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Abstract

In order to increase statistical power for learning a causal network, data are often
pooled from multiple observational and interventional experiments. However, if the
direct effects of interventions are uncertain, multi-experiment data pooling can result in
false causal discoveries. We present a new method, “Learn and Vote,” for inferring
causal interactions from multi-experiment datasets. In our method, experiment-specific
networks are learned from the data and then combined by weighted averaging to
construct a consensus network. Through empirical studies on synthetic and real-world
datasets, we found that for most of the larger-sized network datasets that we analyzed,
our method is more accurate than state-of-the-art network inference approaches.

Introduction 1

Causal modeling is an important analytical paradigm in action planning, predictive 2

applications, research, and medical diagnosis [1, 2]. A primary goal of causal modeling is 3

to discover causal interactions of the form Vi → Vj , where Vi and Vj are observable 4

entities and the arrow indicates that the state of Vi influences the state of Vj . Causal 5

models can be fit to passive observational measurements (“seeing”) as well as 6

measurements that are made after performing external interventions (“doing”). 7

In many settings, observational measurements [3] are more straightforward to obtain 8

than interventional measurements, and thus observational datasets are frequently used 9

for causal inference. However, given only observational data, it is difficult to distinguish 10

between compatible Markov equivalent models [4, 5]. For example, the three causal 11

models Vi −→ Vj −→ Vk, Vi ←− Vj ←− Vk, and Vi ←− Vj −→ Vk are Markov equivalent—each 12

encodes the conditional independence statement Vi ⊥⊥ Vk | Vj . This ambiguity can in 13

principle be resolved by incorporating measurements obtained from interventional 14

experiments in which specific entities are targeted with perturbations. With the benefit 15

of interventional measurements, Markov equivalent causal models can have different 16

likelihoods, enabling selection of a maximum-likelihood model. These considerations 17

have motivated the development of network learning approaches that are specifically 18

designed to leverage mixed observational and interventional datasets [6]. 19

Learning a causal network from a mixed observational-interventional dataset poses 20

methodological challenges, particularly in integrating datasets from different 21
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experiments and accounting for interventions whose effects are uncertain [7]. Due to 22

batch effects, data collected from two different experiments might not be identically 23

distributed and thus the two experiments may be incoherent from the standpoint of 24

causal network model. As a result, directly combining data from different experiments 25

can lead to errors in network learning. Interventions, too pose a challenge due to the 26

fact that in real-world settings many interventions are (i) imperfect, meaning 27

interventions are unreliable and have soft-targets (A “soft” target intervention, or 28

“mechanism change,” is an intervention that changes a target node’s distribution’s 29

parameters, but does not render that it’s independent of its parent nodes [7]), and 30

(ii) uncertain, meaning that the “off-target” nodes are unknown. Classical causal 31

learning algorithms are based on the assumption that interventions are perfect [1]; 32

applying such algorithms to a dataset derived from imperfect interventions would likely 33

yield spurious interactions. Eberhardt [8] classifies such errors into two types: 34

a) independence to dependence errors, where two variables Vi and Vj that are 35

independent are detected as dependent when data from the observational and 36

interventional experiments are pooled (i.e., false positive detection of a causal 37

interaction) and b) dependence to independence errors, where two variables Vi and Vj , 38

that are dependent in an observational study are independent when the data from the 39

observational study are pooled with data from an interventional study (i.e., a false 40

negative for the interaction). Consensus has yet to emerge on the question of 41

how—given two or more datasets generated from different interventions—the datasets 42

should be combined to minimize such errors in the learned network model. 43

In this paper, we have demonstrated in details the performance of our proposed 44

method, “Learn and Vote” [9], for inferring causal networks from multi-experiment 45

datasets. “Learn and Vote” can be used to analyze datasets from mixed observational 46

and interventional studies and it is compatible with uncertain interventions. As it is 47

fundamentally a data integration method, “Learn and Vote” is compatible with a 48

variety of underlying network inference algorithms; our reference implementation 49

combines “Learn and Vote” data integration with the Tabu search algorithm [10] and 50

the Bayesian Dirichlet uniform (BDeu) [6, 11,12] network score, as described below. To 51

characterize the performance of “Learn and Vote”, we empirically analyzed the network 52

learning accuracies of “Learn and Vote” and six previously published causal network 53

learning methods (including methods that are designed for learning from heterogeneous 54

datasets) applied to six different network datasets. Of the six network datasets, the 55

largest real-world dataset is a cell biology-based, mixed dataset (the Sachs et al. 56

dataset [13]) with a known ground-truth network structure. On larger networks, we 57

report superior (or in worst case, comparable) performance of “Learn and Vote” to the 58

six previously published network inference methods. 59

Motivation and Background 60

Spurious dependencies and independencies 61

In this section, we introduce notation and describe how perturbations affecting two or 62

more variables in a causal model can lead to spurious dependencies or independencies. 63

Mathematically, a causal model Mc is described by a directed acyclic graph (DAG) 64

containing a pair (V,E), where V is a set observable nodes (corresponding to random 65

variables), E is a set of directed edges between pairs of nodes, Pa(Vi) represents the set 66

of parent nodes of variable Vi, and P (V ) represents the joint probability distribution. In 67

the context of network learning from interventional data, it is helpful to picture an 68

intervention (say, I1) as a separate type of node (denoted by a dashed circle in Fig. 1) 69

that can be connected to its targets (say, Vi and Vj) by causal edges of a separate type 70
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(a) False dependence (b) False independence

Fig 1. Cross-experiment data pooling leads to network inference errors.
Illustration of a simple hypothetical causal model Mc with three observable entities (Vi,
Vj , and Vk. Two different interventional experiments are depicted: experiment Me1

involves intervention I1, and experiment Me2 involves intervention I2. Pooling
measurements from the two experiments can cause two types of network inference
errors: false positive edge (shown in (a) as a red arrow between Vi and Vj), and false
negative edges (shown in (b) as blue arrows between Vi and Vk and between Vj and Vk).

(dashed arrow in Fig. 1). Applying classical network inference algorithms to 71

measurements pooled from multiple interventional experiments can lead to two different 72

types of learning errors, as we explain below. 73

1. False causal dependence: In the experiment depicted in Fig. 1a, Vi and Vj , 74

which are not causally related in Mc (Vi 6→ Vj), are affected by intervention I1. 75

Due to the intervention’s confounding effect, we have Vi 6⊥⊥ Vj in the combined 76

model MT1
= Mc + Me1 (we denote the joint distribution in the combined model 77

by P1(V ⊂ MT1
). Thus, pooling data from such different distributions may lead 78

to spurious correlations between independent variables. 79

2. False causal independence: In the experiment depicted in Fig. 1b, the 80

intervention I2 on Vk removes all the incident arrows for Vk and cuts off the 81

causal influences of Vi and Vj on Vk, causing Vi ⊥⊥ Pa(Vi). Pooling data from 82

such models can cause the causal dependencies Vi → Vk and Vj → Vk in Mc to be 83

missed (i.e., a “false negative” in the inferred network). 84

Review of prior literature 85

Classical causal learning methods fall into two classes: constraint-based methods (e.g., 86

PC [2], FCI [14]), in which the entire dataset is analyzed using conditional independence 87

tests; and score based methods (e.g., GES, GIES [15]), in which a score is computed 88

from the dataset for each candidate network model. Both classes of methods were 89

designed to analyze a single observational dataset, with the attendant limitations (in 90

the context of multi-experiment datasets) that we described above. Several 91

multi-dataset network inference approaches have been proposed that circumvent the 92

above-described problems associated with cross-experiment measurement pooling. 93

Cooper and Yoo [6] proposed a score-based algorithm that combines data from multiple 94

experiments, each having perfect interventions with known targets. The approach was 95

later refined by Eaton and Murphy [7] for uncertain and soft interventions [16]. The 96

method of Claassen and Heskes [17] is based on imposing the causal invariance property 97

across environment changes. Sachs et al. [13] analyzed a molecular biology dataset 98

(which has since become a benchmark dataset for molecular network inference, a 99

primary application focus of our work) using a variant of the Cooper-Yoo method. 100
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Chen et al. [18] proposed a subgraph-constrained approach, called Trigger, to learn a 101

yeast gene regulatory network model from transcriptome and genotype data. In the 102

Joint Causal Inference (JCI) [19] method, additional experimental context variables are 103

introduced before data pooling. Notably, the aforementioned methods assume some 104

prior knowledge about the network model. In contrast, our “Learn and Vote” method 105

(see Methods and Datasets) requires no prior knowledge about the network model. 106

Network Combination Methods: 107

Another class of multi-dataset network inference approaches, which we call “network 108

combination” methods, involve learning causal interaction statistics from each 109

experiment followed by integration of the statistics to obtain a single consensus network. 110

For example, in the ION [20] method, locally learned causal networks having 111

overlapping variables are integrated. The constraint-based COmbINE [21] method is 112

based on the estimation of variable-variable dependencies and independencies across 113

separate experiments. The MCI [22] algorithm is a constraint-based method that 114

exploits the ‘local’ aspect of causal V-structures [23]. However, none of these methods 115

produce experiment-specific weighted graphs, instead enumerating experiment-specific 116

partial ancestral graphs that are consistent with the data. In real-world datasets, due to 117

a variety of factors (finite sampling, experiment-specific biases and confounding effects, 118

measurement error, missing data, and uncertain/imperfect interventions), the 119

confidence with which a given causal interaction Vi → Vj can be predicted within a 120

given experiment will in many cases vary significantly from experiment to experiment 121

(and in the case of incomplete measurements, may not be quantifiable at all in a given 122

experiment). Thus, a network combination method compatible with experiment-specific 123

edge weights would seem to offer a distinct advantage in the context of multi-experiment 124

network inference. Furthermore, all of these methods assume that a single underlying 125

causal model accounts for all observed causal dependencies. In real-world settings where 126

experimental conditions change across experiments, this assumption seems unlikely to 127

hold, motivating the need for network inference methods that can (1) score candidate 128

interactions within individual experiment-specific datasets and (2) combine weighted 129

edges from experiment-specific datasets into a consensus network. 130

Biological Signaling Networks 131

A cell signaling network is a type of causal network in which the state of a protein or 132

other biomolecule influences the state of another protein or biomolecule downstream of 133

it (denoted by a directed arc). Such networks are amenable to interventional 134

experiments using molecular agents that target (i.e., activate or inhibit) specific 135

molecules. Sachs et al. [13] used a Bayesian network approach to infer causal 136

interactions among eleven signaling molecules in human CD4+ T-cells. In a series of 137

nine experiments—two observational and seven with specific molecular 138

interventions—they measured the activation levels of eleven phosphorylated proteins 139

and phospholipids by flow cytometry (Figure 2). They found 17 true positive 140

interactions, with 15 that were well-established in the biology literature and two that 141

were supported by at least one study; their inferred network missed three arcs (false 142

negatives) and it had no false positive arcs. 143

Uncertain interventions 144

Like most causal network learning approaches, the method used in the Sachs et al. study 145

and in our re-analysis assumes perfect interventions, i.e., that each of the interventional 146

agents targets exactly one of the signaling molecules. Such a perfect intervention 147
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Fig 2. Biological network for the Sachs et al. study, showing interactions (arcs) and
interventions (starred ellipses). The pathways represented by bold black lines are the
Ground Truth known causal interactions, established through literature study.

assumption is likely not consistent with typical interventions in biological systems, due 148

to potential off-target effects of pharmaceutical agents. Moreover, in a biological system, 149

the effects of certain types of interventions (for example, a gene knockout) may not be 150

describable by forcing of a target node’s state to a specific value in the observational 151

network. In the Sachs et al. experiments, although the interventions are assumed to be 152

perfect, they are known to have off-target effects, as shown by Eaton & Murphy 153

(2007) [7]. Eaton & Murphy modeled chemical interventions as context variables in the 154

network (assuming they had some known background knowledge about the underlying 155

network) to learn the intervention’s effects and found them to have multiple children. 156

To summarize, in the context of current learning algorithms, there are three primary 157

issues with pooling experimental data that were acquired with imperfect interventions: 158

1. Current algorithms might make mistakes since the arcs pointing towards the 159

unknown targets are not removed or handled properly. 160

2. Although pooling data adds more confidence into learning the true causal arcs, it 161

can also introduce spurious arcs with incorrect direction (see Fig. 4). 162

3. Each intervention might alter a mechanism or influence the local distribution in 163

an unknown way [24]. 164

Methods and Datasets 165

To avoid the problems arising from pooling data from different experiments in causal 166

network learning, we propose the “Learn and Vote” method (shown in Fig. 3 and 167

Algorithm 1). The method’s key idea is to (1) learn a separate weighted causal network 168

from the data generated in each experiment (which may be interventional or 169

observational) by ignoring the directed arcs into the intervened variables and then (2) 170

combine the experiment-specific networks by weighted averaging. The algorithm’s inputs 171
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are, for each experiment, the values of the observed variables (V ) in the experiments 172

(we denote the number of variables by v and the number of experiments by k) and the 173

identities of the known target nodes (stored as a list intv) for any interventions. 174

Algorithm 1 Learn and Vote

Input: set of k experiments with dataset D1,D2...Dk

Output: DAG Gf = (E, V), final causal network

1: procedure Our Approach
2: for j = 1 to k do
3: V = nodes In Dj

4: intv = Intervened nodes in Dj

5: randomNet = createRandNet(V, 100)
6: for l = 1 to 100 do
7: Net[l] = Tabu(randomNet[l], intv)

8: arcProb[j] = arcStrength(Net)

9: avgArcs = avgNetwork(arcProb)

10: Gf = learnDAG(avgArcs,Threshold)

Scoring Function 175

We incorporate the effect of intervention in the score component associated with each 176

node by modifying the standard Bayesian Dirichlet equivalent uniform score 177

(BDeu) [6, 11,12]. Given measurements Dj of variables V in experiment j, let Gj
178

represent a DAG learned from it (with conditional distributions P (Vi|Pa(Vi)G
j

), where 179

Pa(Vi)
Gj

is the set of parent nodes of Vi in DAG Gj). In a perfect interventional 180

experiment, for the set Int(m) of intervened nodes in sample m, we fix the values of 181

Vi[m] ∈ Int(m), meaning that we exclude P (Vi[m] | Pa(Vi)[m]) from the scoring 182

function for Vi ∈ Int(m). All the other unaffected variables are sampled from their 183

original distributions. The distribution of Dj is per experiment and not a pooled dataset 184

of all experiments as in the Sachs et al. method. We define an experiment-specific 185

network score S(Gj : Dj) as sum (over all variables Vi) of per-variable local scores 186

Slocal(Vi, U : Dj) of variables Vi. The left part of the equation is the prior probability 187

assigned to the choice of set U as parents of Vi, and the right part is the probability of 188

the data integrated over every possible parameterizations (θ) of the distribution. 189

Slocal(Vi, U : Dj) = logP (Pai = U) + log

∫ ∏
m,Vi 6∈Int(m)

P (Vi[m]|U [m], θ)dP (θ).

190

Structure learning 191

Because our method uses local stochastic search (Tabu), we create an ensemble of n 192

random starting DAGs (stored as randomNet, see Algorithm 1) using the procedure 193

createRandNet. Empirically, we have found that n = 100 is adequate for the network 194

multivariate datasets that we analyzed in this work to demonstrate empirical 195

performance of our method (see Results). From each DAG in randomNet, we then 196

search for an optimal network model using the Tabu search algorithm [10] and store the 197

n networks in a list Net. The list intv of known targets is passed as an argument which 198

incorporates interventions in the search algorithm by preventing the arcs to be incident 199

on the targets. Next, we measure the probabilistic arc strength and direction (using the 200

procedure arcStrength) for each arc as its empirical frequency given the list of 201
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Fig 3. Workflow of “Learn and Vote”: Step 1 - Collecting data from k experiments
(combination of observational and interventional studies). For interventional studies, the
known targets (marked in Red) are incorporated as external perturbation during the
search process. Step 2 - Creating 100 random DAGs using the observed nodes, as a
starting point. Step 3 - Optimizing each of the 100 DAGs with data using Tabu search.
Step 4 - Calculating probability (in terms of strength and direction) of occurrence for
every possible arc from the 100 optimized DAGs and storing them in tables. Step 5 -
Combining votes from all the tables by weighted averaging and constructing the final
causal network, with arc strengths above a threshold (in this case 50%)

.
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networks in Net. We average the arc strengths for every directed arc over the networks 202

in which corresponding target node was not intervened and store them as a list arcProb. 203

Combining results from experiments 204

Given arc information (in arcProb, see Algorithm 1) from each experiment, we average 205

their strengths and directions over the number of experiments where the given arc is 206

valid (using procedure avgNetwork). Finally, we compute the averaged arc strengths as 207

avgArcs and threshold on arc strength (using a predefined Threshold) in order to 208

produce the final DAG (using procedure learnDAG). We found that our method 209

performs best at a 50% threshold. We implemented “Learn and Vote” in the R 210

programming language, making use of the bnLearn package [25]. 211

Datasets that we used for empirical performance analysis 212

From six published networks, we obtained nine datasets (with associated ground-truth 213

networks) that we analyzed in this work. To avoid bias, from each network we used 214

both observational and interventional datasets. For synthetic networks, as observations, 215

we drew random samples. As interventions, we set some target nodes to fixed values. 216

Next, in order to model uncertainty, we also set one or more of the target’s children to 217

different values (like “fat-hands” [7]) which are assumed to be unknown. Finally, we 218

sampled data from each of the mutilated networks [26] : 219

• Lizards: a real-world dataset having three variables representing the perching 220

behaviour of two species of lizards in the South Bimini island [27]. We generated 221

one observational dataset and two interventional datasets from the lizards 222

network. 223

• Asia: a synthetic network of eight variables [28] about occurrence of lung diseases 224

and their relation with visits to Asia. For our empirical study, we created two 225

mutilated networks: Asia mut1 has one observation and one interventional 226

dataset, and Asia mut2 has one observational and two interventional datasets. 227

• Alarm: a synthetic network of thirty seven variables representing an alarm 228

messaging system for patient monitoring [29]. For our study, we created two 229

mutilated networks: Alarm mut1 has three observational and six interventional 230

studies, and Alarm mut2 has five observational and ten interventional datasets. 231

• Insurance: a synthetic network of twenty seven variables for evaluating car 232

insurance risks [30]. We created two mutilated networks: Insurance mut1, from 233

which we obtained one observational and five interventional datasets; and 234

Insurance mut2, from which we obtained three observational and eight 235

interventional datasets. 236

• gmInt: a synthetic dataset containing a matrix of observational and 237

interventional data from eight Gaussian variables, provided in the pcalg-R 238

package. 239

• Sachs et al.: a cell signaling network and associated mixed 240

observational-interventional dataset published by Sachs et al. [13], described 241

above). 242

Causal network learning methods that we compared to “Learn and Vote” 243

Using the aforementioned networks and datasets, we compared the accuracy of “Learn 244

and Vote” for network inference to the following six algorithms (implemented in R): 245
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• PC: We used the observational datasets to evaluate DAG-equivalent 246

structures [2], and we used Fisher’s z-transformation conditional independence 247

test (varying α from 0 to 1). 248

• GDS: This is a greedy search method [15] to estimate Markov equivalence class of 249

DAG from observational and interventional data. It works by maximizing a 250

scoring function (L0-penalized Gaussian maximum likelihood estimator) in three 251

phases, i.e., addition, removal and reversal of an arrow, as long as the score 252

improves. 253

• GIES: This algorithm [15] generalizes the greedy equivalence search (GES) 254

algorithm (Chickering 2002) to include interventional data into observational data. 255

• Globally optimal Bayesian Network (simy): This is a score-based dynamic 256

programming approach [31] to find the optimum of any decomposable scoring 257

criterion (like BDe, BIC, AIC). This function (simy) estimates the best Bayesian 258

network structure given interventional and observational data but is only feasible 259

up to about 20 variables. 260

• Invariant Causal Prediction (ICP): This method by Peters et al., [32] 261

calculates the confidence intervals for causal effects by exploiting the invariance 262

property of a causal (vs. non-causal) relationship under different experimental 263

settings. We implemented it in R, making use of the 264

InvariantCausalPrediction package. 265

• Sachs et al. method The Bayesian network approach used by Sachs et al. was 266

described in Methods and Datasets above. 267

For each of these methods except PC, the method implementations that we used were 268

adapted for heterogeneous datasets (see citations above). 269

Performance measurement 270

For the purpose of quantifying the accuracies of the nine networks learned by each of 271

the seven network algorithms, we treated the presence of an arc in the ground-truth 272

dataset as a “positive” and its absence as a “negative”. For each inferred network and 273

each algorithm, from the confusion matrix we computed precision, recall, and the F1 274

harmonic mean of precision and recall (we did not compute accuracy due to the 275

inherent class imbalance of sparse networks), as shown in Table 1. 276

Results 277

Effect of interventions on network inference 278

Based on prior studies suggesting that incorporating data from interventional studies 279

improves network inference (see Introduction), we re-analyzed the Sachs et al. [13] 280

biological cell signaling dataset (for which a ground truth network was published [13]) 281

using their published inference approach twice, first using observational samples only 282

(Figure 4a) and then using an equal number of samples comprising 50% observational 283

and 50% interventional data (Figure 4b). We found that sensitivity for detecting cell 284

signaling interactions increases when data from observational and interventional 285

experiments are co-analyzed (Fig. 4b), versus when only data from observational 286

experiments are used (Fig. 4a). These results illustrate the benefit of using data from 287

interventional experiments for causal network reconstruction. 288
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(a) TP: 3, FP: 10, FN: 17 (b) TP: 5, FP: 10, FN: 15 (c) TP: 4, FP: 5, FN: 16

Fig 4. Networks inferred by (a) pooling data from two observational experiments;
(b) pooling data from an observational (anti-CD3/CD28) and an interventional
experiment (AKT inhibitor); and (c) “Learn and Vote” using the same experiments as
in the middle panel. The structure learning statistics used are True Positive (TP), False
Positive (FP) and False Negative (FN). False positives are reduced by avoiding pooling.

Effect of pooling on network inference 289

Based on prior studies suggesting that pooling data from multiple experiments can lead 290

to errors in network learning (see Introduction), we analyzed the same cell signaling 291

dataset as in Fig. 4b, using the “Learn and Vote” method, in which data are not pooled. 292

Compared to the the Sachs et al. inference method which was based on data pooling 293

(Fig. 4b), use of “Learn and Vote” significantly reduced false positives, while increasing 294

the overall robustness of the network learning (Fig. 4c). 295

Systematic comparative studies 296

To study the performance characteristics of “Learn and Vote” for a broader class of 297

network inference applications, we carried out a systematic, empirical comparison our 298

method’s performance with six previously published causal network learning methods 299

using nine datasets (from six underlying networks of small to medium size, as described 300

above in Methods and Datasets), spanning a variety of application domains. 301

Networks learned by the seven methods on the cell signaling dataset 302

On the Sachs et al. dataset, the consensus networks that each algorithm learned are 303

shown in Fig. 5a-g; the networks varied significantly in terms of density, with GDS, 304

GIES, and simy giving large numbers of edges, and PC and ICP giving relatively sparse 305

networks (with the PC network having many ambiguous arc directions). For each of the 306

methods, we tabulated the numbers of correct and incorrect (or missing) arcs in the 307

consensus networks learned (Fig. 5h). The greedy algorithms (Fig. 5b,c) and simy 308

(Fig. 5e) are able to find most of the true positive arcs at the cost of a large number of 309

false positives. The consensus “Learn and Vote” network (Fig. 5g) improved over the 310

consensus network obtained using the Sachs et al. inference method (Fig. 5f), by 311

eliminating six false positive edges and gaining a true positive edge (PIP2 → PKC) 312

(Fig. 5h, rightmost two columns). We further note that two of the putatively false 313

interactions that were detected by “Learn and Vote”, (P38 → pjnk) and 314

(PKC → p44.42), on further study are likely real interactions according to PCViz 315

(www.pathwaycommons.org/pcviz) and PubMed (www.ncbi.nlm.nih.gov/pubmed). 316

Moreover, our method had the lowest number of false positives among all seven methods 317

and was tied for second-highest in terms of the number of true positives (Fig. 5h). 318
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(a) PC (b) GDS (c) GIES (d) ICP

(e) simy (f) Sachs (g) Learn and Vote

Method PC GDS GIES ICP simy Sachs et al. Learn & Vote
True Positive 8 18 17 9 19 17 18
False Positive 6 25 28 0 26 8 2
False Negative 12 2 3 11 1 3 2

(h) Performance

Fig 5. Consensus networks inferred from various algorithms (a-g) on the Sachs et al.
cell signaling dataset. A bidirectional arrow between two nodes denotes that an
interaction is predicted between the two nodes, but the direction of causality is
ambiguous. In the table (h), each row corresponds to a component of the confusion
matrix (true positives, false positives, and false negatives), and each column corresponds
to a causal network inference method.
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Table 1. Multi-dataset performance of “Learn & Vote” versus six other
methods. Each row corresponds to a specific dataset derived from a specific underlying
ground-truth network (as described in detail in Methods and Datasets). Each row is
split into three performance measures (precision, recall, and the “F1” harmonic mean of
precision and recall). For each sub-row, the highest performance measurement is
boldfaced. Each column corresponds to a specific method for causal network inference
(as described in detail in Methods and Datasets), with the performance measures of our
method (“Learn and Vote”) in the rightmost column. The symbol “n/a” denotes that
no performance results were available for that method on that dataset. Here, the
method “simy” is only feasible for networks containing up to 20 nodes, so it failed to
produce results on the larger networks. The network size denotes the number of nodes
in the indicated network. The network type is as follows: RW, real-world; S, synthetic.

Dataset size type Metric PC GDS GIES ICP simy
Sachs
et al.

Learn
&
Vote

Lizards 3 RW
Precision 1 1 1 0 1 1 1

Recall 1 1 1 0 1 0.5 0.5
F1 score 1 1 1 0 1 0.667 0.667

Asia mut1 8 S
Precision 1 0.625 0.625 1 0.316 0.77 1

Recall 0.75 0.625 0.625 0.5 0.75 0.875 0.75
F1 score 0.857 0.625 0.625 0.666 0.444 0.824 0.857

Asia mut2 8 S
Precision 1 0.857 0.857 1 0.304 0.666 1

Recall 0.75 0.75 0.75 0.5 0.875 0.75 0.75
F1 score 0.857 0.8 0.8 0.666 0.493 0.706 0.857

gmInt 8 S
Precision 0.75 0.889 0.889 1 0.889 0.857 1

Recall 0.75 1 1 0.375 1 0.75 0.75
F1 score 0.75 0.94 0.94 0.545 0.94 0.8 0.857

Cell signaling 11 RW
Precision 0.571 0.419 0.377 1 0.422 0.68 0.89

Recall 0.4 0.9 0.85 0.45 0.95 0.85 0.89
F1 score 0.47 0.572 0.522 0.62 0.584 0.756 0.89

Insurance mut1 27 S
Precision 0.714 0.36 0.362 0.7 n/a 0.857 0.8

Recall 0.288 0.346 0.327 0.25 n/a 0.577 0.538
F1 score 0.411 0.352 0.343 0.368 n/a 0.689 0.643

Insurance mut2 27 S
Precision 0.714 0.355 0.366 0.64 n/a 0.676 0.686

Recall 0.288 0.423 0.423 0.21 n/a 0.442 0.461
F1 score 0.411 0.386 0.392 0.316 n/a 0.535 0.552

Alarm mut1 37 S
Precision 0.666 0.25 0.26 0.7 n/a 0.625 0.564

Recall 0.434 0.217 0.26 0.26 n/a 0.446 0.4
F1 score 0.526 0.232 0.26 0.38 n/a 0.52 0.468

Alarm mut2 37 S
Precision 0.666 0.411 0.513 0.6 n/a 0.725 0.769

Recall 0.434 0.456 0.434 0.21 n/a 0.63 0.642
F1 score 0.526 0.432 0.47 0.311 n/a 0.675 0.7
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Quantifying performance of seven network learning algorithms 319

In Table 1, we summarize the performance, in terms of network learning precision, 320

recall, and F1 score of the seven network inference methods applied to nine datasets 321

(with associated ground-truth networks) that were described in Methods and Datasets. 322

In terms of F1 accuracy, while the PC algorithm (which used observational 323

measurements) has strong performance on smaller networks, “Learn and Vote” has 324

superior performance for learning the structure of larger networks. More broadly, 325

“Learn and Vote” outperformed the other six algorithms in five out of nine studies in 326

terms of precision, with the ICP method having second best performance. The positive 327

predictive rate of our approach is higher for small or medium sized networks (i.e., fewer 328

than 20 nodes) but decreases as the size of the network increases. In contrast, the 329

greedy algorithms (GDS, GIES) perform well for smaller networks but suffer from lower 330

precision on larger networks. In terms of F1, our approach outperformed the others in 331

five out of nine studies and is more stable even when the network size increases. For 332

very small networks (i.e., fewer than 10 nodes), the PC-based approach has good 333

sensitivity, however, it leaves many of the arc directions ambiguous (Fig. 5a). 334

Sensitivity to threshold 335

To study the sensitivity of our results to the threshold parameter (which was set to 0.5) 336

for predicting a causal arc, we compared the performance of “Learn and Vote” to that 337

of the Sachs et al. method on three different network datasets (cell signaling, Asia mut1, 338

and Asia mut2; see Methods and Datasets) by plotting the sensitivity versus false 339

positive error rate (FPR) for various threshold values (Fig. 6a). On all three datasets, 340

in terms of area under the sensitivity-vs-FPR curve, “Learn and Vote” has a higher 341

score than the Sachs et al. method, with the most significant performance gap occurring 342

at thresholds where the specificity is in the range of 0.7–0.9. 343

(a) Cell signaling (b) Asia mut1 (c) Asia mut2

Fig 6. Sensitivity vs. FPR for “Learn and Vote” and the Sachs et al. method on three
datasets: (a) Sachs et al. cell signaling; (b) Asia lung disease (mut1); and (c) Asia lung
disease (mut2). The line plots are nonmonotonic due to the use of different random
initial DAGs for different points on the line plot.

Effect of sample size 344

It seems intuitive that in cases where single-experiment sample sizes are very small, 345

separately analyzing data from individual experiments would be expected to perform 346

poorly relative to a pooling-based approach like the Sachs et al. method. To test this, 347

we analyzed the how the relative performances of “Learn and Vote” and the Sachs et al. 348

method vary with sample size on the Sachs et al. dataset (for which the Sachs et al. 349

method was specifically developed). We sampled equal numbers of data points from 350

each experiment to prevent bias towards a particular experiment. Fig. 7 shows the 351

performance of our method versus the Sachs et al. method by varying the numbers of 352
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samples used from each experiment. When the number of samples per experiment is 353

very small, learning from pooled data gives a better result. For the Asia network, which 354

has eight nodes, when the number of samples per experiment is very small (e.g., 20 355

samples), the performance of “Learn and Vote” is no better than the pooling-based 356

Sachs et al. method (Fig. 7b-c). Hence, when only a small amount of data are available 357

it is a good idea to combine them irrespective of experimental conditions. However, for 358

large enough sample size, we see that pooling degrades accuracy of network 359

reconstruction. 360

(a) Cell signaling (b) Asia mut1 (c) Asia mut2

Fig 7. F1 vs. sample size for Learn and Vote and the Sachs et al. method, for three
datasets.

Discussion 361

Taken together, our results (Fig. 5 and Table 1) suggest that for analyzing datasets 362

from studies that have imperfect interventions, greedy analysis methods (e.g., GDS, 363

GIES) are not as accurate as “Learn and Vote”. On the other hand, ICP is conservative 364

due to its strict invariance property and helps reduce false causal arcs to a great extent, 365

but at the cost of sensitivity (Fig. 5d). The relatively poor performance of the PC 366

method on the Sachs et al. dataset likely reflects the fact that it does not utilize 367

interventional data. In future work, we plan to study the case of handling uneven 368

samples of data from different experiments. We also plan to extend the work by 369

choosing which interventional target is more informative in an unknown network 370

structure. Another improvement of our approach is to see how choosing the number of 371

random DAGs (we have taken 100) scales with network size. For example, in case of 372

larger graphs, 100 might not be sufficient while in smaller graphs it could be overkill. 373

One possible improvement to “Learn and Vote” would be an adaptive method for 374

selecting the number of random initial DAGs; this is an area of planned future work. 375

Conclusion 376

We report a new approach, “Learn and Vote,” for learning a causal network structure 377

from multiple datasets generated from different experiments, including the case of 378

hybrid observational-interventional datasets. Our approach assumes that each dataset is 379

generated by an unknown causal network altered under different experimental 380

conditions (and thus, that the datasets have different distributions). Manipulated 381

distributions imply manipulated graphs over the variables, and therefore, combining 382

them to learn a network might increase statistical power but only if it assumes a single 383

network that is true for every dataset. Unfortunately, this is not always the case under 384

uncertain interventions. Our results are consistent with the theory that simply pooling 385

measurements from multiple experiments with uncertain interventions leads to spurious 386

changes in correlations among variables and increases the rate of false positive arcs in 387
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the consensus network. In contrast, our “Learn and Vote” method avoids the problems 388

of pooling by combining experiment-specific weighted graphs. We compared “Learn and 389

Vote” with six other causal learning methods on observational and interventional 390

datasets having uncertain interventions. We found that for most of the larger-network 391

datasets that we analyzed, “Learn and Vote” significantly reduces the number of false 392

positive arcs and achieves superior F1 scores. However, for cases where sample size per 393

experiment is very small, we found that pooling works better. Our findings (i) motivate 394

the need to focus on the uncertain and unknown effects of interventions in order 395

improve causal network learning precision, and (ii) suggest caution in using causal 396

learning algorithms that assume perfect interventions, in the context of real world 397

domains that have uncertain intervention effects. 398
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