true sulcal regions [34, 35, 38].

During the training phase, optimal weight vectors per subject and per sulcus were found. Subsequently, a generalized
binary “template” for each group of sulcal traces was created using a simple cluster median taken across all representative
sulci. Thus, for example, all the right hemisphere cingulate weight vectors were analyzed to create a “template” right
hemisphere cingulate weight vector. The underlying median and deviation for the group template bits were also analyzed
for their relative stability – somewhat interestingly we found that the bit controlling curvature in the sulcus parametrization
was less stable (with higher group deviation) than the bits weighing distance between neighboring vertices and sulcal depth.
This suggests that sulcal descriptions might not be easily geometrically intuitive.

These template vectors represented thus a group-weighted description for an entire class of sulci (a full sulcus description
was contained in the template binary weight and the start/end position of the given sulcus on a reconstructed surface mesh).
The performance of these template vectors was measured, and compared with the per-subject optimals performed with an
average of 80% overlap with about a 10% standard deviation (the optimal weights, relative to the human reference, had an
average 91% overlap with a 3% deviation). We also considered so-called NULL templates with all weights set to zero as
an absolute base reference. The NULL templates performed measurably poorly with only 55% average overlap with the
human reference.

Finally, we presented a blinded human expert evaluator with sets of three sulci: one set contained the human target
sulci for a subject, a second set contained the per-subject optimals as generated by this system, and a third set contained
the sulcal paths generated using sulcal-template weights. Without knowledge of which set belonged to which process,
the evaluated ranked individual sulci on a four point scale, with “1” being completely unacceptable and “4” completely
acceptable. For the most part, the paths created by the template weights, though ranked consistently lower than the human
targets or the optimal weights, were still quite acceptable to the evaluator.

Two interesting observations were made in the evaluator experiment. The first observation was that unacceptable paths
were sometimes generated by the template weight for the cingulate sulcus, implying that a future automated system based
on this work would still require special attention in the case of the cingulate. The second observation was that in a few
cases, the human reference contained some errors as far as the evaluator was concerned. Interestingly, the general binary
template sulcus weight, when applied to the same subjects containing human errors, were able to outperform the human
reference. This indicates that enough information was generalized from the same sulcus that was correctly traced in other
subjects.

Taken as a whole, the results presented here demonstrated that per-sulcus optimizations using an inverse Dijkstra-based
method showed a very high degree of correlation between human target traces and automated ones. Moreover, generic
template weight vectors generated from large sets of subject- and sulcus-hemisphere specific optimal weight vectors resulted,
with the exception of the cingulate sulcus in a few cases, in trajectories that were acceptable to an independent human
evaluator. We believe that the relative length of the cingulate sulcus compared to other sulci is a major reason for the poor
performance in finding a binary description. The underlying geometry over such a long length could conceivably change
in such a manner as to not be captured by our nine-element binary vector.

We have presented a method based on Dijkstra’s algorithm that can describe human sulcal paths with a nine-element
binary weight vector. Per subject, per sulcus optimizations using this nine-bit binary description show on average a 91%
overlap with reference human generated targets. Generalizations for groups of sulci based on per-subject optimizations
perform well, indicating that such a binary description could be a useful and compact descriptor for sulci when coupled
with a Dijkstra path optimizer.

Future work will seek to expand the weight vector with the addition of more parameters, including the Gaussian curvature
and functions of the per-vertex principle curvatures. Since we were able to demonstrate good performance with a nine-bit
binary description, it is our hope that performance can be measurably improved with straightforward (but still manageable)
extensions to the search space size. In addition, more sophisticated generalization methods will be explored, and in the
case of problematic cingulate sulcus, we propose to break this single sulcus into multiple joined segments, and optimize
each segment independently.

REFERENCES

[1] J. Andoh, E. Artiges, C. Pallier, D. Riviere, J.F. Mangin, A. Cachia, M. Plaze, M.L. Paillere-Martinot, and J.L. Martinot.
Modulation of language areas with functional MR image-guided magnetic stimulation.Neuroimage, 29(2):619–27,
2006.

[2] A. Bartesaghi and G. Sapiro. A system for the generation of curves on 3D brain images.Hum Brain Mapp, 14(1):1–15,
2001.

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.02.18.955096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955096


[3] Brian A. Wandell and Suelika Chial and Benjamin T. Backus.Visualization and Measurement of the Cortical Surface.
Journal of Cognitive Neuroscience, 12(5):739–752, 2000.

[4] A. Cachia, J.F. Mangin, D. Riviere, F. Kherif, N. Boddaert, A. Andrade, D. Papadopoulos-Orfanos, J.B. Poline, I. Bloch,
M. Zilbovicius, P. Sonigo, F. Brunelle, and J. Regis. A primal sketch of the cortex mean curvature: a morphogenesis
based approach to study the variability of the folding patterns.IEEE Trans Med Imaging, 22(6):754–65, 2003.

[5] A. Cachia, J.F. Mangin, D. Riviere, D. Papadopoulos-Orfanos, F. Kherif, I. Bloch, and J. Regis. A generic framework
for the parcellation of the cortical surface into gyri using geodesic Voronoi diagrams.Med Image Anal, 7(4):403–16,
2003.

[6] A M Dale, B Fischl, and M I Sereno. Cortical surface-based analysis. I. Segmentation and surface reconstruction.
Neuroimage, 9(2):179–194, Feb 1999.

[7] E. W. Dijkstra. A note on two problems in connection with graphs.Numerische Mathematik, 1:269–271, 1959.
[8] Manfredo P. do Carmo.Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc., New Jersey, 1976.
[9] Christine Fennema-Notestine, I Burak Ozyurt, Camellia P Clark, Shaunna Morris, Amanda Bischoff-Grethe, Mark W

Bondi, Terry L Jernigan, Bruce Fischl, Florent Segonne, David W Shattuck, Richard M Leahy, David E Rex, Arthur W
Toga, Kelly H Zou, and Gregory G Brown. Quantitative evaluation of automated skull-stripping methods applied to
contemporary and legacy images: Effects of diagnosis, bias correction, and slice location.Hum Brain Mapp, 27(2):99–
113, Feb 2006.

[10] P A Filipek, M Semrud-Clikeman, R J Steingard, P F Renshaw, D N Kennedy, and J Biederman. Volumetric
MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls.Neurology,
48(3):589–601, Mar 1997. Clinical Trial.

[11] B Fischl, M I Sereno, and A M Dale. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based
coordinate system.Neuroimage, 9(2):195–207, Feb 1999.

[12] L. D. Griffin. The intrinsic geometry of the cerebral cortex.J Theor Biol, 166:261–273, 1994.
[13] P. Hellier and C. Barillot. Coupling dense and landmark-based approaches for nonrigid registration.IEEE Trans Med

Imaging, 22(2):217–27, 2003.
[14] M A Hofman. The fractal geometry of convoluted brains.J Hirnforsch, 32(1):103–111, 1991.
[15] K Im, J M Lee, U Yoon, Y W Shin, S B Hong, I Y Kim, J S Kwon, and S I Kim. Fractal dimension in human

cortical surface: Multiple regression analysis with cortical thickness, sulcal depth, and folding area.Hum Brain Mapp,
27(12):994–1003, Dec 2006.

[16] Lili Ju, Monica K Hurdal, Josh Stern, Kelly Rehm, Kirt Schaper, and David Rottenberg. Quantitative evaluation of
three cortical surface flattening methods.Neuroimage, 28(4):869–880, Dec 2005.

[17] N. Khaneja, M. I. Miller, and U. Grenander. Dynamic programming generation of curves on brain surfaces, 1998.
[18] V G Kiselev, K R Hahn, and D P Auer. Is the brain cortex a fractal?Neuroimage, 20(3):1765–1774, Nov 2003.
[19] M. Koop, G. Rilling, A. Herrmann, and H. J. Kretschmann. Volumetric development of the fetal telencephalon,

cerebral cortex, diencephalon, and rhombencephalon including the cerebellum in man.Bibl Anat, pages 53–78, 1986.
[20] In Kyoon Lyoo, Young Hoon Sung, Stephen R Dager, Seth D Friedman, Jun-Young Lee, Seog Ju Kim, Namkug

Kim, David L Dunner, and Perry F Renshaw. Regional cerebral cortical thinning in bipolar disorder.Bipolar Disord,
8(1):65–74, Feb 2006.

[21] I. Lyu, J. K. Seong, S. Y. Shin, K. Im, J. H. Roh, M. J. Kim, G. H. Kim, J. H. Kim, A. C. Evans, D. L. Na, and J. M.
Lee. Spectral-based automatic labeling and refining of human cortical sulcal curves using expert-provided examples.
Neuroimage, 2010.

[22] M. K. Hurdal and J. B. Gutierrez and C. Laing and D. A. Smith. Shape analysis for automated sulcal classification
and parcellation of MRI data.Journal of Combinatorial Optimization, 15(3):257–275, April 2008.

[23] M Meyer and M Desbrun and P Schröder and A. H. Barr. Discrete Differential-Geometry Operators for Triangulated
2-Manifolds. Visualization and Mathematics, 2002.

[24] M. Ono and S. Kubik and C. D. Abernathy.Atlas of Cerebral Sulci. Thieme, Stuttgart, 1990.
[25] Nikos Makris, Steven M Hodge, Christian Haselgrove, David N Kennedy, Anders Dale, Bruce Fischl, Bruce R

Rosen, Gordon Harris, Verne S Jr Caviness, and Jeremy D Schmahmann. Human cerebellum: surface-assisted cortical
parcellation and volumetry with magnetic resonance imaging.J Cogn Neurosci, 15(4):584–599, May 2003.

[26] Nikos Makris, John E Schlerf, Steven M Hodge, Christian Haselgrove, Matthew D Albaugh, Larry J Seidman, Scott L
Rauch, Gordon Harris, Joseph Biederman, Verne S Jr Caviness, David N Kennedy, and Jeremy D Schmahmann.
MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate
of reliability. Neuroimage, 25(4):1146–1160, May 2005.

[27] J.F. Mangin, D. Riviere, A. Cachia, E. Duchesnay, Y. Cointepas, D. Papadopoulos-Orfanos, D.L. Collins, A.C. Evans,
and J. Regis. Object-based morphometry of the cerebral cortex.IEEE Trans Med Imaging, 23(8):968–82, 2004.

[28] J.F. Mangin, D. Riviere, A. Cachia, E. Duchesnay, Y. Cointepas, D. Papadopoulos-Orfanos, P. Scifo, T. Ochiai,

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.02.18.955096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955096


F. Brunelle, and J. Regis. A framework to study the cortical folding patterns. Neuroimage, 23 Suppl 1:S129–38,
2004.

[29] J.F. Mangin, D. Riviere, A. Cachia, D. Papadopoulos-Orfanos, D.L. Collins, A.C. Evans, and J. Regis. Object-based
strategy for morphometry of the cerebral cortex.Inf Process Med Imaging, 18:160–71, 2003.

[30] J. E. McLennan and F. H. Grilles.The Developing Human Brain, chapter A model of growth of the human fetal
brain, pages 43–58. John Wright PSG Inc, Boston, MA, 1983.

[31] D Nain, S Haker, A Bobick, and A Tannenbaum. Multiscale 3-d shape representation and segmentation using spherical
wavelets.IEEE Trans Med Imaging, 26(4):598–618, Apr 2007.

[32] R. Pienaar and B. Fischl and V. Caviness and N. Makris and P. E. Gran. A methodology for analyzing curvature
in the developing brain from preterm to adult.International Journal of Imaging Systems and Technology, 18:42–68,
2008.

[33] J. Regis, J.F. Mangin, T. Ochiai, V. Frouin, D. Riviere, A. Cachia, M. Tamura, and Y. Samson. "Sulcal root" generic
model: a hypothesis to overcome the variability of the human cortex folding patterns.Neurol Med Chir (Tokyo),
45(1):1–17, 2005.

[34] J. K. Seong, K. Im, S. W. Yoo, S. W. Seo, D. L. Na, and J. M. Lee. Automatic extraction of sulcal lines on cortical
surfaces based on anisotropic geodesic distance.Neuroimage, 49(1):293–302, 2010.

[35] Y. Shi, P. M. Thompson, I. Dinov, and A. W. Toga. Hamilton-Jacobi skeleton on cortical surfaces.IEEE Trans Med
Imaging, 27(5):664–73, 2008.

[36] Kaleem Siddiqi, Sylvain Bouix, Allen Tannenbaum, and Steven W. Zucker. Hamilton-jacobi skeletons, 1999.
[37] T. Surazhsky and E. Magid and O. Soldea and G. Elber and E. Rivlin. A Comparison of Gaussian and Mean Curvatures

Estimation Methods on Triangular Meshes.{I}{E}{E}{E} International Conference on Robotics and Automation, 2003.
[38] X. Tao, J. L. Prince, and C. Davatzikos. Using a statistical shape model to extract sulcal curves on the outer cortex

of the human brain.IEEE Trans Med Imaging, 21(5):513–24, 2002.
[39] P. M. Thompson, K. M. Hayashi, E. R. Sowell, N. Gogtay, J. N. Giedd, J. L. Rapoport, G. I. de Zubicaray, A. L.

Janke, S. E. Rose, J. Semple, D. M. Doddrell, Y. Wang, T. G. van Erp, T. D. Cannon, and A. W. Toga. Mapping
cortical change in Alzheimer’s disease, brain development, and schizophrenia.Neuroimage, 23 Suppl 1:S2–18, 2004.

[40] Duygu Tosun, Allan L. Reis, Ursula Bellugi, Albert M. Galaburda, Julie R. Korenburg, Debra L. Mills, Arthur W.
Toga, and Paul M. Thompson. Measuring increased cortical complexity in williams syndrome using 3-d cortical
morphometry. January 2006.

[41] D C Van Essen, D Dierker, A Z Snyder, M E Raichle, A L Reiss, and J Korenberg. Symmetry of cortical folding
abnormalities in williams syndrome revealed by surface-based analyses.J Neurosci, 26(20):5470–5483, May 2006.

[42] J J Wisco, G Kuperberg, D Manoach, B T Quinn, E Busa, B Fischl, S Heckers, and A G Sorensen. Abnormal cortical
folding patterns within broca’s area in schizophrenia: Evidence from structural mri.Schizophr Res, May 2007.

[43] P Yu, P E Grant, Y Qi, X Han, F Ségonne, R Pienaar, E Busa, J Pacheco, N Makris, R L Buckner, P Golland, and
B Fischl. Cortical surface shape analysis based on spherical wavelets.IEEE Trans Med Imaging, 26(4):582–597, Apr
2007.

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.02.18.955096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.955096

