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ABSTRACT  1 

Apico-basal cell intercalations (scutoids) optimize packing and energy 2 

expenditure in curved epithelia. Further consequences of this new paradigm of 3 

tissue packing remain uncharacterized. In particular, how scutoids modify the 4 

3D cellular connectivity is an open question. This property is crucial for 5 

understanding epithelial architecture and is instrumental for regulating the 6 

biological function of tissues. Here, we address this problem by means of a 7 

computational model of epithelial tubes and a biophysical approach that links 8 

geometrical descriptors with the energetic cost required to increase the cellular 9 

connectivity. Our results predict that epithelial tubes satisfy a novel 10 

quantitative principle: the “Flintstones’ law”. In short, cellular connectivity 11 

increases with tissue thickness/curvature in a logistic way. We confirm 12 

experimentally the existence of this principle using Drosophila’s salivary 13 

glands. Our study provides methodological advances to analyze tissue 14 

packing in 3D and, more importantly, unveils a morphogenetic principle with 15 

key biological consequences. 16 

KEYWORDS  17 

Epithelial architecture, Tubulogenesis, Mathematical/Biophysical modeling, 18 

Computational geometry, Developmental systems biology, Cellular 19 

connectivity.  20 
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INTRODUCTION 1 

During the last decades much progress has been achieved in the 2 

understanding of the emergence of self-organization in tissues. This problem 3 

has been addressed from the viewpoint of energetics considerations (Alt et al., 4 

2017; Canela-Xandri et al., 2011; Fletcher et al., 2014; Misra et al., 2017; 5 

Nelson et al., 2005; Siedlik et al., 2017; Sugimura et al., 2016; Trepat et al., 6 

2009), material-like properties (Bi et al., 2015; Campàs et al., 2014; Latorre et 7 

al., 2018; Mongera et al., 2018; Pérez-González et al., 2019; Yang et al., 8 

2017), and the analysis of the packing properties. As for the latter, the analysis 9 

of epithelial surfaces as tessellations of convex polygons has been 10 

successfully used to quantitatively understand different biological aspects such 11 

as tissue patterning, cell division, and growth (Box et al., 2019; Curran et al., 12 

2017; Farhadifar et al., 2007; Gibson et al., 2006, 2011; Honda, 1978; Lewis, 13 

1928; Mao et al., 2013; Sánchez-Gutiérrez et al., 2016; Thompson, 1945). 14 

Importantly, these studies have also revealed the validity of mathematical 15 

principles with biological consequences. One relevant example are the 16 

implications of Euler´s formula (Reinhardt, 1918; Wetzel, 1926) about cellular 17 

connectivity. This formula implies that polygonal cells in packed tissues, on 18 

average, have six neighbors (i.e., the average 2D cellular connectivity reads  19 ����� � 6). As for its biological consequences, the degree of cellular 20 

connectivity determines, for example, the strength of the cell-cell juxtracrine 21 

signaling (Tung et al, 2012; Sharma et al, 2019; Perrimon et al, 2012). Not 22 

surprisingly, the validity of this connectivity principle to the third dimension has 23 

been taken for granted since the role played by apico-basal cell intercalations 24 

has been disregarded and cells have been assumed to have prismatic-like 25 

shapes in either planar or bent epithelia. 26 

However, the recent discovery of more complex cellular geometries in 27 

epithelial cells, i.e.,  scutoids, to reach an efficient three-dimensional (3D) 28 

tissue packing has set a new paradigm that has not been yet fully explored 29 

(Gómez-Gálvez et al., 2018; Mughal et al., 2018; Rupprecht et al., 2017). 30 

Scutoids imply spatial changes in the neighboring relationship between cells 31 

(Fig. 1A). This phenomenon is then a spatial version of the T1 transitions that 32 

produce cell rearrangements with time in numerous developmental processes 33 
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(Bertet et al., 2004; Irvine and Wieschaus, 1994; Spencer et al., 2017). Thus, 1 

the presence of scutoids necessarily modifies the connectivity and the 2 

biophysical properties of tissues. Still, the analysis of tissue organization in a 3 

3D context, and the corresponding biological repercussions, have been 4 

hindered by the technical difficulties to accurately segment and reconstruct 5 

cells from apical to basal surfaces. In addition, very few computational models 6 

account for the presence of apico-basal transitions to investigate 3D self-7 

organization in tissues (Gómez-Gálvez et al., 2018; Mughal et al., 2018; 8 

Okuda et al., 2019; Rupprecht et al., 2017).  9 

The realistic analysis of 3D packing is in turn utterly relevant in epithelial 10 

tubes, where scutoids appear more frequently (Gómez-Gálvez et al., 2018; 11 

Iruela-Arispe and Beitel, 2013; Sanchez-Corrales et al., 2018). Epithelial tubes 12 

are in fact the primary developmental structures in all organisms with bilateral 13 

symmetry (Gilbert and Barresi, 2016) and tubulogenesis is fundamental in a 14 

broad variety of key developmental processes, including gastrulation and 15 

neurulation (Colas and Schoenwolf, 2001; Iruela-Arispe and Beitel, 2013; 16 

Leptin and Grunewald, 1990; Nelson, 2009; Pilot and Lecuit, 2005; Swanson 17 

and Beitel, 2006). Furthermore,  epithelial tubes are the essential functional 18 

unit of many mammalian organs, including glands, components of the 19 

digestive apparatus, lungs, and kidney (Huebner and Ewald, 2014). Hence, 20 

the faithful formation and function of tubes requires the precise coordination of 21 

dynamic changes in the tissue architecture, i.e., packing, during development 22 

(Röper, 2018).  23 

Here, we study the packing and the 3D cellular connectivity properties of 24 

epithelial tubes. We show that the presence of scutoids implies a breakdown 25 

of the principle ����� � 6 and reveal a novel law that quantitatively links the 3D 26 

cellular connectivity, geometrical descriptors (e.g., tissue curvature/thickness), 27 

and energetics. Our findings are supported by i) a computational model that 28 

realistically render the 3D cellular organization of tubular epithelia (including 29 

the appearance of scutoids); ii) a biophysical model, supported by 30 

mathematical calculations, that connects the tissue energetics with the 3D 31 

organization of epithelial tubes; and iii) experimental data of epithelial tubes 32 
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(Drosophila’s salivary gland) whose 3D cellular structure has been accurately 1 

characterized by means of a novel computer-aided image analysis method. 2 

Altogether, by realistically capturing the organization of cells in tubular 3 

epithelia, we shed light on the important issue of how tissues are 3D shaped 4 

and we open the door to understand quantitatively key morphogenetic events 5 

that ultimately depends on the 3D cellular connectivity. 6 

 7 

RESULTS 8 

A computational model unveils the connectivity properties of tubular 9 
epithelia 10 

To understand how the geometry of tubular epithelia affects the 3D cellular 11 

packing and connectivity, we designed and implemented a computational 12 

Voronoi tubular model (Gómez-Gálvez et al., 2018) (Materials and Methods). 13 

We analyzed tubes with an increasing surface ratio (radial expansion), 14 �� � ��/�� (Fig. 1B). This parameter quantifies the ratio of the non-trivial 15 

curvatures of apical and basal tubular surfaces, 	�/	� � ��/�� � ��, and it is 16 

a proxy for the dimensionless tissue thickness, 
�� � ���/�� � 
�� � 1�. In 17 

addition, we explored the cellular organization of tubes by using a Centroidal 18 

Voronoi Tessellation (CVT) scale (Fig. 1C). The CVT scale accounts for the 19 

number of iterations of the homogenizing Lloyd’s algorithm and makes 20 

possible to analyze the effect of the topological order of the tissue (Materials 21 

and Methods) (Gómez-Gálvez et al., 2018; Sánchez-Gutiérrez et al., 2016).  22 

Our results showed that the average number of apico-basal intercalations 23 

per cell, ��
����, (Fig. 1D), and therefore the percentage of cells adopting the 24 

scutoidal shape (Fig. S1), increases with �� and decreases as tubes become 25 

more ordered (i.e., as the CVT index increases). To further uncover the 3D 26 

organization of tissues, we implemented a benchmark able to reveal 27 

simultaneously the existence of apico-basal intercalations (scutoids) and the 28 

polygonal distributions of cells. To that end, we computed the probability that 29 

cells change their polygonal class between the apical and basal surfaces. 30 

Thus, the components (i.e., bins) of this distribution along the diagonal 31 

account for prismatic cells (Fig. 2A) whereas the spreading away from the 32 

diagonal reveals the existence of scutoids (cells that exchange neighbors due 33 
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to apico-basal intercalations) and, consequently, changes in the cellular 3D 1 

connectivity in the tissue (Fig. 2B). In agreement with the results shown in Fig. 2 

1D, our data indicates that the degree of spreading of the distribution (as 3 

quantified by the parameter,  ��, Materials and Methods) increases with the 4 

surface ratio and decreases when the initial (i.e., apical) Voronoi diagram 5 

became more ordered, that is, as the CVT increases (Fig. 2C).  6 

Moreover, we computed the average of the total number of contacts of the 7 

cells, �����, as a function of the surface ratio and the initial Voronoi diagram 8 

(Fig. 2D). Our data are quantitatively consistent with a mathematical derivation 9 

that shows that ����� is linearly proportional to the number of apico-basal 10 

intercalations (Materials and Methods and Fig. S1). Also, these results 11 

indicated that the average cellular connectivity grows as the tissue thickness 12 

and the randomness of cellular organization increases. 13 

In summary, our computational model suggests a relation between the 14 

tissue geometry (i.e., cell thickness/curvature), the cellular planar topological 15 

order (CVT index), and the 3D cellular connectivity in epithelial tubes. 16 

 17 

The 3D neighbor’s accumulation follows a “poor get richer” principle 18 

In order to shed light on the underlying mechanisms that determine the 19 

degree of 3D cellular connectivity in our model of tubular epithelia, we 20 

computed the net gain of cellular neighbors as a function of the radial 21 

expansion (thickness/curvature of tubes) and the topological properties of cells 22 

(CVT index and polygonal class at the apical surface). As a general trend, we 23 

observed that, independently of the radial expansion, the smaller the number 24 

of neighbors at the apical surface the larger the net gain of 3D cellular 25 

contacts (Fig. 3A and B and Fig. S2). Additionally, we also checked that this 26 

tendency is satisfied when estimating the net gain of neighbors accumulated 27 

from the basal to the apical surface (Fig. S2). These results suggest that in the 28 

Voronoi tubular model the 3D cell packing follows a “poor get richer” principle 29 

driven by apico-basal intercalations: the less neighbors a cell has in a surface 30 

(apical or basal), the larger the net increase of cellular contacts. Interestingly, 31 

this result is akin to the behavior found in planar geometries that indicates that 32 
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the probability of undergoing a T1 transition increases as the number of 1 

neighbors decreases (Bi et al., 2014), see Discussion. 2 

An energetics model suggests that cellular connectivity satisfies a 3 

logistic-like law 4 

In light of this evidence, and in order to better understand the dependence 5 

of the tissue self-organization on the radial expansion, � � �/��, we 6 

developed a biophysical model (a Kolmogorov rate equation) that accounts for 7 

the probability of cells to increase their 3D connectivity (Fig. 4A and B and 8 

Materials and Methods): 9 

����	


�	
� ���

�����
,� � ��
����,��
                            (1) 10 

where, ��, is the probability of having � accumulated 3D neighbors (i.e., 11 � � ���) as the surface ratio changes from � to � � ��, and ��,��
 accounts for 12 

the rate per unit of surface ratio of undergoing an apico-basal intercalation. By 13 

drawing parallels between apico-basal intercalations and planar T1 transitions 14 

(Gómez-Gálvez et al., 2018; Sanchez-Corrales et al., 2018) we assumed that 15 

cells need to overcome an energy barrier to gain a 3D neighbor, that is, 16 ��,��
~��∆�� (Fig. 4A and B). The “poor get richer” principle suggests that ∆��  17 

grows as � increases. In addition, our mathematical calculations proved that 18 

the apico-basal intercalation rate becomes null for a finite value of � (Box and 19 

Materials and Methods): neighbors’ gaining is necessarily bounded or, 20 

energetically speaking, the energy barrier to undergo an apico-basal transition 21 

becomes eventually infinite. All these facts led to the following expression for 22 

the apico-basal intercalation rate:  ��,��
 � �
���� � ������, where � is a ‘bare’ 23 

transition rate, � is the dimensionless energy (in units of the four-fold vertex 24 

energy configuration) per 3D neighbor that a cell needs to increase its 25 

connectivity to an additional cell, and ���� is the maximum 3D cellular 26 

connectivity (Materials and Methods).  27 

The fitting of the in silico data about the average tissue connectivity, 28 ����
��� � ∑ �� ��
��, to this biophysical model showed an excellent 29 

agreement and confirmed that ����� � 6 as long as the tissue is subjected to 30 

some level of anisotropic curvature (Fig. 4C, Fig. S3 and Materials and 31 

Methods). We also observed that the energy required per 3D neighbor to 32 
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undergo an intercalation, �, quickly reached a plateau, � � 5 ! 10��, as the 1 

tissue became more ordered (i.e., as the CVT index increases). Our results 2 

also indicate that in Voronoi tubes the scutoidal geometry enables a 3 

theoretically increase of the average 3D cellular connectivity up to 4 ������~12 � 15 cells (Table S1). In addition, the plausibility of the Kolmogorov 5 

approach was further assessed by predicting the 3D neighbor distribution, 6 ��
��, thus confirming that a link between geometrical and energetic traits 7 

determines the cellular connectivity in the Voronoi tubular model (Fig. 4C). 8 

We also obtained theoretically an analytical formula that characterizes the 9 

average 3D cellular connectivity, �����  (Box and Materials and Methods). 10 

We concluded that in the Voronoi tubular model ����� can be described by a 11 

logistic-like behavior, 12 

����
��� $ ������ 
������

���

�
�

�

, (2) 13 

where %, &, and � are non-independent parameters that are functions of �, �, 14 

and ������ (Table S1 and Materials and Methods). We refer to this logistic-15 

like principle as the “Flintstones’ law” after the Stone-Age cartoon characters. 16 

We argue that this organizing principle is as ancient as the first organized 17 

tissue found in evolution: epithelia (hereby the name). 18 

The analysis of computational tubes revealed the validity of the Flintstones’ 19 

law as an effective way to determine the cellular connectivity in a model of 20 

tubular epithelia as a function of the radial expansion (Fig. 4C and Fig. S3). 21 

More importantly, it provides a straightforward way to estimate/predict the 22 

value of the underlying energetic properties regulating apico-basal 23 

intercalations and the limiting average 3D cellular connectivity (Table S1).  24 

 25 

Experiments confirm that the 3D cellular connectivity in tubular epithelia 26 

satisfies the Flintstones’ law 27 

In order to confirm our computational and theoretical predictions, we 28 

implemented a novel methodological pipeline that combines several 29 

computational image analysis techniques to accurately segment cells of in vivo 30 

epithelial tubes (Arganda-Carreras et al., 2017; Machado et al., 2019) 31 
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(Materials and Methods). We used the Drosophila larval salivary gland as a 1 

model due to its ideal characteristics to study complex tubular architectures 2 

(Girdler and Röper, 2014) (Fig. 5A-C). 3 

Our methodology allowed to determine the average surface ratio of the 4 

salivary glands (�� � 4.0 ) 0.4 ), ����
���� � 6.7 ) 0.2,  the average percentage 5 

of scutoids (76 ) 11%�, and the average number of apico-basal intercalations 6 

per cell, ��
���� � 1.4 ) 0.4, thus confirming the validity of the formula that 7 

relates apico-basal intercalations per cell and the average connectivity: 8 ����� � 6 � ���/2 (Materials and Methods and Fig. S1). We also calculated 9 

the polygonal class distribution in the apical and basal surfaces (Fig. S4). 10 

Interestingly, in spite of the prevalence of scutoids, the polygonal organization 11 

of apical and basal surfaces was found to be the same and equivalent to that 12 

obtained in in silico V8 tubes with a radial expansion �� � 1.75 (Fig. S4). This 13 

V8 model (�� � 1.75) also displayed a similar scutoidal prevalence (79 ) 5%�, 14 

average number of 3D neighbors, average number of apico-basal 15 

intercalations per cell, and �� spreading that in vivo tubes (Fig. 5D and Fig. 16 

S4). We additionally confirmed that the apical and basal surfaces of the V8 17 

model and the salivary glands fulfilled, as expected, that ����� $ 6 (Reinhardt, 18 

1918; Wetzel, 1926) (Fig. S4). Thus, we concluded that the in silico V8 model 19 

with a radial expansion of �� � 1.75 faithfully recapitulates the 3D packing 20 

properties of in vivo salivary glands.  21 

As for the 3D cellular connectivity of in vivo tubes, our analyses confirmed 22 

that the “poor get richer” principle was satisfied, thus supporting the idea that 23 

the smaller the number of neighbors of a cell in a surface, the larger the 24 

probability to increase its connectivity (Fig. S4). Additionally, by implementing 25 

an un-rolling (i.e., peel-off) algorithm (Yang et al., 2019) (Materials and 26 

Methods), we obtained concentric radial sections and quantified the number 27 

of 3D neighbors as a function of the radial expansion. The fitting of the data to 28 

the Kolmogorov model showed an excellent agreement and allowed to 29 

estimate the energetic properties as summarized by the parameter � (Fig. 5E 30 

and Table S1). Our results suggested that the energy per 3D cell required to 31 

undergo an apico-basal intercalation is larger in in vivo tubes than in the 32 

computational V8 model, see Discussion. Importantly, the 3D cellular 33 
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connectivity data confirmed the applicability of the Flintstones’ law in in vivo 1 

tubular epithelia (Fig. 5E and Table S1).  2 

 3 

DISCUSSION 4 

Here we have shown how mathematical and physical principles underlie the 5 

emergence of functionally complex 3D developmental structures, e.g., glands. 6 

Our analyses have uncovered for the first time how a 2D organizational trait, 7 

i.e., the cellular connectivity, can be extended to the third spatial dimension 8 

when the novel paradigm of epithelial cells’ shapes and packing, the scutoid, 9 

is considered. In that regard, we have revealed how the 3D cellular 10 

connectivity and tissue energetics are coupled, and we have stated a novel 11 

principle, the so-called Flintstones’ law. The latter links the activation energy 12 

needed to recruit additional neighbors with geometrical descriptors (i.e., tissue 13 

thickness/curvature). Our results provide new biological insight into the 14 

spatiotemporal regulation of cell-cell connectivity, a property that ultimately 15 

regulates juxtracrine signaling and is pivotal for primordia patterning and cell 16 

fate determination (Sharma et al., 2019; Tung et al., 2012). In this context, our 17 

study points towards an effect of scutoids on the regulation of the physiological 18 

properties of tissues. Therefore, our findings, on top of being fundamental to 19 

understand self-organization of epithelia in 3D, open new ways to investigate, 20 

and draw implications about, primary developmental processes in which 21 

epithelial bending is essential such as tubulogenesis, gastrulation, or 22 

neurulation.  23 

Our study also provides important methodological advances. Previous 24 

software developed to identify the outlines of the epithelial cells does not work 25 

on 3D or lacks enough precision to extract the geometrical and topological 26 

data needed to quantify tissue packing in 3D (Bassel et al., 2014; Gómez-27 

Gálvez et al., 2018; Heller et al., 2016; Khan et al., 2014). Here we have 28 

shown that our methodological pipeline (Materials and Methods) allows to 29 

implement a 3D segmentation and the precise reconstruction of cells in 30 

epithelia subjected to curvature. We stress that this level of detail is necessary 31 

to be able to quantify the apico-basal intercalation phenomenon and, 32 

therefore, compare the results with the computational models and extract 33 
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biological consequences. We then argue that our methodology, by enabling 1 

the analysis of 3D packing in a realistic way, will benefit the field of 2 

morphogenesis by bringing understanding about the cellular and mechanical 3 

basis of self-organization in curved tissues (Ambrosini et al., 2017; Hirashima 4 

and Adachi, 2019; Inoue et al., 2019) or even whole embryos (Shahbazi et al., 5 

2019). In addition, our analysis indicates that the Flintstones’ law can be used 6 

quantitatively to estimate key connectivity-related parameters, e.g., � and/or 7 ������. This avoids the burden of solving the optimization problem associated 8 

with the Kolmogorov model that is computationally demanding (Material and 9 

Methods). Thus, the values obtained by means of fittings to the Flintstones’ 10 

law are, at the very least, within the same order of magnitude with respect to 11 

the ‘exact’ Kolmogorov calculations (Table S1). This reveals the usability of 12 

the Flintstones’ law not just as a principle that is satisfied by tubular epithelia, 13 

but as a practical way to connect packing properties, geometrical descriptors, 14 

and biophysical traits due to its predictive character. 15 

As a matter of discussion, the connectivity law that we have introduced 16 

herein, depends on a prediction obtained from the Voronoi computational 17 

model that was confirmed in experiments: the "poor get richer" principle. 18 

Roughly speaking, we have shown that the fewer neighbors a cell has on a 19 

surface, the larger is the probability of a connectivity increase. Interestingly, a 20 

similar idea has been reported in T1 dynamical processes during the 21 

remodeling of planar epithelia (Bi et al., 2014). Since the scutoidal geometry 22 

can be related to planar T1 transitions by exchanging the concepts of space 23 

and time, this result reinforces the idea of the existence of universal principles 24 

driving the organization of tissues. 25 

In our study we have found that in real tissues the energy cost per 3D 26 

neighbor that a cell requires to increase its connectivity, �, is larger than in 27 

Voronoi models. We hypothesize that it is due to the purely geometrical 28 

description used in the latter. That is, while in in silico models the apico-basal 29 

transitions develop just a result of a topological constraint (Voronoi 30 

tessellation), in the salivary glands, on top of topological constraints, the cells 31 

must actively remodel their cytoskeleton to make the transitions possible. That 32 

component would explain the larger effective cost of gaining new neighbors in 33 
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real tissues. The reduced energetic cost for gaining neighbors in the Voronoi 1 

computational approach also explains why in silico tubes led to a larger 2 

limiting average 3D cellular connectivity, ������, and the V8 model with the 3 

same surface ratio that the salivary gland, �� � 4, developed more apico-basal 4 

transitions than the real samples (Fig. 5E, Fig. S4, and Table S1). These data 5 

ultimately explain why it is necessary to rescale appropriately �� to obtain a 6 

computational model with packing, topological, and connectivity properties 7 

similar to those of the salivary glands. In that regard, our results suggest that 8 

salivary glands are optimized to reach a high cellular connectivity. While the in 9 

silico V8 model with a radial expansion of �� � 1.75 or �� � 4 are far for 10 

reaching their maximum average connectivity (i.e., �����’s are, respectively, 11 ~47%  and ~61%  of ������), in the salivary glands ����
���� is ~87% of 12 ������ (Fig. 5E, Fig. S4, and Table S1). This optimization could be related to 13 

a functionality improvement of the gland, similarly to what has been suggested 14 

in pituitary growth hormone secretory cells, where the increase of 3D cellular 15 

connectivity has been proposed to better coordinate the pulses of hormone 16 

secretion (Bonnefont et al., 2005).  17 

As for the broader implications of our findings, we argue that, while our 18 

analyses focus on static tissues from the point of view of tissue architecture, 19 

our results can also be relevant to understand active 3D tissue remodeling 20 

(e.g., fluidization). Recent studies have revealed that active remodeling 21 

involves changes in the material-like properties of tissues that can be 22 

connected to an increased activity of neighbor exchanges (Mongera et al., 23 

2018; Tetley et al., 2019). In that regard, here we have shown that the physical 24 

basis of 3D self-organization (i.e., 3D cellular packing and connectivity) in 25 

tubular epithelia effectively relies on a constant amount of energy, �. Thus, 26 

arguably, active 3D tissue remodeling would imply dynamical changes on the 27 

value of � that would modify the apico-basal intercalation propensity and 28 

therefore the material-like properties: the larger � the more solid-like the tissue 29 

would behave. Finally, with respect to the applicability of our results to other 30 

areas, we expect that the emerging field of organoids will benefit from our 31 

discoveries. A precise quantification of 3D connectivity could then help to 32 

understand the lack of reproducibility in organoid production, one of the 33 
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biggest challenges of the field (Clevers, 2016; Huch et al., 2017; Schutgens et 1 

al., 2019). Also, from a medical point of view, it has been recently shown that 2 

tissue curvature affects tumor progression due to the imbalance of tensions in 3 

apical and basal surfaces of epithelial tubes (Messal et al., 2019). The 4 

Flintstones’ law explains how cell energetics affect the 3D packing of these 5 

cells and therefore may shed light on the mechanism of tumorigenic 6 

morphogenesis in tubular organs. 7 

MATERIALS AND METHODS  8 

Immunohistochemistry and confocal imaging of salivary glands 9 

Flies were grown at 25 °C using standard culture techniques. We dissected 10 

the salivary glands from third instar larvae of the wild type Oregon R strain. 11 

After PBS dissection, the glands were fixed using 4% paraformaldehyde in 12 

PBS for 20 min. The samples were washed three times for 10 min with PBT 13 

(PBS, 0.3% Triton) and then incubated for 1 hr 45 minutes at room 14 

temperature with Cy3-labeled phalloidin (Sigma) to label the cell contours of 15 

the epithelial cells. Stained larval salivary glands were mounted using 16 

Fluoromount-G (Southern Biotech). We used two pieces of double-sided 17 

adhesive tape (one on top of each other) as a spacer (Aldaz et al., 2013), so 18 

the salivary glands preserve their shape. Images were taken using a Nikon 19 

Eclipse Ti-E laser scanning confocal microscope. The images were captured 20 

using a ×20 dry objective and 2.5 µm steps between slices. The image stacks 21 

were exported as 1024 × 1024 pixels TIFF files.  22 

3D glands segmentation 23 

To segment the salivary gland stacks of images and reconstruct (semi-24 

automatically) the shape of cells in three dimensions we used the FIJI 25 

(Schindelin et al., 2012) plugin LimeSeg (Machado et al., 2019). We inferred 26 

cell outlines by using surface elements (“Surfels”) obtained by placing single 27 

ellipsoidal-like seeds on every cell (see https://imagej.net/LimeSeg for details). 28 

Once cell outlines were found (Fig. 5B-C), we exported them as point clouds 29 

(output). We developed a custom-made Matlab code (2018a MathWorks) to 30 

postprocess the output of LimeSeg in order to correct errors and obtain 31 

perfectly segmented salivary glands. In addition, we manually segmented the 32 
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lumen of the glands from the images using Adobe Photoshop CS6 and 1 

reconstructed it using a Matlab code. To faithfully represent the gland as a 2 

cylinder, we selected a subset of cells: cells that were not ductal, neither 3 

located at the tip of the gland. For more information about the processing 4 

pipeline: https://osf.io/nd5t6/. 5 

To obtain the cellular neighborhood relations of salivary glands for different 6 

values of the radial expansion, we proceeded as follows. We calculated the 7 

cell height by estimating the distance between the average voxel positions of 8 

the apical surface with respect to the average voxel positions of its basal 9 

surface, �
�� , ���. Then, to capture a concentric radial section of the gland, we 10 

linearly extrapolated the equivalent cell height to the given surface ratio, �: 11 

�
�� , �� � �
�� , ��� 	
	�

                                           (3) 12 

where �
�� , �� is the Euclidean distance between the position of the centroid of 13 

the cell at the apical surface, �� � 1, and the position of the centroid at a value 14 � � �/�� of the radial expansion. Finally, to obtain the gland cylindrical radial 15 

section for a given value of the radial expansion, �, we collected all voxels 16 

between apical and the upper bound of the calculated distance �
�� , ��. Those 17 

cylindrical surfaces of the salivary gland were mapped in the Cartesian plane 18 

for analysis using a cylindrical coordinates transformation. 19 

Salivary glands measurements 20 

We quantified the following geometrical and topological descriptors of the 21 

segmented salivary glands using a custom-made Matlab code:  22 

- Surface ratio expansion (�): Assuming a cylindrical shape for glands, 23 

we estimated � by dividing the area of the basal surface of glands by 24 

area of the apical surface. 25 

- Polygonal Class. We estimated the number of sides of each cell using 26 

the unrolled images (radial cylindrical sections) projected in the 27 

Cartesian plane. 28 

Likewise, we carried out the calculations of the percentage of scutoids and 29 

the number of apico-basal transitions. 30 

Voronoi tubular model 31 
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Using custom-made Matlab code (R2018a) we generated a Voronoi model 1 

that simulates the surface of a cylinder unfolded over the Cartesian plane, see 2 

details in  Gomez-Galvez et al. ((Gómez-Gálvez et al., 2018), Material and 3 

Methods). The only difference with the cited methodology, is that in this work 4 

the Voronoi diagrams has been constructed by means of the Delaunay 5 

triangulation technique. Therefore, we just considered the cells’ vertices 6 

information (cartesian coordinates and connections) for a much faster 7 

computation. For each realization, we used an initial set of 200 randomly 8 

located seeds on a rectangular domain of 512 (X axis; transverse axis of 9 

cylinder) per 4096 (Y axis; longitudinal axis of cylinder). In total, we 10 

implemented 20 different realizations (i.e., tubes). We performed this 11 

procedure for 10 different initial Voronoi diagrams (Voronoi 1 (V1, random 12 

seeds) to Voronoi 10 (V10, more ordered and homogeneous cells). These 13 

diagrams represent the apical (inner) surfaces of computational tubes, and 14 

they were obtained by applying N-1 times the Lloyd’s algorithm (Lloyd, 1982) 15 

to the random seeds, where N is then the resulting Voronoi model. For 16 

instance, to compute a V1, we use purely random seeds, while to obtain a V4 17 

diagram, it would be required to apply 3 times the Lloyd’s algorithm to random 18 

seeds. V8 diagrams provide a polygonal organization in apical surfaces as 19 

experimentally observed (Main Text and Fig. S4). Subsequent radial sections 20 

that define computational tubes with different surface ratios were obtained by 21 

implementing a radial projection of the Voronoi seeds. For each apical surface 22 

of the tube, we generated 40 expansions by incrementing the surface ratios 23 

(��) using 0.25 steps: 1 (apical), 1.25, 1.5, … ,10 (maximum basal surface). 24 

As for the 3D reconstruction of cells in Voronoi tubes, each set of seeds that 25 

characterizes cells on a given cylindrical section defines a unique 2D Voronoi 26 

diagram at every surface and hence the corresponding 2D cellular domains. 27 

The set of 2D Voronoi regions that belong to the same radially projected seed 28 

from the apical to the basal surface then define each 3D cellular shape. Each 29 

of the obtained 3D Voronoi cells was further processed using the Matlab 30 

function ‘alphaShape’ to transform the set of voxels into a compact, solid, 31 

object. This reconstruction pipeline was implemented using Matlab (2018a). 32 

Code available at https://osf.io/nd5t6/. 33 
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Voronoi tubular model measurements. 1 

We measured the following properties of cells in Voronoi tubular models: 2 

number of sides of cells for a given radial section, and total number neighbors. 3 

Additionally, we computed the percentage of scutoids, the number of apico-4 

basal transitions, the polygon distribution of every surface (radial sections). In 5 

these quantifications, we disregarded cells at the boundaries (tips of tubes) to 6 

avoid ‘border effects’.  7 

In Voronoi tubes the net gain of 3D neighbors is bounded 8 

Assuming a cylindrical geometry (e.g., epithelial tubes), each point at a given 9 

radial surface can be represented into the Cartesian plane; where coordinate / 10 

accounts for the cylindrical transversal coordinate and coordinate 0 for the 11 

longitudinal one (see Box). Thus, if the coordinates of a point (e.g., a Voronoi 12 

seed) at the apical surface are given by 
/, 0�, the coordinates of that point at 13 

a surface with a value of the cylindrical radial expansion � 1 21, ∞� can be 14 

found by defining the function 4	: 6� 7 6� 4	
/, 0� � 
�/, 0�. Under these 15 

conditions, we aim to characterize the seeds that generate scutoids 16 

(exchanges in the neighboring relations of seeds) as � changes. 17 

Lemma 1.  Given three non–colinear points 89, :, ;< that define a circle (a 18 

nearest-neighbors relation), and another exterior point =, if � � 1 exists such 19 

that 4	
=� is interior to the circle defined by 84	
9�, 4	
:�, 4	
;�<, then = is inside 20 

of the vertical parabola containing 89, :, ;< (Box).  21 

Remark. If two of the three points 89, :, ;< are on the same vertical line, then 22 

the parabola considered in Lemma 1 degenerates as a vertical strip. Even in 23 

this case, the thesis of the Lemma is true if we replace the interior of the 24 

parabola by the inside of the strip. 25 

Proof. Without loss of generality, we can suppose that 89, :, ;< are 26 
counterclockwise oriented and that they have Cartesian coordinates 
>
, >��, 27  
%
, %�� and  
&
, &�� respectively. 28 

Thus, the point =
/, 0� is outside the circle defined by 89, :, ;< if, and only if, 29 

the sign of the following determinant is negative:  30 
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??
>
 >� >
� � >�� 1%
 %� %
� � %�� 1&
 &� &
� � &�� 1/ 0 /� � 0� 1?? � ??

>
 >� >
� 1%
 %� %
� 1&
 &� &
� 1/ 0 /� 1?? � ??
>
 >� >�� 1%
 %� %�� 1&
 &� &�� 1/ 0 0� 1?? @ 0          (4) 1 

For the sake of simplicity, we represent the previous equation as:  2 

��A
B� � ��A
C� � ��A
D� @ 0    (5) 3 

On the other hand, by considering / and 0 as variables, the equation 4 ��A
B� � 0 corresponds to the circle defined by 89, :, ;<, and ��A
C� � 0 5 

corresponds to the vertical parabola defined by the same three points. 6 

Consequently, the inequality ��A
C� � 0 defines the locus of interior points to 7 

that parabola.  8 

Now, assuming that � � 1 exists such that 4	
=� is interior to the circle 9 

defined by 84	
9�, 4	
:�, 4	
;�<. Then,  10 

 ??
�>
 >� ��>
� � >�� 1�%
 %� ��%
� � %�� 1�&
 &� ��&
� � &�� 1�/ 0 ��/� � 0� 1?? � �� ��A
C� � � ��A
D� � 0 (6) 

Or, equivalently, �� ��A
C� � ��A
D� � 0, so, �� ��A
C� � ���A
D�. If 11 ��A
C� @ 0, then 1 @ �� @ � �����


�����

 and therefore ��A
C� � ���A
D�. The latter 12 

is in contradiction with ��A
C� � ��A
D� @ 0. As a result, ��A
C� � 0, and the 13 

following inequality holds,  14 

 �� � � ��A
D���A
C� � 1 (7) 

Notice that if the circle defined by 89, :, ;< is surrounded by a set of points 15 

and we change continuously the parameter � in the interval 21, ∞�, it is 16 

possible to detect the first point touching the circle defined by 17 84	
9�, 4	
:�, 4	
;�<. That point can be obtained by computing all the points at 18 

� � E� �����


�����

. Hence, the first point contacting the circle will be that with the 19 

minimum value of �. 20 
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As for proving that the average of the number of neighbours of a cell induced 1 

by a seed grows is bounded as a function of the surface ratio, we state the 2 

following proposition: 3 

Proposition 1.  Given a Voronoi seed representing a cell, if ���
�� is the total 4 

number of accumulated cell neighbors as � increases from � � 1 (apical 5 

surface) to a given value of �, then ����
��� is a bounded function for a finite 6 

cylinder. 7 

 8 

Proof.  We model the apical surface as the cylinder 2F� G H, where � 9 

representes the inner radius and H the length of the cylinder. Given a seed 9 10 

in that surface, in the corresponding Delaunay triangulation it appears as a 11 

point surrounded by triangles defining the neighbourhood of 9. By Lemma 1, 12 

each triangle defines a vertical parabola and a circle. So, any other seed 13 

touching 9 in other layer must be inside of one of the parabolas and outside of 14 

all circles (see Box). Let’s denote I	,� the feasible region for a new neighbour 15 

of 9 in the layer represented by �, i.e.,  all points inside one of the parabolas 16 

and outside all the circles. Thus, if #
I	,�� is the number of seeds in that 17 

region that are not neighbours of 9 in the apical surface, obviously, an upper 18 

bound to the number of new neighbours to 9 is given by #
I	,�� K #
I
,��.  19 

 20 

On the other hand, that number of seeds is, in average, proportional to the 21 

density of seeds times the area of I	,�, therefore, the average number of 22 

accumulated neighbours of 9, denoted as ����
9��, will be bounded by the 23 

change of the density of points when growing �, this is to say, 24 

 25 

 �����
9�� K L ! ��,�

��	���
 �� (8) 26 

 27 

where L represents the total number of seeds (i.e., the total number of cells 28 

that is a constant) and the quotient is the area of I	,� divided by the area of a 29 

given radial layer. In general, it is not possible to integrate equation (4), since 30 

the area of I	,� is known only in very few, particular, cases.  31 

 32 
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If the case of a finite cylinder, ����
9�� K #
I	,�� K #
I
,�� leads, suming up 1 

to all the seeds and dividing by L, to the upper bound 2 

 3 

 ����
��� K 


�
! ∑  � #
I
,�� (9) 4 

 5 

thus, ����
��� is necessarily a bounded function. This expression indicates 6 

that  the number of new neighbours when increasing � exhausts since the 7 

number of cells is a resource shared by all the layers. It is possible to obtain 8 

an upper bound to ������ � lim	 !����
��� since, after a flip in the Delaunay 9 

triangulation, the edge disappearing (i.e., a cell contact loss) can never be 10 

recovered in a cylindrical geometry. Thus, L · Q������ � ���
1�R is bounded 11 

by the number of edges that complement the original Delaunay triangulation 12 

on the apical surface, that is, 13 

 14 

 ������ � ����
1�� K 


�
! S����



�
� L "#	
�

$

�
T � ��


�
� "#	
�

$

�
 (10) 15 

 leading to  16 

 ������ K ��


�
� "#	
�

$

�
K ��


�
� 3 � ��%

�
 (11) 17 

Where we have assumed that ����
1�� � 6. The simulations of the 18 

computational Voronoi model and the data of the salivary gland show that 19 ������ is in fact much smaller that the theoretical bound ��%
�

. 20 

 21 

Relation between total accumulated 3D neighbors and the number of 22 

intercalation events  23 

Scutoids have a Euler characteristic V � 2 such that W � � � X � 2, where W, 24 �, and X accounts for the number of vertexes, edges, and faces respectively. 25 

We assumed that the apical, >, and basal, %, faces of scutoids tesellating a 26 

cylindrical space have radial coordinates �� and �� respectively. Then, for any 27 

value of the surface ratio expansion, � �  �/��, these solids can be mapped 28 

into a connected plane graph with the same Euler characteristic (a sort of 29 

projection of the vertexes and connectors into the plane, see Fig. S5. Thus, as 30 

a function of �, the accumulated number of 3D neighbors reads ���
�� �31 �
�� � W
��. Since in tubular geometries the radially projected seeds from the 32 
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apical to the basal surface never come closer, as � increases (i.e., apico-basal 1 

intercalations are not reversible). 2 

���
�� � �>/
8W
��<� � ���
8W
��<� � �
��                (12) 3 

where 8W
��< � 8W
1�, W
1 � ���, Y , W
���< and �
�� denotes the number of 4 

intercalation points in the interval � 1 21, ��Z. In the case of a 3D tessellation 5 

with � cells, where L of them do not show any intercalation, the total number 6 

of accumulated neighbors reads, 7 

���
�� � ∑ ����&

��'
&(
 � ∑ W�&

1��

&(
 � ∑ �>/Q[W�&

��\R'��
&(
 �8 ∑ W�&

1��

&(
 � ∑ [���Q[W�&

��\R � ��&

��\'��
&(
                                          9 

(13)                                   10 

Given that each intercalation point is shared by four cells, two of them 11 

necessarily increase their number of vertices in a given �-plane and two of 12 

them decrease their number of vertices (see Fig. 1A). Thus, in the case of a 13 

decrease �>/Q[W�&

��\R � W�&

1� and in the case of an increase 14 ���Q[W�&

��\R � ��&

�� � W�&

1� � ��&

��. Consequently, 15 

���
�� � ∑ W�&

1�'
&(
 � ∑ ��&

���'��
/�

&(
 � ∑ W�&

1�'
&(
 � 


�
∑ ��&

��'��
&(
       (14) 16 

where we used the fact that for every intercalation event that increases by 17 

one the number of neighbors there is one that decreases the number of 18 

neighbors in the same amount; consequently, we can add up all intercalation 19 

events and divide by two. Hence the average number of accumulated 3D 20 

neighbors, ����
��� � ���
��/� reads ����
��� � �W
1�� � ��
���/2; ��
��� 21 

being the average number of apico-basal intercalations per cell. Finally, by 22 

considering that any �-surface, and in particular the apical surface � � 1, 23 

corresponds to a 2D tessellation of convex polygons, �W
1�� � 6 we conclude 24 

that, 25 

����
��� � 6 � 


�
��
���                                   (15) 26 

 27 

A Kolmogorov rate equation for the 3D cellular connectivity 28 
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The probability, �, of having � accumulated 3D neighbors (i.e., � � ���) as 1 

the surface ratio increases from � to � � �� can be described by the following 2 

Markov equation (Fig. 4B), 3 

��
� � ��� � ��
��]�,� � ���

��]��
,�                   (16) 4 

where ]�,& is the probability of incrementing the number of neighbors from � to ^ 5 

due to an apico-basal intercalation. Since ∑ ]�,&& � 1 (normalization of the 6 

transition probabilities) and ]�,& � 4
�, ^�[_��
,& � _�,&�
\ (each intercalation can 7 

only possibly induce to win one neighbor) then ]�,� � 1 � ]�,��
 and the 8 

above Markov equation can be written as a Kolmogorov equation (a.k.a. 9 

Master equation): 10 

����	


�	
� ���

�����
,� � ��
����,��
                     (17) 11 

where ��,& accounts for the probability of apico-basal intercalations per unit of 12 

surface ratio, i.e., ]�,& � ��,&��. 13 

If we assume an Arrhenius-like kinetics (i.e., in order to win an additional 14 

neighbor there is an energy cost, see (Bi et al., 2014)) then ��,��
 � �̀��∆��, 15 

where �̀ is the so-called pre-exponential factor that modulates the “bare” 16 

frequency of intercalations (per unit of surface ratio expansion) and ∆�� is the 17 

activation energy in some energy units. In our case in units of �*: the value of 18 

the energetic barrier of the four-fold vertex configuration (Fig. 4A). The 19 

observed “poor get richer” behavior suggests that the activation energy, ∆�� , 20 

increases with �. For the sake of simplicity, up to first order in �: ∆�� � � ! � (� 21 

being the dimensionless activation energy of a cell per 3D neighbor in units of 22 �*). On the other hand, the mathematical calculations (see Eq. (9)) indicate 23 

that the intercalation rate ��,��
 becomes null for a finite value of � or, 24 

alternatively, that the activation energy becomes infinite for a finite value of �. 25 

Otherwise, the net gain of new neighbors is not bounded. This fact can be 26 

accounted for by assuming that the bare frequency is a function of the number 27 

of neighbors, �̀ � �̀
��, such that 
�+,

��
@ 0 and becomes null for a finite value of 28 �. Again, for the sake of simplicity, we assume that up to first order in �: 29 �̀ � �
���� � ��, where ���� is the asymptotic, maximum, number of 3D 30 
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neighbors a cell can possibly have. Summarizing, we assume that the apico-1 

basal intercalation rate ��,��
 reads, 2 

��,��
 � �
���� � ������ (18) 3 

Under these conditions, the Kolmogorov equation reads, 4 

����	


�	
� �Q���� � 
� � 1�R������

���

�� � �
���� � ��������
��                     5 

(19) 6 

On the other hand, the equation satisfied by the average number of 7 

accumulated 3D neighbors, ����� � ���, reads, 8 

�"��	
$

�	
� ∑ � ����	


�	� � ∑ ��,��
��
��� � ���,��
�             (20) 9 

Alternatively, in order to obtain an analytical expression able to recapitulate, 10 

effectively, the mathematical principle that govern the net gain of 3D 11 

neighbors, we perform the following approximations. First, we perform a 12 

mean-field-like approximation, i.e., �X
��� $ X
����, 13 

�"�$

�	
$ �
������ � �������"�$                                (21) 14 

Where ������ is the limiting average cellular connectivity. Second, since � @15 1, 16 

�"�$

�	
$ �
������ � ����
1 � ����� � a
���                        (22) 17 

Equation (21) is formally a logistic-like growth equation, 18 

�"�$

�	
� �

-����


������ � ���� S1 � �

�'���

���T                        (23) 19 

 that has as solution, 20 

��
��� � ������ 
������

���

�
�

�

                                              (24) 21 

Thus, if & � 0 then lim	 !��
��� � ������. The parameters %, &, and � are 22 

further constrained by the following facts: 
�"�$

�	
� 0 (3D neighbors can only 23 

accumulate) and 
�
"�$

�	

@ 0 (“poor get richer” principle). Moreover, if we impose 24 

the condition ��
1�� � 6 (the average number of neighbors in the apical 25 

surface is 6) these parameters are not independent since, 26 
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% � .���"'���$�.
�
�

�

"'���$
                                                  (25) 1 

All the above implies that the logistic-like fitting function, Eq. (24), describes, 2 

approximately but effectively, the analytical mathematical law (“Flintstone’s 3 

law”) underlying the 3D average connectivity if the following conditions hold, 4 

either �1 @ � @ 0 or & ln
��� @ 1 if � @ �1. 5 

The relation between the fitting parameters of the logistic fitting with � and � 6 

are, 7 

� � �

-����

                                                       (26) 8 

� � �

�"'���$
                                                      (27) 9 

For finding the parameters � and � in in silico tubes and salivary glands we 10 

then implemented two possible approaches. On the one hand, we 11 

implemented an error minimization algorithm that recursively solved, 12 

numerically, Eq. (20) to obtain ��
��� � ∑ ���
���  taking also into account 13 

the normalization condition ∑ ��
��!
�(
 � 1 (code available at  14 

https://osf.io/nd5t6). 15 

On the other hand, we obtained values using the fitting logistic function Eq. 16 

(24). We notice that the values obtained through the first method are exact as 17 

compared to the values obtained from the fitting that are based on a series of 18 

approximations as explained above (see Table S1). 19 

The values of � and � are obtained from the exact methodology were further 20 

used to compare the predicted probability distribution of having � 21 

accumulated neighbors for a given value of �: ��
��. We evaluated the relative 22 

error of this prediction with respect to the actual distribution from data, 23 

���-�/�0
��, by computing c� � 


�
∑ S���-�/�0
�� � ��
��T�� . This quantity is 24 

normalized such that in case of the following situation of full disagreement 25 

between the distributions, ���-�/�0
�� � _�,� and ��
�� � _�,& with � d ^, 26 

provides c� � 1 (i.e., 100% error). 27 

Quantitative characterization of spreading in neighbor exchange 28 

distributions between apical and basal surfaces 29 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.02.19.955567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.955567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

In order to characterize the spreading away from the diagonal in the neighbor 1 

exchange distributions between apical and basal surfaces, Fig. 2A-B, we 2 

followed the same approach used to quantify intrinsic noise during gene 3 

expression processes (see (Elowitz, 2002). Thus, �� � "�#��#�


$

�"#�$"#�$
 where 4 

�e
�� , ���� � ∑ e
�� , ���f
�� , ���#�,#�
; e representing any function of �� and �� 5 

and f
�� , ��� being the probability of neighbor exchange events. 6 

Logistic data fitting 7 

To obtain the logistic function that fit best our data points, we analyzed all the 8 

possible parameters combination and achieved the global minimum solution. 9 

This ‘fit’ was based on the ‘least squares’ method and minimizes the residual 10 � � ∑ 
0� � 0�1�� #
�(
  where, 0� and 0� g stand for the observed values and the 11 

fitted ones, respectively. The logistic equation (Eq. (24)): 12 

4
�� � ������ 
������

���

�
�

�

                                         (28) 13 

 was then fitted to find the average 3D cell connectivity, but with a series of 14 

constraints on the parameters (as explained above): �4
� � 1�� � 6,    & �15 0,    � @ 0,    ������ h 0,    � � % and if � @ �1 then & ln
��� @ 1. The goodness 16 

of fitting was estimated by means of the coefficient of determination, ��. 17 

 18 

Data availability 19 

All the necessary material to reproduce this study is available at the Center for 20 

Open Science repository: https://osf.io/nd5t6.  21 
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Figure 1. Analysis of apico-basal cell intercalations in the Voronoi 1 

tubular model  2 

A) Scutoids (left) entail apico-basal intercalations among packing cells that 3 

can be envisioned as spatial T1 transitions to exchange neighbors (right). The 4 

green and the red cells are neighbors in basal (but not in apical) while the 5 

opposite is true for the blue and the yellow cells. B) Voronoi in silico tubes with 6 

different surface ratios, ��: �� � 2 indigo blue; �� � 5, dark blue (apical 7 

surface, light blue). C) For a given radial section (plane), cell boundaries 8 

emerge by applying a Voronoi tessellation to a number of seeds located in the 9 

plane. In the V1 (Voronoi 1) model seeds are randomly distributed. By 10 

applying iteratively the Lloyd algorithm (left to right) the topological disorder 11 

diminishes (Materials and Methods). D) The density plot shows the average 12 

number of apico-basal intercalations per cell in in silico tubes (� � 20) as a 13 

function of the surface ratio and the Voronoi class. 14 

  15 
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Figure 2. Three-dimensional packing and connectivity properties of the 1 
Voronoi tubular model 2 

A) A schematic representation of a 3D histogram (density plot) where all cells 3 

have prismatic-like shapes (i.e., in the absence of scutoids). The histogram 4 

accounts for the probability that cells have �� (number) of neighbors in the 5 

apical surface and �� neighbors in the basal surface. If there are no scutoids, 6 

there are only contributions in the diagonal bins whereas if there are scutoids 7 

the distribution spreads away from the diagonal. B) 3D histograms of V5 tubes 8 

for increasing values of the surface ratio. The larger value of the spreading 9 

coefficient, ��, (Material and Methods) indicates an increasing number of 10 

scutoids. C) and D) Density plots showing  �� (C) and the average number of 11 

3D neighbors, �����, (D) as a function of the surface ratio and the Voronoi 12 

class in in silico tubes (� � 20). 13 
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Figure 3. Cells in the Voronoi tubular model follow a “poor get richer” 1 

principle 2 

A) Average net gain of neighbors (density plot) with respect to the apical 3 

surface in Voronoi tubes with a surface ratio �� � 5 as a function of the 4 

Voronoi class and the apical polygonal class (� � 20). Cells with a smaller 5 

polygonal class are more prone to gain neighbors. B) “Poor get richer” 6 

principle in V5 tubes with a surface ratio �� � 5. The size of the circle accounts 7 

for the relative data count within each apical polygon class (numbers indicate 8 

the number of cells that gained 3D neighbors). The boxes indicate the 9 25% � 75% percentile interval, black lines the mean values, gray lines the 10 

standard deviation, and the red dotted lines the statistical median.  11 
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Box. In tubular geometries the 3D cellular connectivity gain decreases as 1 

the surface ratio increases and it is bounded. A) This panel shows, 2 

schematically, an apico-basal intercalation from the point of view of a Voronoi 3 

diagram and its topological dual, the Delaunay triangulation. Small solid circles 4 

indicate the seeds of Voronoi cells and large circles show the Delaunay 5 

property graphically: nearest neighbors define triangles (cells’ seeds being 6 

their vertices) and circumscribed circles. For example, in the apical surface, 7 

the nearest neighbors of the red seed are those seeds at the circumscribed 8 

red circle. Likewise, the nearest neighbors of the green seed are those seeds 9 

in the green circle. Once the transition takes place, the seeds in each of the 10 

circles are nearest neighbors of the red and the green seeds. B) Before the 11 

apico-basal intercalation shown in A) occurs, the green seed is necessarily 12 

outside the circumscribed circle (otherwise it would be a nearest neighbor of 13 

the red seed). Lemma 1 (Materials and Methods) states that if the green 14 

seed is going to become a nearest neighbor of the red seed due to an apico-15 

basal transition then it is contained inside the parabola. As consequence of 16 

this, the 3D cellular connectivity gain decreases as the surface ratio increases: 17 

panels C)-E). In this example, C)-E), the Y axis represents the longitudinal 18 

axis of tubes, while the X axis accounts for the Cartesian projection of the 19 

transversal axis of radial sections. From left to right different radial sections 20 

are represented as � increases (as indicated by the color gradient arrow: from 21 

light to dark blue). In C) three Voronoi seeds that correspond to neighboring 22 

cells at the apical surface, � � 1, define the triangle 9:;. Panels D) and E) 23 

track changes in the neighboring relations (accumulated neighbors) of cell 9 24 

for two increasing values of �: 2 and 4.5 (panels D) and E) respectively). As 25 

shown in C), should a new neighboring cell, =, of cell 9 appear due to an 26 

apico-basal intercalation, then its position must lie inside the vertical parabola 27 

defined by the points 9, : and ;, but outside the circle that these points define 28 

(white region), (Lemma 1). Regions accessible to new neighbors are then 29 

coded by the green shading in C)-E). As � increases, see D), and the cells 9, 30 :, ;, and = become neighbors, then the parabolas and circles defined by 9:= 31 

and 9;= restrict the locations of future nearest neighbors. This idea is further 32 

reinforced in panel E): winning neighbor � set additional limits to the 33 
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accessible locations of new neighbors. Thus, the potentiality of a connectivity 1 

gain by cell 9 due to apico-basal intercalations diminishes as the surface ratio 2 

increases and eventually becomes null: the number of 3D neighbors of a cell 3 

is bounded (Materials and Methods). 4 
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Figure 4. A probabilistic model reproduces the 3D cell connectivity 1 

behavior of epithelial tubes.  2 

A) Top: in tubular geometries, cell intercalations along the apico-basal axis 3 

can be visualized as non-reversible spatial T1 transitions (once a neighbor is 4 

won it cannot be lost). Bottom: the “poor get richer” principle suggests an 5 

increasing energetic cost (i.e., a larger activation energy) for recruiting new 3D 6 

neighbors. In our model, � accounts for the energetic cost per 3D neighbor to 7 

recruit a new neighbor (Materials and Methods). B) The energy landscape 8 

shown in A) can be modeled by a stochastic dynamics (a Kolmogorov rate 9 

equation) where cells increase their 3D neighbors with a probability per unit of 10 

surface ratio, �#,�, that depends on the activation energy and the maximum 11 

cell connectivity ���� (Material and Methods). C) Comparison between 12 

results obtained in the Kolmogorov model and simulations of V5 in silico tubes. 13 

The left/center density plots represent the connectivity distribution (i.e., the 14 

fraction of cells with a given number of 3D neighbors) as a function of the 15 

radial expansion obtained in the Voronoi simulation (left) and as predicted by 16 

the Kolmogorov model (center); the purple open circles (left/right) indicate the 17 

average number of 3D neighbors per cell �����; the solid red line and the 18 

dashed white line (center/right) shows ����� as obtained by the Kolmogorov 19 

model and the Flintstones’ law respectively. The density plot on the right 20 

shows the difference between the predicted and the actual connectivity 21 

distributions and the corresponding error, c� (magenta lines), see Fig. S3 and 22 

Material and Methods. 23 
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Figure 5. Packing and connectivity analysis of Drosophila’s salivary 1 

gland and comparison with the V8 model  2 

A) Full projection of a salivary gland (cell contours stained by Cy3-labeled 3 

phalloidin, Materials and Methods). B) Computer representation of the 4 

segmented salivary gland shown in A) (Material and Methods). C) 3D 5 

rendering of a representative segmented salivary gland: apical surface, light 6 

green; basal surface, dark green. D) Density plots of the distribution of 7 

neighbor exchanges between apical and basal surfaces as a function of the 8 

number of neighbors in apical, ��, and basal, ��, surfaces (as in Fig. 2B): 9 

salivary glands (left) and V8 tubes (right) with surface ratio �� � 1.75. E) 10 

Comparison between results obtained in salivary glands (top) and the 11 

simulations of the V8 model (bottom) in regards of the 3D cellular connectivity 12 

as a function of the surface ratio (see Fig. 4C). 13 
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