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ABSTRACT 24 

Tuberculosis (TB) represents a global public health threat and is the leading cause of morbidity 25 

and mortality worldwide. Effective control of TB is complicated with the emergence of multidrug 26 

resistance. Yet, there is still a fundamental gap in understanding the complex and dynamic 27 

interactions between different Mycobacterium tuberculosis strains and the host. In this project, we 28 

investigated the host immune response to different M. tuberculosis strains, including avirulent or 29 

virulent and rifampin-resistant or isoniazid-resistant strains in THP-1 cells. We identified major 30 

differences in the gene response profiles in response to infection with these strains. The expression 31 

of IDO1 and IL-1b in the infected cells was stronger in all virulent M. tuberculosis strains. The 32 

most striking result was the overexpression of many interferon-stimulated genes (ISGs) in cells 33 

infected with the isoniazid-resistant strain, compared to the rifampin-drug resistant strain and the 34 

drug-sensitive strain. A transcription regulation analysis of the differentially expressed genes in 35 

infected THP-1 cells implicated two major transcription factors, NF-kB and STAT1. The 36 

differentially expressed ISGs in response to the isoniazid-resistant M. tuberculosis strain were 37 

associated with STAT1 signaling, while the expression of many cytokines, such IL-1b, was 38 

associated with NF-kB signaling. Our data suggest that the isoniazid-resistant M. tuberculosis 39 

strain preferentially activates STAT1 in response to cGAS-STING activation and induces a host 40 

immune response signature that is characteristic of isoniazid resistance. This study has a potential 41 

to provide important new insights into TB pathogenesis and to characterize host gene signatures 42 

specifically involved in isoniazid-resistant TB. 43 
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INTRODUCTION 47 

Tuberculosis (TB) represents a disease of global public health importance and a leading cause of 48 

morbidity and mortality worldwide, surpassing HIV/AIDS (1, 2). One third of the world’s 49 

population is currently infected with Mycobacterium tuberculosis, with more than 10 million new 50 

cases of active TB reported worldwide resulting in more than 1.6 million deaths annually. The 51 

emergence of drug-resistant TB and the increasing incidence of multidrug-resistant (MDR) and, 52 

more recently, of extensively drug-resistant (XDR) and totally drug-resistant (TDR) M. 53 

tuberculosis strains are a highly significant public health threat and jeopardize current efforts to 54 

TB control and prevention (3-5). 55 

Besides the ability to acquire mutations in target genes conferring resistance to 56 

antimicrobial drugs, M. tuberculosis strains also show a high degree of intrinsic resistance to most 57 

common antibiotics (6). This allows the mycobacteria to efficiently resist anti-tuberculous 58 

treatment. As a consequence, the molecular characterization of drug-resistant M. tuberculosis 59 

strains remains technically challenging (7-9). There is an urgent need to develop alternative and 60 

more sensitive approaches to identify M. tuberculosis strains in order to implement better measures 61 

to minimize the acquisition of further drug resistance, prevent TB transmission, and ultimately 62 

improve TB control and prevention strategies. 63 

The M. tuberculosis cell wall has a complex composition and structure. It is considered to 64 

be a major virulence factor and to promote the natural resistance of M. tuberculosis to antibiotics 65 

(10). Mycolic acids represent the hallmark component of the M. tuberculosis cell wall and their 66 

biosynthesis and regulation are the targets of isoniazid (INH), one of the cornerstone drug of TB 67 

treatment (11, 12). Interestingly, the cell wall is significantly thicker in drug-resistant M. 68 
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tuberculosis strains compared to drug-sensitive strains, further underscoring the importance of 69 

mycolic acids biosynthesis in INH-resistant M. tuberculosis strains (13). 70 

Cell wall lipids in M. tuberculosis play a significant role in modulating the host immune 71 

response, as well as its pathogenic processes and virulence (14-17). However, our understanding 72 

of the host-M. tuberculosis interaction is still limited, and many fundamental gaps remain in how 73 

this interaction could be altered in response to different M. tuberculosis strains. Infections with 74 

different M. tuberculosis genotypes have major impacts on host-pathogen interaction, which can 75 

lead to substantial differences in the host immune responses (18-20). Some mycobacterial lineages 76 

(e.g., Beijing) even showed polymorphic properties in immune response genes, suggesting a 77 

possible human-pathogen co-evolution (21). The immune response of infected macrophages also 78 

showed a wide variation in the response to different M. tuberculosis lineages (22). However, 79 

further work is needed to explore the host immune response to different M. tuberculosis strains. In 80 

this study, we tackled this question and investigated the host immune response to different M. 81 

tuberculosis strains, including avirulent or virulent and rifampin-resistant or isoniazid-resistant 82 

strains in THP-1 cells. Shifting the focus on the host-pathogen interaction in M. tuberculosis 83 

infection and the identification of specific host responses to M. tuberculosis strains have the 84 

potential to develop biomarkers for novel and more sensitive diagnostic tools for TB. The 85 

identification of TB patients at an early stage, particularly those carrying drug-resistant strains, is 86 

crucial in order to begin an appropriate therapy as quickly as possible and improve our efforts for 87 

TB control. 88 

 89 

MATERIALS AND METHODS 90 

Cell line treatment and M. tuberculosis infection 91 
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For this study, we used human monocytic THP-1 cells (American Type Culture Collection; 92 

Catalog no. TIB-202). The cells were maintained in RPMI 1640 medium supplemented with 10% 93 

heat-inactivated fetal bovine serum (FBS) at 37°C and 5% CO2 in a humidified incubator. THP-1 94 

cells were subsequently differentiated for 48 hours with 10 ng/ml phorbol 12-myristate 13-acetate 95 

(PMA). The cells were then infected with four different reference mycobacterial strains (H37Ra, 96 

H37Rv, H37Rv-INH-R, H37Rv-RIF-R), kindly provided by Dr. Lisa Y. Armitige (Heartland 97 

National TB Center). Both H37Ra (American Type Culture Collection; Product no. 25177) and 98 

H37Rv (American Type Culture Collection; Product no. 27294) are drug-sensitive, whereas 99 

H37Rv-INH-R (American Type Culture Collection; Product no. 35822) and H37Rv-RIF-R 100 

(American Type Culture Collection; Product no. 35838), both of which are derivatives of H37Rv, 101 

are resistant to isoniazid and rifampin, respectively. We used two time points for infection (4 and 102 

24 hours) in order to monitor differences in gene expression patterns for differentially expressed 103 

genes. In addition to the infected THP-1 samples, we also used uninfected control cells (mock-104 

infected with PBS) as negative controls. 105 

 106 

RNA isolation and processing 107 

Total RNA was extracted from controls and infected cells (10 samples in total, with 5 samples for 108 

each time point), using Trizol according to the manufacturer’s protocol. RNA was then suspended 109 

in RNase-free water and stored at -80°C until further use. RNA quality was assessed to verify its 110 

integrity using Agilent 2100 Bioanalyzer (Agilent Technologies) and RNA quantity was evaluated 111 

by spectrophotometry using NanoDrop 2000 (NanoDrop Technologies). All RNA samples showed 112 

good RNA yield and no RNA degradation. Total RNA was then reverse transcribed to cDNA, 113 

amplified, labeled and hybridized to separate arrays using the GeneChip Human Exon 1.0 ST 114 
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Array (Affymetrix, USA), according to the manufacturer’s instructions. For transcriptional 115 

profiling, we used triplicate hybridization assays in our microarray experiments in order to assess 116 

variability among independent labeling reactions and hybridizations. Quality control of the 117 

hybridized arrays was also performed for each sample. A visual inspection of the scanned images 118 

was conducted looking for any defects, areas of high background, or areas of low signal. The spike-119 

in controls were checked as well to examine for hybridization uniformity. 120 

 121 

Microarray data analysis 122 

Data from all 10 samples were preprocessed, summarized at the transcript-cluster (gene) level, and 123 

RMA normalized using Affymetrix Power Tools. Prior to differential expression analysis, low-124 

variability genes were filtered out, leaving 13,460 genes. Differential expression analyses were 125 

conducted using the R/Bioconductor package limma (23). Significant differential expression was 126 

defined by an adjusted p-value of less than 0.05. The visualization of the identified differentially 127 

expressed genes in the volcano plots was performed using base R graphics. 128 

 129 

RESULTS 130 

In this study, we generated gene expression profiles of THP-1 cell lines infected with different 131 

reference M. tuberculosis strains (H37Ra, H37Rv, H37Rv-INH-R, H37Rv-RIF-R). The choice for 132 

this study design allowed us to focus on M. tuberculosis strain-specific alterations in the 133 

transcriptional response and to avoid putative confounding differences that might be related to the 134 

genetic variability of clinical M. tuberculosis strains and macrophages isolated from different 135 

subjects. The multidimensional scaling (MDS) plot for the microarray expression data clearly 136 
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showed well-separated grouping according to infections vs mock infections and time points of 137 

infections, and also that replicate samples clustered together (Fig. 1). 138 

Among the total number of differentially expressed genes between infected THP-1 cells 139 

and mock-infected cells, we found major differences in those genes, depending on the M. 140 

tuberculosis strain used for infection. A higher number of differentially expressed genes was 141 

detected in infected cells with all virulent M. tuberculosis strains (H37Rv, H37Rv-INH-R, H37Rv-142 

RIF-R), compared to the infection with the non-virulent strain (H37Ra) (Fig. 2). This difference 143 

was even more pronounced at 24 h post-infection when we performed pairwise comparisons in 144 

infected cells (Fig. 3). Based on this finding, the subsequent analyses were therefore based on that 145 

time of infection (24 h), instead of 4 h post-infection. A total of 3,622 differentially expressed 146 

genes (p<0.05) was identified in response to H37Rv-INH-R infection. 147 

At 24 h post-infection, we identified differences in the gene response profiles between the 148 

strains. The expression of IDO1 and IL-1b was enhanced in all infections with the virulent 149 

reference strains, except H37Ra (Fig. 4). However, the most striking and unexpected result was 150 

the overexpression of many interferon-stimulated genes (ISGs) in the THP-1 cells infected with 151 

H37Rv-INH-R, in comparison to cells infected with the other M. tuberculosis strains (Fig. 5). Our 152 

data also showed that protein kinase R (PKR/eIF2aK2) is most strongly induced in THP-1 cells 153 

infected with H37Rv-INH-R. A subset of the differentially expressed host genes is shown in figure 154 

5. In this figure, we can see a panel of differences in the host expression profile. The gene 155 

expression changes between infections with H37Rv-INH-R vs the other strains are also shown in 156 

the volcano plots (Fig. 6). 157 

To determine the key transcription factors that potentially regulate the differentially 158 

expressed genes in infected THP-1 cells, we performed a transcription regulation analysis using 159 
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pathway relation network (pathway-net: http://pathwaynet.princeton.edu/) (24). Two major 160 

transcription factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and 161 

signal transducer and activator of transcription 1 (STAT1), were identified in this analysis. Our 162 

analysis showed that the differentially expressed ISGs in H37Rv-INH-R were associated with 163 

STAT1 signaling, while the expression of many cytokines, such IL-1b, was associated with NF-164 

kB signaling.  165 

 166 

DISCUSSION 167 

Our study showed major differences in the host response to different M. tuberculosis strains. We 168 

also showed that the infection with H37Rv-INH-R induced an unexpected overexpression of ISGs 169 

in THP-1 cells. Our data indicated that STAT1 is the major transcription factor associated with the 170 

differentially expressed genes (e.g., ISGs) in response to H37Rv-INH-R infection. 171 

Multiple recognition and signaling pathways for the host innate immune responses to M. 172 

tuberculosis have been documented and characterized (25). The main signaling pathways in M. 173 

tuberculosis are TLR2-MyD88 and cGAS-STING. In this study, the overexpression of ISGs in the 174 

cells infected with H37Rv-INH-R suggests a stronger induction of STAT1 as a result of cGAS-175 

STING activation, rather than TLR2-MyD88 activation in the differential host response to INH-176 

resistant TB. In addition to the overexpression of ISGs in the cells infected with the isoniazid-177 

resistant M. tuberculosis strain, we also found a higher induction of PKR/eIF2aK2 in those cells. 178 

This result is even more exciting, since there has been recently an increasing interest in 179 

PKR/eIF2aK2, a key player in the innate immune response to viral infections, for its potential 180 

ability to improve TB control (26-29). Recent studies have also shown an important role of NF-181 
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kB dynamics in TB pathogenesis (30, 31). NF-kB was the other major transcription factor 182 

associated with the differentially expressed genes, which was identified in this study.  183 

Resistance to INH is linked to all multidrug-resistant forms of TB (MDR, XDR, TDR). 184 

Several studies have shown that INH resistance is acquired first, followed by resistance to rifampin 185 

and the other anti-TB drugs (32-36), which highlights the significant impact of INH in the success 186 

of treatment in active and latent TB and warrants further efforts to understand the global burden 187 

of INH-resistant TB (37). Fig. 7 shows our proposed model for the host signaling response to the 188 

different reference M. tuberculosis strains (H37Ra, H37Rv, H37Rv-INH-R, H37Rv-RIF-R). 189 

 The mechanism of INH resistance is complex and has been thoroughly studied in an 190 

attempt to improve early diagnosis of INH-resistant M. tubeculosis strains (36, 38-44). It is mainly 191 

mediated by mutations in the katG gene or in the inhA regulatory regions (45). INH is activated 192 

by the catalase-peroxidase encoded by katG. This process interferes with the biosynthesis of 193 

mycolic acids by inhibiting NADH-dependent enoyl-ACP reductase encoded by inhA. Mutations 194 

in other genes have been also associated with INH resistance, however they are not as common as 195 

the ones in katG (42 to 95%) and inhA (6 to 43%) in M. tuberculosis clinical strains and their mode 196 

of action in INH resistance has not been fully elucidated (46). Nevertheless, not all INH-resistant 197 

strains harbor defined genetic mutations associated with resistance to this drug, which complicates 198 

efforts to identify those strains. There are also INH resistance-conferring mutations that cannot be 199 

detected by current molecular diagnostics approaches (33). In addition, some studies indicated that 200 

some M. tuberculosis strains acquire drug resistance at higher rates, suggesting a higher mutation 201 

rate in these strains and a higher probability that these strains will develop multidrug resistance 202 

(47, 48). 203 
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 Given our results, the differential host immune response to different M. tuberculosis strains 204 

(e.g. overexpression of ISGs in the cells infected with H37Rv-INH-R) provides opportunities to 205 

develop host biomarkers for INH resistance and defines a new facet of host-pathogen interactions 206 

that differentially regulate signaling pathways in response to INH-resistant and other M. 207 

tuberculosis strains. The characterization of such host response signatures has the potential to 208 

develop novel diagnostic tools and improve our understanding of the complex and dynamic 209 

interactions between M. tuberculosis strains and the host. 210 

 211 
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FIGURES 363 

Figure 1: 364 

MDS Plot for differential gene expression of M. tuberculosis-infected vs mock-infected THP-1 365 

cell lines at 4 h and 24 h post-infection. 366 
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Figure 2: 376 

Number of differentially expressed genes in M. tuberculosis-infected THP-1 cell lines, relative to 377 

mock-infected cells, at 4 h and 24 h post-infection (p<0.05). 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

0

1,000

2,000

3,000

4,000

5,000

6,000

R
a-

S

R
a-

S

R
v-

S

R
v-

S

R
v-

R-
IN

H

R
v-

R-
IN

H

R
v-

R-
Ri

f

R
v-

R-
Ri

f

N
um

be
r o

f D
E

4 h
24 h

H37Ra H37Rv H37Rv-INH-R H37Rv-RIF-R

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.19.955203doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.955203
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: 388 

Number of differentially expressed genes in the pairwise comparisons of M. tuberculosis-infected 389 

THP-1 cell lines at 4 h and 24 h post-infection (p<0.05). 390 
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Figure 4: 405 

Fold change in the expression of IDO1 and IL-1b in THP-1 cell lines infected with reference M. 406 

tuberculosis strains (24 h post-infection; p<0.05). 407 
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Figure 5: 420 

Fold change in gene expression in THP-1 cell lines infected with reference M. tuberculosis strains 421 

(24 h post-infection; p<0.05). 422 
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Figure 6: 437 

Volcano plots displaying differential expression genes in THP-1 cells in three different comparison 438 

groups (24 h post-infection; p<0.05). The 20 highly significant differentially expressed genes in 439 

each plot are indicated in the insets. 440 
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Figure 7: 444 

Proposed model for host signaling response to reference M. tuberculosis strains. H37Rv-INH-R 445 

induces the highest expression of ISGs and PKR, compared to the other strains, as indicated by the 446 

circles and the big font size. 447 
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