1 Tracing the origin of a new organ by inferring the genetic basis of rumen evolution

- 2 Xiangyu Pan^{1†}, Yu Wang^{1†}, Zongjun Li^{1†}, Xianqing Chen^{2†}, Rasmus Heller^{3†}, Nini Wang^{1†}, Chen Zhao¹,
- 3 Yudong Cai¹, Han Xu¹, Songhai Li⁴, Ming Li¹, Cunyuan Li⁵, Shengwei Hu⁵, Hui Li¹, Kun Wang², Lei
- 4 Chen², Bin Wei¹, Zhuqing Zheng¹, Weiwei Fu¹, Yue Yang², Tingting Zhang¹, Zhuoting Hou², Yueyang
- 5 Yan¹, Xiaoyang Lv⁶, Wei Sun^{6,7}, Xinyu Li⁸, Shisheng Huang⁹, Lixiang Liu¹⁰, Shengyong Mao¹⁰, Wenqing
- 6 Liu¹¹, Jinlian Hua¹¹, Zhipeng Li¹², Guojie Zhang^{13,14,15,16}, Yulin Chen¹, Xihong Wang¹, Qiang Qiu^{2,17}, Brian
- 7 P. Dalrymple¹⁸, Wen Wang^{2,15,16*}, Yu Jiang^{1*}
- 8 1 Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology,
- 9 Northwest A&F University, Yangling 712100, China
- 10 2 School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
- 11 3 Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- 12 4 Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of
- 13 Sciences, Sanya 572000, China.
- 14 5 College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
- 15 6 College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- 16 7 Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou
- 17 University, Yangzhou 225009, China
- 18 8 Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical
- 19 University, Guangzhou 510150, China
- 20 9 School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- 21 10 College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- 22 11 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling,
- 23 Shaanxi 712100, China
- 24 12 Department of Special Economic Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese
- 25 Academy of Agricultural Sciences, Changchun 130112, China
- 26 13 Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- 27 14 China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
- 28 15 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming
- 29 650223, China
- 30 16 Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- 31 17 State Key Laboratory of Grassland Agro-Ecosystem, College of Life Sciences, Lanzhou University, Lanzhou 730000, China
- 32 18 School of Animal Biology and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley WA
- 33 6009, Australia
- 34 *†*These authors contributed equally to this work.
- 35 *Corresponding author. E-mail: yu.jiang@nwafu.edu.cn (Y.J.), wwang@mail.kiz.ac.cn (W.W.);

36 Abstract

37	The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of
38	microorganisms that facilitates efficient digestion of plant fibers. We used 897
39	transcriptomes from three Cetartiodactyla lineages: ruminants, camels and cetaceans,
40	as well as data from ruminant comparative genomics and functional assays to explore
41	the genetic basis of rumen origin and evolution. Comparative analyses reveal that the
42	rumen and the first-chamber stomachs of camels and cetaceans shared a common
43	tissue origin from the esophagus. The rumen recruited genes from other tissues/organs
44	and up-regulated many esophagus genes to aquire functional innovations involving
45	epithelium absorption, improvement of the ketone body metabolism and regulation of
46	microbial community. These innovations involve such genetic changes as
47	ruminant-specific conserved elements, newly evolved genes and positively selected
48	genes. Our in vitro experiements validate the functions of one enhancer, one
49	positively selected gene and two newly evolved antibacterial genes. Our study
50	provides novel insights into the origin and evolution of a complex organ.

51	Evolutionary biology has a long history of trying to understand how complex organs
52	evolve ¹ . The origin of some notable organs has been central to animal evolution, e.g.
53	the eyes of animals ^{2,3} , electric organs of fishes ⁴ , mammalian placenta ^{5,6} and ruminant
54	headgear ⁷ . Another remarkable organ innovation found in mammals are the
55	multi-chambered stomachs found in the Cetartiodactyla lineages, including Tylopoda
56	(e.g. camels), Tayassuidae (e.g. peccaries), Hippopotamidae (e.g. hippos), Cetacea
57	(e.g. whales) and Ruminantia (Fig. 1). Among these, ruminants have the most complex
58	digestive system in herbivores, allowing efficient uptake of nutrients from plant
59	material by providing a microbial fermentation ecosystem in the highly specialized
60	rumen ⁸ . Camels (Tylopoda) have three-chambered stomachs and are also sometimes
61	called "pseudo-ruminants" due to their similar ruminating behavior and microbial
62	fermentation taking place in their first-chamber (FC) stomach ⁹ . The whales (Cetacea)
63	form the sister group of the Ruminantia ¹⁰ , however the FC of their four-chambered
64	stomach is mainly used as a temporary storage chamber for ingested food and for
65	mechanical grinding of food items ¹¹ . With the rumen, ruminants obtained a unique
66	evolutionary advantage through superior utilization of short chain fatty acids (SCFAs)
67	from microbial fermentation, which significantly promoted the expansion and
68	diversification of ruminant taxa ¹² . The evolutionary innovation of the rumen is
69	therefore interesting not only in its functional complexity and uniqueness, but also
70	because it has greatly benefited humans by providing high-quality nutrition in the shape
71	of highly productive ruminant livestock species ^{13,14} .

The anatomical predecessor from which the rumen evolved has been proposed to

73	be the esophagus ¹⁵ , yet the two organs are highly divergent in morphology and
74	physiology. The stratified squamous epithelium of the esophagus is smooth and
75	non-keratinized, and mainly serves a barrier function, but in contrast the rumen
76	stratified squamous epithelium is keratinized and lined with papillae, which facilitates
77	nutrient uptake and antibacterial peptide production ^{16,17} . These features allow the
78	absorption of SCFAs and sustain the homeostasis of microorganisms. The origin and
79	evolution of new organs involve structural and functional innovations that were
80	proposed to be driven by several types of genetic reprogramming: recruitment of
81	genes usually expressed in other organs, transformation of regulatory elements such
82	as promoters and enhancers, mutations in protein-coding genes and
83	post-transcriptional mechanisms ^{1,5} . Given the substantial structural and physiological
84	changes involved in the transition from esophagus to rumen, significant genetic
85	reprogramming must have occurred during the process.
85 86	reprogramming must have occurred during the process. Usually, it is challenging to obtain detailed insights into the genetic
86	Usually, it is challenging to obtain detailed insights into the genetic
86 87	Usually, it is challenging to obtain detailed insights into the genetic reprogramming associated with organ evolution due to the rarity of such occurrences
86 87 88	Usually, it is challenging to obtain detailed insights into the genetic reprogramming associated with organ evolution due to the rarity of such occurrences and the lack of intermediate evolutionary states ⁵ . However, in the case of the rumen,
86 87 88 89	Usually, it is challenging to obtain detailed insights into the genetic reprogramming associated with organ evolution due to the rarity of such occurrences and the lack of intermediate evolutionary states ⁵ . However, in the case of the rumen, we can take advantage of two important points allowing "triangulation" of the
86 87 88 89 90	Usually, it is challenging to obtain detailed insights into the genetic reprogramming associated with organ evolution due to the rarity of such occurrences and the lack of intermediate evolutionary states ⁵ . However, in the case of the rumen, we can take advantage of two important points allowing "triangulation" of the changes leading to the rumen: the availability of synapomorphic stomach chambers in
86 87 88 89 90 91	Usually, it is challenging to obtain detailed insights into the genetic reprogramming associated with organ evolution due to the rarity of such occurrences and the lack of intermediate evolutionary states ⁵ . However, in the case of the rumen, we can take advantage of two important points allowing "triangulation" of the changes leading to the rumen: the availability of synapomorphic stomach chambers in Cetartiodactyla and the likely ancestral relation between the esophagus and the rumen.

95 innovations in rumen, together with validation of some cases using *in vitro*

96 experiments.

97 **Results**

98 Gene expression features of the rumen

99	We sequenced transcriptomes of 33 samples across 14 adult tissues from Bactrian
100	camels, eight adult tissues from one species in Mysticeti (Bryde's whale) and one
101	species in Odontoceti (Indo-Pacific Finless Porpoise) from Cetacea, 852 samples (210
102	sequenced in this study and 642 published in previous studies ^{7,18,19}) from 50 tissues of
103	two representative ruminants (sheep and roe deer) within Ruminantia (Supplementary
104	Table 1). The global gene expression patterns of all the FC stomachs are consistently
105	most similar to the esophagus in all species (Fig. 2a, Fig. S1). To investigate the
106	specifically expressed genes in the three types of FC stomachs, we defined those that
107	the rank of expression is less than or equal to a E50 index threshold with type I error
108	less than 0.05 (Supplementary Note) in the FC stomachs of ruminants, camels, and
109	cetaceans compared to other conspecific tissues/organs. We identified 655, 593, and
110	375 such specifically expressed genes in the FC stomachs of ruminants, camels, and
111	cetaceans, respectively (Supplementary Table 2-4; Supplementary Note).
112	Comparisons of gene expression profiles between rumen and the first-chamber stomach
113	of camels and cetaceans

Among these FC-specific genes, the three FC stomachs shared 18 genes which are co-expressed in the esophagus in all species (**Supplementary Table 5**). The 18 genes

116 were significantly enriched in keratinocyte differentiation (**Supplementary Table 6**,

117 Fisher's exact test, adjusted *P* value = 9.85×10^{-3}). This is consistent with the fact that

the FC stomachs all share a basic stratified squamous epithelium with the

119	esophagus ²⁰⁻²² , which is markedly different from other stomach chambers (e.g. the
120	abomasum of the ruminants, the third-chamber stomachs of camels and cetaceans).
121	Notably, $PAX9^{23}$, a known key transcription factor during esophagus differentiation, is
122	highly expressed in all three FC stomachs and may play a role in the origin of the FC
123	stomachs from their anatomic origin (Supplementary Table 5). Our results therefore
124	indicate that the FC stomachs in Cetartiodactyla share a common developmental origin
125	from the esophagus, and that changes in epidermis development may be an ancestral
126	feature in this proto-rumen.
127	Despite the shared features of epithelial histology found in all Cetartiodactyla FC
128	stomachs, the rumen also has a series of unique structural and functional innovations.
129	Among the 655 rumen specifically expressed genes, we identified 448 up-regulated and
130	79 down-regulated genes when compared to the FC stomachs of camels (Fig. 2b;
131	Supplementary Table 7), and 563 up-regulated and 29 down-regulated genes when
132	compared to the FC stomachs of cetaceans (Fig. 2b; Supplementary Table 8;
132 133	
	compared to the FC stomachs of cetaceans (Fig. 2b; Supplementary Table 8;
133	compared to the FC stomachs of cetaceans (Fig. 2b; Supplementary Table 8; Supplementary Note). Among these, the majority (427, 65.2%) are up-regulated in
133 134	compared to the FC stomachs of cetaceans (Fig. 2b ; Supplementary Table 8 ; Supplementary Note). Among these, the majority (427, 65.2%) are up-regulated in rumen relative to both the FC stomach of camels and cetaceans (Fig. 2b ;
133 134 135	 compared to the FC stomachs of cetaceans (Fig. 2b; Supplementary Table 8; Supplementary Note). Among these, the majority (427, 65.2%) are up-regulated in rumen relative to both the FC stomach of camels and cetaceans (Fig. 2b; Supplementary Table 9). These exclusively rumen-specific (i.e., not specifically
133 134 135 136	compared to the FC stomachs of cetaceans (Fig. 2b ; Supplementary Table 8 ; Supplementary Note). Among these, the majority (427, 65.2%) are up-regulated in rumen relative to both the FC stomach of camels and cetaceans (Fig. 2b ; Supplementary Table 9). These exclusively rumen-specific (i.e., not specifically expressed in other FC stomachs) genes are significantly associated with the synthesis
133 134 135 136 137	compared to the FC stomachs of cetaceans (Fig. 2b ; Supplementary Table 8 ; Supplementary Note). Among these, the majority (427, 65.2%) are up-regulated in rumen relative to both the FC stomach of camels and cetaceans (Fig. 2b ; Supplementary Table 9). These exclusively rumen-specific (i.e., not specifically expressed in other FC stomachs) genes are significantly associated with the synthesis and degradation of ketone bodies (Fisher's exact test, adjusted <i>P</i> value = 1.21×10^{-3})

a diagnostic feature of rumen maturity²⁶. In addition to ketogenesis genes, seven genes 141 from the KEGG pathway Staphylococcus aureus infection were also highly expressed 142 143 in the rumen compared to the FC stomachs of camels and cetaceans (Fisher's exact test for KEGG pathway enrichment, adjusted P value = 1.35×10^{-2}) (Supplementary Table 144 **10**). These results indicate that improved ketone body metabolism and microbial 145 regulation were important features in the evolution of the rumen from a proto-rumen 146 origin shared with other Cetartiodactyls. 147 *Gene recruitment by the rumen* 148

Among the 655 rumen specifically expressed genes, the rumen co-expressed 96

150 (14.7%) genes with the esophagus (**Fig. 2d**; **Supplementary Table 2**). The 96 genes

151 were enriched in the cornified envelope (adjusted $P = 4.11 \times 10^{-14}$) and epidermal cell

152 differentiation processes (adjusted $P = 3.77 \times 10^{-25}$) (Supplementary Table 11).

153 Meanwhile, we also found that the rumen recruited genes from a range of other tissues

and biological pathways (Fig. 2d), e.g. keratinocyte differentiation (Supplementary

155 **Table 12**, 88 genes co-expressed with keratinization-associated tissues), urea cycle

156 (Supplementary Table 13, 24 genes co-expressed with liver), monocarboxylic acid

transport (Supplementary Table 14, 61 genes co-expressed with intestine), skeletal

158 muscle contraction (Supplementary Table 15, 23 genes co-expressed with muscle),

159 urea transport (Supplementary Table 16, 19 genes co-expressed with kidney) and

160 saliva secretion (Supplementary Table 17, 10 genes co-expressed with salivary

161 gland). These pathways are all strongly associated with known rumen functions. For

162 instance, enhanced urea recycling is an important characteristic of the rumen leading to

163	increased nitrogen utilization for ruminants ²⁷ . Collectively, these results suggest that
164	the rumen—in addition to up-regulating genes expressed in the esophagus—recruited
165	genes from different tissues to evolve its unique structure and complex functions.
166	Identification of genes functioning in early rumen development
167	The above rumen specifically expressed genes are identified in postnatal rumen,
168	but the development of the rumen structure mainly occurs during early embryo
169	stages ^{28,29} . In order to identify genes functioning in this critical stage, we performed
170	five RNA sequencing from the ruminal and esophageal epithelium cells of four 60
171	days' sheep embryos, the stage at which the ruminal epithelium starts to
172	differentiate ^{28,29} (Supplementary Table 1). We identified 285 rumen up-regulated
173	differentially expressed genes (DEGs) compared to the esophagus (Supplementary
174	Table 18). These are enriched in cell-cell junction (adjusted <i>P</i> value = 8.33×10^{-3}) and
175	desmosome organization (adjusted <i>P</i> value = 1.47×10^{-3}) (Supplementary Table 19).
176	We also found 1,840 rumen down-regulated DEGs which are enriched in anatomical
177	structure morphogenesis (adjusted <i>P</i> value = 1.39×10^{-15}) (Supplementary Table 18 ,
178	20). These results indicate that the specific epithelial histology of the rumen wall
179	constitutes the most significant developmental genetic reprogramming as the organ
180	forms and grows in the embryo. After filtering redundancy, we combined the 655
181	rumen specifically expressed genes with the 285 rumen up-regulated DEGs compared
182	to the esophagus at the key development stage and eventually obtain 846 rumen key
183	genes which we consider crucial for rumen development and evolution.

185 **Evolutionary analyses on the rumen key genes**

186	Based on the data from ruminant comparative genomics ³⁰ , we employed evolutionary
187	genomic analyses on the 846 rumen key genes in the evolutionary context of 51
188	ruminants and 12 other mammals, by identifying ruminant-specific conserved
189	nonexonic elements (RSCNEs) (\geq 20 bp), newly evolved genes and positively selected
190	genes (PSGs) to systematically investigate the genetic changes associated with these
191	rumen key genes. In the common ancestor of Ruminantia, we identified 657 genes with
192	RSCNEs (Supplementary Table 21), two newly evolved genes and 28 PSGs
193	(Supplementary Table 22) among the 846 rumen key genes. They are mainly
194	involved in keratin filament binding, serine-type peptidase activity, ketone body
195	metabolism and detection of bacterium.
196	Improved ketone body synthesis in rumen
197	In the pathway of synthesis and degradation of ketone bodies, HMGCS2 and
198	SLC16A1 were under positive selection in the common ancestor of ruminants (Fig. 2c,
199	3a; Supplementary Table 9, 10, 22), and had ruminant-specific mutations when
200	compared to non-ruminant mammals (Fig. 3b). Of the five ruminant-specific amino
201	acid changes in the HMGCS2 protein, four are located in the HMG-CoA synthase
202	domain (PF01154) (Fig. 3b). To further examine the effects of these mutations on the
203	enzyme structure, we conducted three-dimensional (3D) structure simulations, and
204	found that mutations in HMG-CoA synthase domain could induce a change of the
205	protein 3D structure when compared to the human HMGCS2 protein (Fig. 3c). We also
206	noted that the SLC16A1 gene, which participates in the transportation of ketone bodies

207	into the blood ²⁴ , exhibited seven ruminant-specific mutations, six of which are located
208	in the MFS_1 domain (PF07690), resulting in a domain structure change as revealed by
209	protein structure homology-modeling (Fig. S2, S3). We therefore hypothesized that the
210	changes in HMGCS2 and SLC16A1 may result in a more efficient ketone body
211	metabolism in ruminants. This is supported by HMGCS2 being the key rate-limiting
212	enzyme in the ketogenesis pathway ²⁴ . To explore the functional relevance of these
213	mutations, we synthesized sheep and human HMGCS2 orthologs in vitro and tested
214	their enzyme synthetic activities by measuring the activities in a reconstituted system
215	consisting of the enzyme and substrate (Supplementary Note). The sheep HMGCS2
216	(S) protein variant exhibites significantly higher metabolic efficiency than human
217	proteins (H) (~2-fold increase, t-test, $P < 0.001$) (Fig. 3d). The enzyme activity of
218	human HMGCS2 containing the five ruminant-specific amino acids replacements
219	(H-5R) is also significantly higher than the regular human protein (~1.5-fold increase,
220	P < 0.01), while sheep HMGCS2 with the corresponding five human amino acid
221	replacements (S-5H) exhibites significantly lower enzymatic activities than the sheep
222	protein (~2-fold decrease, $P < 0.001$) (Fig. 3d). These results confirm that ruminants
223	have evolved a more efficient ketogenesis than that of other mammals.
224	Immune system and microbial regulation
225	We identified one PSG (NOD2) (Supplementary Table 22) and two newly

- evolved genes (*DEFB1* and *LYZ1*) in the rumen key gene list that are involved in
- immune functions. Among these, our transcriptomic data show that *NOD2* was
- 228 co-expressed with the macrophage cells, and highly expressed in the rumen compared

229	to both the FC stomachs of camels and cetaceans (Supplementary Table 2, 9). We
230	detected 11 ruminant-unique amino acid changes in NOD2, resulting in domain
231	structure changes as revealed by protein structure homology-modeling (Fig. S4, S5).
232	This gene functions in the upstream part of IL17 signaling pathway, activating the
233	Th17 cells to produce IL17F as part of the gastrointestinal immune system ³¹ (Fig. 4a).
234	The IL17 signaling pathway protects the host against extracellular pathogens via
235	activating downstream pathways to induce the expression of antimicrobial peptides ³² .
236	Among the newly evolved genes in the ancestor of ruminants, we identified a
237	rumen key gene, <i>DEFB1</i> , which belongs to the beta-defensin family that have
238	important roles as antimicrobial peptides in the resistance of epithelial surfaces to
239	microbial colonization (Supplementary Table 2). In addition, we identified one
240	newly evolved rumen key gene $LYZ1$ in the lysozyme c family (Supplementary Table
240 241	newly evolved rumen key gene <i>LYZ1</i> in the lysozyme <i>c</i> family (Supplementary Table 2), which may protect the rumen epithelium from the activity of pathogenic bacteria ¹⁸ .
241	2), which may protect the rumen epithelium from the activity of pathogenic bacteria ^{18} .
241 242	2), which may protect the rumen epithelium from the activity of pathogenic bacteria ¹⁸ . We predicted that the LYZ1 contains a ruminant-specific 20 amino-acid-chain that
241 242 243	2), which may protect the rumen epithelium from the activity of pathogenic bacteria ¹⁸ . We predicted that the LYZ1 contains a ruminant-specific 20 amino-acid-chain that encodes a probable transmembrane anchor (Fig. S6, S7), suggesting that the <i>LYZ1</i> gene
241 242 243 244	2), which may protect the rumen epithelium from the activity of pathogenic bacteria ¹⁸ . We predicted that the LYZ1 contains a ruminant-specific 20 amino-acid-chain that encodes a probable transmembrane anchor (Fig. S6, S7), suggesting that the <i>LYZ1</i> gene encodes a secreted membrane-anchored protein, which may act on the rumen
241 242 243 244 245	2), which may protect the rumen epithelium from the activity of pathogenic bacteria ¹⁸ . We predicted that the LYZ1 contains a ruminant-specific 20 amino-acid-chain that encodes a probable transmembrane anchor (Fig. S6, S7), suggesting that the <i>LYZ1</i> gene encodes a secreted membrane-anchored protein, which may act on the rumen environment.
241 242 243 244 245 246	2), which may protect the rumen epithelium from the activity of pathogenic bacteria ¹⁸ . We predicted that the LYZ1 contains a ruminant-specific 20 amino-acid-chain that encodes a probable transmembrane anchor (Fig. S6, S7), suggesting that the <i>LYZ1</i> gene encodes a secreted membrane-anchored protein, which may act on the rumen environment. To validate the functions of these two newly evolved genes, we synthesized
241 242 243 244 245 246 247	2), which may protect the rumen epithelium from the activity of pathogenic bacteria ¹⁸ . We predicted that the LYZ1 contains a ruminant-specific 20 amino-acid-chain that encodes a probable transmembrane anchor (Fig. S6, S7), suggesting that the <i>LYZ1</i> gene encodes a secreted membrane-anchored protein, which may act on the rumen environment. To validate the functions of these two newly evolved genes, we synthesized DEFB1 and LYZ1 <i>in vitro</i> and tested their antibacterial ability by performing an

251	and LYZ1 (Fig. 4c) protein both showed antibacterial activity to S. aureus, but not E.
252	coli. This characteristic of selective inhibition of Gram-positive bacteria is similar to
253	that of monensin, which is commonly used as an antibiotic drug that regulates the
254	microbiome and increases ruminant feed conversion efficiency ^{33,34} . Taken together,
255	these results highlight that several important antibacterial functions are uniquely
256	evolved in the rumen relative to other similar organs, and that some of these may
257	work by specifically managing the microbiome composition.
258	New regulatory elements related to rumen epithelium absorbtion function
259	We searched among 221,166 RSCNEs to identify candidate regulatory regions in
260	the vicinity of rumen key genes. We found that 657 of the 846 rumen key genes have
261	nearby RSCNEs (Supplementary Table 21). To assess the regulatory role of these
262	RSCNEs in the recruitment of increased gene expression in the rumen, we performed
263	eight ATAC-seq libraries of the ruminal and esophageal epithelium cells from four 60
264	days' sheep embryos (Supplementary Table 23; Supplementary Note). Our analysis
265	indicates that 243 rumen key genes have nearby RSCNEs overlapping with identified
266	open accessible peaks (Supplementary Table 24), and these genes are enriched in
267	epidermal cell differentiation (adjusted <i>P</i> value = 4.82×10^{-19}) (Supplementary Table
268	25). In the comparison of ATAC-seq between the rumen and esophagus, we identified
269	3,904 rumen-specific and 5,531 esophagus-specific open differentially accessible
270	peaks (DAPs) (Fig. S8; Supplementary Table 26). Interestingly, we found 267 and
271	478 RSCNEs (\geq 20 bp) overlapping with rumen-specific and esophagus-specific
272	DAPs, which is highly statistically significant (Fisher's exact test, both P value = 0.00).

273	Rumen-specific DAP-associated RSCNEs are physically near 22 rumen key genes
274	(Supplementary Table 27). Among these genes, CRNN is one of the genes in the
275	epidermal differentiation complex (EDC) locus, which is essential for the cornified cell
276	envelope in rumen ¹⁵ , and is implicated in several epithelial malignancies in human ³⁵ . A
277	rumen-specific DAP-associated RSCNE with six ruminant-specific mutations was
278	found at the 5' upstream of CRNN of ruminants, which might play a role in regulating
279	its expression in rumen. Concordantly, DMRT2 is a key transcriptional factor in the
280	dermomyotome organization and DMRT2-deficient mice have epithelial morphology
281	abnormalities ³⁶ . We observed that <i>DMRT2</i> has five rumen-specific DAP-associated
282	RSCNEs in its 3' downstream region, potentially causing high DMRT2 expression in
283	rumen.
284	Interestingly, WDR66 is not only highly expressed in the rumen compared with
284 285	Interestingly, <i>WDR66</i> is not only highly expressed in the rumen compared with both the FC stomachs of camels and cetaceans but also under positive selection in the
285	both the FC stomachs of camels and cetaceans but also under positive selection in the
285 286	both the FC stomachs of camels and cetaceans but also under positive selection in the common ancestor of Ruminantia (Fig. 5a; Supplementary Table 9, 22). It regulates
285 286 287	both the FC stomachs of camels and cetaceans but also under positive selection in the common ancestor of Ruminantia (Fig. 5a; Supplementary Table 9, 22). It regulates the expression of occludin, which tightens the intercellular space and enables epithelial
285 286 287 288	both the FC stomachs of camels and cetaceans but also under positive selection in the common ancestor of Ruminantia (Fig. 5a; Supplementary Table 9, 22). It regulates the expression of occludin, which tightens the intercellular space and enables epithelial permeability ³⁷ . We observed 10 ruminant-specific non-synonymous mutations and one
285 286 287 288 289	both the FC stomachs of camels and cetaceans but also under positive selection in the common ancestor of Ruminantia (Fig. 5a; Supplementary Table 9, 22). It regulates the expression of occludin, which tightens the intercellular space and enables epithelial permeability ³⁷ . We observed 10 ruminant-specific non-synonymous mutations and one rumen-specific DAP-associated RSCNE in the intronic region of <i>WDR66</i> (Fig. 5b; Fig.
285 286 287 288 289 290	both the FC stomachs of camels and cetaceans but also under positive selection in the common ancestor of Ruminantia (Fig. 5a; Supplementary Table 9, 22). It regulates the expression of occludin, which tightens the intercellular space and enables epithelial permeability ³⁷ . We observed 10 ruminant-specific non-synonymous mutations and one rumen-specific DAP-associated RSCNE in the intronic region of <i>WDR66</i> (Fig. 5b; Fig. S9; Supplementary Table 27). In order to assess the regulatory activity of this
285 286 287 288 289 290 291	both the FC stomachs of camels and cetaceans but also under positive selection in the common ancestor of Ruminantia (Fig. 5a; Supplementary Table 9, 22). It regulates the expression of occludin, which tightens the intercellular space and enables epithelial permeability ³⁷ . We observed 10 ruminant-specific non-synonymous mutations and one rumen-specific DAP-associated RSCNE in the intronic region of <i>WDR66</i> (Fig. 5b; Fig. S9; Supplementary Table 27). In order to assess the regulatory activity of this particular RSCNE, we cloned it into a luciferase reporter vector (pGL3-Promoter) and

295	enhancer. Therefore, these DAP-associated RSCNEs might plausibly have exerted
296	novel cis-regulation of the rumen key genes, thus providing a mechanistic explanation
297	of how the rumen might have recruited these genes from other tissues. Hence, we
298	propose a central role of such regulatory elements in the development and evolution of
299	rumen structure and function.
300	Positively selected genes involved in rumen epithelium absorption
301	We observed that eight rumen key genes involved in the cell junction biological
302	process (WDR66, COL7A1, EVPL, KRT14, CLDN23, F2RL1, TMPRSS13 and
303	TMPRSS11A) were under positive selection in ruminants (Fig. 5a; Fig. S9-S16;
304	Supplementary Table 22). Non-synonymous changes in these genes may result in the
305	change of cell junctions, which may break the epithelium barrier and increase the
306	epithelium absorption properties ³⁸⁻⁴² . <i>COL7A1</i> is highly expressed in the rumen of fetal
307	sheep, but not in the esophagus (Supplementary Table 18). We detected 17 unique
308	amino acid (aa) changes in COL7A1 in ruminants (Fig. S10). COL7A1 is an anchoring
309	fibril between the external epithelia and the underlying basal lamina ³⁹ . Amino acid
310	mutations in this gene are associated with epidermolysis bullosa, a condition in which
311	tissue fluid diffuses through the intercellular space into the epidermis ³⁹ . In addition,
312	<i>TMPRSS13</i> , a membrane-anchored serine protease gene ⁴¹ , is highly expressed in rumen
313	compared to esophagus (Supplementary Table 18). Interestingly, we identified five
314	ruminant-specific aa changes in TMPRSS13, four of which are located in the
315	trypsin-like serine protease domain (Fig. S15). It is reported that the deficiency of
316	TMPRSS13 in mice impairs stratum corneum formation and epidermal barrier

317	acquisition, accompanied by trans-epidermal fluid loss ⁴¹ . In normal epithelium cells
318	(e.g., epithelium cells of skin), the epithelium barrier is produced by strong intracellular
319	protein filaments crossing the cytoplasm and attaching to specialized junctions, which
320	in turn ties the surfaces of adjacent cells either to each other or to the underlying basal
321	lamina ⁴³ (Fig. 5a). Given that the epithelium transportation and absorption functions
322	are affected by the epithelium barrier, mutations in these cell junction-related genes
323	may be related to metabolite uptaking function of the rumen.

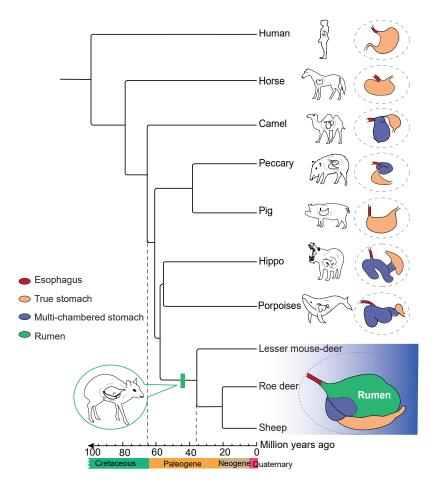
324 Discussion

325	Our large quantity of transcriptomic data in adults and an early embryo rumen
326	development stage provide a detailed comparative insight into the distinct gene
327	expression profile of the rumen. Although there has been no consensus about the
328	evolutionary relationship between the FC stomachs of camels, peccaries, cetaceans and
329	ruminants ^{21,44} , it is unlikely that the multi-chambered stomach evolved independently
330	four times in Cetartiodactyla exclusively. Therefore, the most parsimonious
331	explanation is that they may have a single evolutionary origin, followed by
332	specialization in the different lineages of the Cetartiodactyla due to their specific diets
333	and niches. For instance, the FC stomachs of camels have evolved the ability to store
334	water ^{21,45} , the FC stomachs of cetaceans has the capacity to mechanically grind food ¹¹ ,
335	and the rumen provides efficient fermentation and metabolism of plant material. The
336	gene expression profiles of the FC stomachs in ruminants, camels and cetaceans show
337	that they are all highly similar to the esophagus, suggesting these organs share an
338	anatomical origin from the esophagus (Fig. 2a; Fig. S1).
339	Based on our comparative genomic and functional data, we outline the genetic
340	mechanisms underlying the origin, development and evolution of the rumen from the
341	ancestral esophagus tissue. These genetic innovations are mainly related to epithelium
342	absorption, ketone body metabolism and microbial regulation. Among the 846 rumen
343	key genes (Supplementary Table 2, 18), we found that 657 (77.7%) genes have nearby
344	RSCNEs (Supplementary Table 21), 28 genes are under positive selection
345	(Supplementary Table 22) and two genes newly evolved in the common ancestor of

346	ruminants, suggesting these three types of genetic reprogramming all contributed to the
347	structural and functional evolution of rumen. Notably, the majority of rumen key genes
348	have RSCNEs nearby and our ATAC-seq validated that 243 rumen key genes had
349	nearby RSCNEs overlapping with highly accessible chromatin (Supplementary Table
350	24), suggesting the RSCNEs as regulatory elements may play a crucial role in rumen
351	gene recruitment. The highly significant association between RSCNEs, rumen key
352	genes and open accessible peaks is a strong indication of this, although there were also
353	many RSCNEs that did not overlap with open accessible peaks in our ATAC-seq
354	analysis. While this suggests that RSCNEs play other roles besides being regulatory
355	elements, it is also possible that some were false negatives due to the limitations of
356	development stages sampled in this study, which might have omitted some associations
357	between rumen key genes and regulatory RSCNEs. Hence, a denser sampling of
358	different developmental time points might expand the rumen key gene list and reveal
359	novel regulatory roles of RSCNEs. Nevertheless, our study has revealed the important
360	genetic mechanisms underlying the key evolutionary innovations of the rumen. The
361	identified rumen key genes and their specific mutations provide a starting point for
362	future studies of rumen development, and for understanding the interactions between
363	rumen and microbiota. This will be key to further improvement of ruminant livestock,
364	e.g. by providing a framework for manipulating the rumen fermentation process.

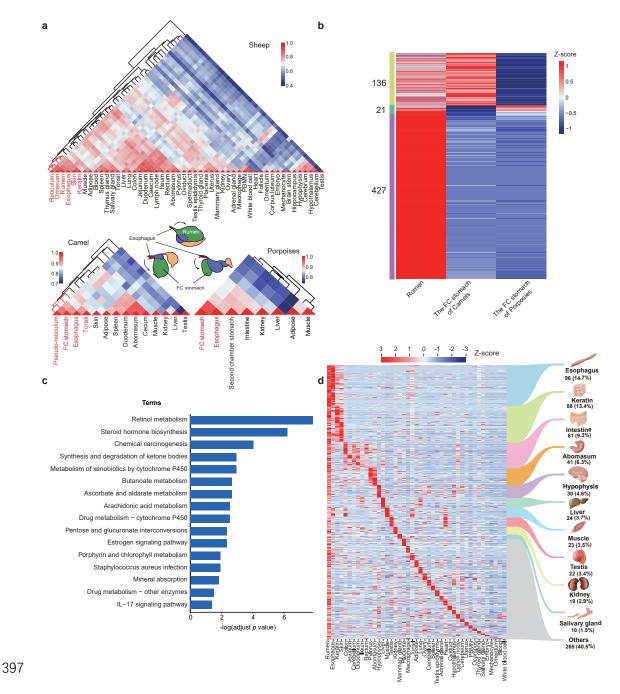
365 Data availability

- 366 The raw reads for all RNA-seq data, the ATAC-seq data from the rumen and the
- 367 esophagus have been deposited at the Sequence Read Archive (SRA) under project
- 368 number PRJNA485657.
- 369 Acknowledgments
- 370 This project was supported by the National Natural Science Foundation of China
- 371 (31822052, 31572381), the National Thousand Youth Talents Plan to Y.J., National
- 372 Natural Science Foundation of China (31660644) to S.H, National Natural Science
- Foundation of China (41422604) to S.L. We thank the members of the FANNG project
- 374 for sharing their transcriptome data. We thank Yongchuan Li, Zhengzhi Wei, Zixin
- 375 Yang, and Haiyu Gao from Institute of Deep-sea Science and Engineering, Chinese
- 376 Academy of Sciences, for helping to collect samples from the porpoise and whale. We
- thank High-Performance Computing (HPC) of Northwest A&F University (NWAFU)
- 378 for providing computing resources.


379 Author contributions

- 380 Y.J. and W.W. conceived the project and designed the research. X.P., Y.C., N.W., C.
- 381 Z., and X.H. performed the majority of analysis with contributions from K.W., L.C.,
- 382 Z.L., Z.Z., B.W., S.H.; Q.Q., S.M., X.L., W.F., L.L., Y.L., W.S., W.L., T.Z., J.H.,
- 383 M.L., S.L., S.H., M.L., C.L., and Y.C. prepared the sheep, camels and cetaceans
- samples for transcriptomics and rumen and esophagus epithelium cells for ATAC-seq.
- 385 H.L. performed the luciferase reporter assay. X.C., Y.Y. and Z.H. performed the
- inhibition zone assay and the enzyme synthetic activities assay. X.P., Z.L. and Y.C.

- drafted the manuscript with input from all authors, whereas Y.J., W.W., R.H., B.P.D.,
- 388 G.Z., X.W. and Y.W. revised the manuscript.


389 **Competing interests**

³⁹⁰ Two provisional Chinese patent applications on potential application in the antimicrobial and antibiotic substitute by way of the *DEFB1* gene and *LYZ1* gene have been filed by Northwest A&F University (application number 202010100677.8 and 202010097562.8), where Y.J., X.P., X.C, and W.W. are listed as inventors. The authors declare no competing interests.

391

Fig. 1 | **Origin of the rumen.** Maximum-likelihood (ML) tree generated using 3,316,385 four-fold degenerate sites with 11,567 single-copy orthologous genes. Dates for major events are taken from the TimeTree Database⁴⁶ and Chen *et al.*,³⁰. The green rectangular block indicates the Ruminantia. Dotted lines link to the detailed divergence times of the two taxa. The esophagus is colored red, the additional stomach chambers in the multi-stomach lineages purple, the rumen green, and the true stomach/abomasum orange.

399 Hierarchical clustering results showing the relationships among 50 tissues of sheep and a heatmap

400 showing the pairwise Spearman correlations between sheep tissues(the top triangle), between 14

- 401 tissues of camels (lower left triangle) and between eight tissues of two cetaceans (lower right
- 402 triangle). **b**, Heatmap of differentially expressed rumen specifically expressed genes among the
- 403 rumen and other FC stomachs. The color bars on the left present 136 DEGs of the rumen relative to

- 404 the FC stomach of cetaceans (yellow), 21 DEGs relative to the FC stomach of camels (green), and
- 405 427 DEGs relative to the FC stomach of both species (purple). The expression levels were
- 406 normalized by Z-scores. **c**, KEGG pathway analysis of 427 rumen up-regulated DEGs relative to
- 407 both the FC stomach of camels and cetaceans. **d**, Heatmap showing the gene expression profiles of
- 408 all 655 rumen specifically expressed genes across 43 tissues of sheep. Different colored lines
- 409 represent the tissues from which the rumen specifically expressed genes were recruited. Number of
- 410 genes from each tissue is shown below the tissue name with the percentage of total genes recruited
- 411 in parentheses.

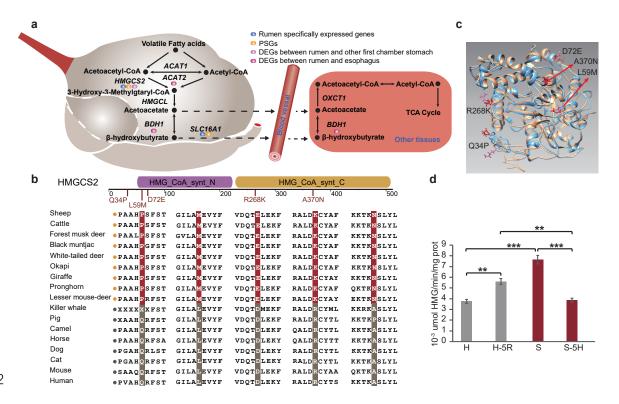


Fig. 3 | Genetic changes in the rumen ketone body metabolism genes and pathways. a, Genes
annotated in the ketone body metabolism are labeled with different color to indicate rumen
specifically expressed genes (blue), positively selected genes in ruminant (orange) and

416 differentially expressed genes between rumen and other FC stomachs (purple). The solid arrows

417 represent ketone body metabolism pathways. The dashed arrows indicate the process of material

transport from rumen to other tissues. **b**, Top panels: Structural domains of the HMGCS2 protein

and the location of the ruminant specific mutations. Lower panel: Peptide sequence alignment of

420 HMGCS2. The species is followed a yellow circle belonging to the ruminant. The red highlighting

421 indicates ruminant-specific amino acid mutations. c, Predicted tertiary structures of the HMGCS2

422 of ruminant (blue) and other mammals (orange), respectively. **d**, Enzyme activities of HMGCS2

423 compared with those of sheep and human in vitro. H: human, H-5R: human HMGCS2 with five

424 ruminant aa replacements, S: sheep, S-5H: sheep HMGCS2 with five human aa replacements. **

425 p value < 0.01, *** p value < 0.001 calculated from the t test. Data are shown as mean±s.d.

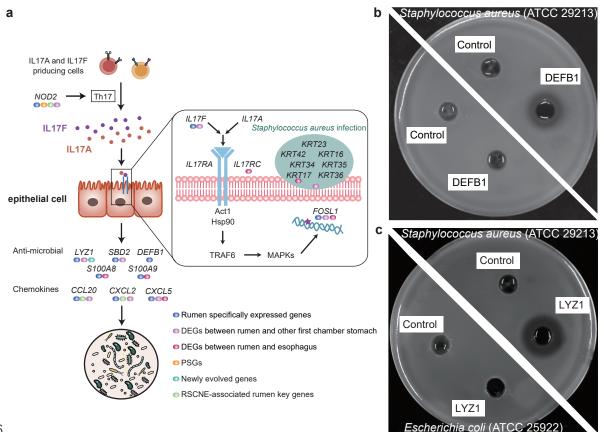
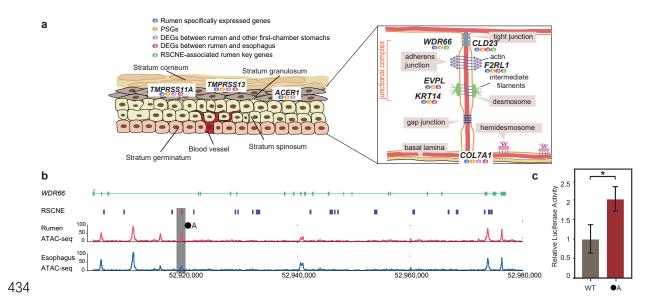



Fig. 4 | Microbial management of the rumen. a, Rumen specifically expressed genes (blue),
differentially expressed genes between rumen and other FC stomachs (purple), positively selected
genes in ruminant (orange), differentially expressed genes between rumen and esophagus (red),
newly evolved genes (cyan) and RSCNE-associated rumen key genes (green) involved in IL17
signaling pathway and *Staphylococcus aureus* infection. The antibacterial ability of (b), DEFB1
and (c), LYZ1. Inhibition zone assays on agarose plates with *Escherichia coli* (ATCC 25922) and *Staphylococcus aureus* (ATCC 29213).

435 Fig. 5 | Genetic changes related to rumen epithelium transportation and absorption. a,

437 common ancestor of the ruminants. Rumen specifically expressed genes (blue), positively selected

Diagram of rumen epithelial cell proteins involved in epithelium permeability identified in the

438 genes in ruminant (orange), differentially expressed genes between rumen and other FC stomachs

439 (purple), differentially expressed genes between rumen and esophagus (red), and

436

440 RSCNE-associated rumen key genes (green). Note the junction structure (desmosome) between

441 keratinocytes of the ruminal epithelium has been degraded, instead the enlarged intercellular space

442 with copious blood supply enables metabolites absorption in the ruminal epithelium⁴⁷. **b**, Gene

443 structure of WDR66 based on the NCBI Oar_v4.0 annotation shown above. Green boxes represent

444 exons. Purple bars indicate ruminant-specific conserved non-exonic elements (RSCNEs). Red and

blue bars indicate ATAC-seq peaks of the ruminal and esophageal epithelium cell, respectively.

- 446 The grey rectangle box is the overlapping element of RSCNE and ATAC-seq which is located in
- the intron region. c, The luciferase activity of the pGL3-Promoter (WT) and the pGL3-Promoter
- 448 with the RSCNE (\bullet A). * *p* value < 0.05 calculated from the t test. Data are shown as mean ± s.d.

449 **References**

450	1.	Gregory, T. R., The evolution of complex organs. Evo. Edu. Outreach 1, 358-389 (2008).
451	2.	Land, M. F. & Fernald, R. D., The evolution of eyes. Annu. Rev. Neurosci. 15, 1-29 (1992).
452	3.	Land, M. F., The optics of animal eyes. Contemp. Phys. 29, 435-455 (1988).
453	4.	Gallant, J. R. et al., Genomic basis for the convergent evolution of electric organs. Science 344,
454		1522-1525 (2014).
455	5.	Griffith, O. W. & Wagner, G. P., The placenta as a model for understanding the origin and
456		evolution of vertebrate organs. Nat. Ecol. Evol. 1, 0072 (2017).
457	6.	Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P., Transposon-mediated rewiring of gene
458		regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43,
459		1154-1159 (2011).
460	7.	Wang, Y. et al., Genetic basis of ruminant headgear and rapid antler regeneration. Science 364,
461		v6335 (2019).
462	8.	Janis, C., The evolutionary strategy of the equidae and the origins of rumen and cecal digestion.
463		Evolution 30 , 757-774 (1976).
464	9.	Dehority, B. A., Gastrointestinal tracts of herbivores, particularly the ruminant: Anatomy,
465		physiology and microbial digestion of plants. J. Appl. Anim. Res. 21, 145-160 (2002).
466	10.	Novacek, M. J., Mammalian phylogeny: Shaking the tree. Nature 356, 121-125 (1992).
467	11.	Mathiesen, S. D. et al., Digestive physiology of minke whales. Developments in Marine Biology 4,
468		351-359 (1995).
469	12.	Cantalapiedra, J. L. et al., Dietary innovations spurred the diversification of ruminants during the
470		Caenozoic. Proc. Biol. Sci. 281, 20132746 (2014).
471	13.	De Tarso, S. G. D. S., Oliveira, D. & Afonso, J. A. B., Ruminants as part of the global food
472		system: How evolutionary adaptation sand diversity of the digestive system brought them to the
473		future. J. Dairy Vet. Anim. Res. 3, 171-176 (2016).
474	14.	Zeder, M. A., Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion,
475		and impact. Proc. Natl. Acad. Sci. U. S. A. 105, 11597-11604 (2008).
476	15.	Xiang, R., Oddy, V. H., Archibald, A. L., Vercoe, P. E. & Dalrymple, B. P., Epithelial, metabolic
477		and innate immunity transcriptomic signatures differentiating the rumen from other sheep and
478		mammalian gastrointestinal tract tissues. Peerj 4, e1762 (2016).
479	16.	Millen, D. D., Mario, D. B. A. & Rodrigo, D. L. P., Rumenology. (Springer, Switzerland
480		, 2016).
481	17.	Huttner, K. M., Brezinski-Caliguri, D. J., Mahoney, M. M. & Diamond, G., in Molecular and
482		Cellular Studies of Rumen Epithelial Metabolism (1998).
483	18.	
484		344 , 1164-1168 (2014).
485	19.	Clark, E. L. et al., A high resolution atlas of gene expression in the domestic sheep (Ovis aries).
486		<i>Plos Genet.</i> 13 , e1006997 (2017).
487	20.	
488		(Cambridge University Press, 2004)
489	21.	Vallenas, A., Cummings, J. F. & Munnell, J. F., A gross study of the compartmentalized stomach
490		of two new-world camelids, the llama and guanaco. J. Morphol. 134, 399-423 (1971).
491	22.	Tarpley, R. J., Sis, R. F., Albert, T. F., Dalton, L. M. & George, J. C., Observations on the

492		anatomy of the stomach and duodenum of the bowhead whale, Balaena mysticetus. Am. J. Anat.
493		180 , 295-322 (1987).
494	23.	Xiong, Z. et al., PAX9 regulates squamous cell differentiation and carcinogenesis in the
495		oro-oesophageal epithelium. J. Pathol. 244, 164-175 (2018).
496	24.	Newman, J. C. & Verdin, E., Ketone bodies as signaling metabolites. <i>Trends in Endocrinology</i> &
497		Metabolism 25, 42-52 (2014).
498	25.	Thumelin, S., Forestier, M., Girard, J. & Pegorier, J. P., Developmental changes in mitochondrial
499		3-hydroxy-3-methylglutaryl-CoA synthase gene expression in rat liver, intestine and kidney.
500		Biochem. J. 292 , 493-496 (1993).
501	26.	Baldwin, R. L., McLeod, K. R., Klotz, J. L. & Heitmann, R. N., Rumen development, intestinal
502		growth and hepatic metabolism in the pre- and postweaning ruminant. J. Dairy Sci. 87, E55-E65
503		(2004).
504	27.	Leng, R. A. & Nolan, J. V., Nitrogen metabolism in the rumen. J. Dairy Sci. 67, 1072-1089
505		(1984).
506	28.	Wardrop, I. D., Some preliminary observations on the histological development of the
507		fore-stomachs of the lamb I. Histological changes due to age in the period from 46 days of foetal
508		life to 77 days of post-natal life. J. Agric. Sci. 57, 335-341 (1961).
509	29.	Fath, E. M., Schwarz, R. & Ali, A. M., Micromorphological studies on the stomach of sheep
510		during prenatal life. Anat. Histol. Embryol. 12, 139-153 (1983).
511	30.	Chen, L. et al., Large-scale ruminant genome sequencing provides insights into their evolution
512		and distinct traits. Science 364, (2019).
513	31.	Gaffen, S. L., An overview of IL-17 function and signaling. Cytokine 43, 402-407 (2008).
514	32.	van Beelen, A. J. et al., Stimulation of the intracellular bacterial sensor NOD2 programs dendritic
515		cells to promote interleukin-17 production in human memory T cells. Immunity 27, 660-669
516		(2007).
517	33.	Thornton, J. H. & Owens, F. N., Monensin supplementation and in vivo methane production by
518		steers. J. Anim. Sci. 52, 628-634 (1981).
519	34.	Duffield, T. F., Merrill, J. K. & Bagg, R. N., Meta-analysis of the effects of monensin in beef
520		cattle on feed efficiency, body weight gain, and dry matter intake. J. Anim. Sci. 90, 4583-4592
521		(2012).
522	35.	Kypriotou, M., Huber, M. & Hohl, D., The human epidermal differentiation complex: Cornified
523		envelope precursors, S100 proteins and the 'fused genes' family. Exp. Dermatol. 21, 643-649
524		(2012).
525	36.	Seo, K. W. et al., Targeted disruption of the DM domain containing transcription factor Dmrt2
526		reveals an essential role in somite patterning. Dev. Biol. 290, 200-210 (2006).
527	37.	Wang, Q., Ma, C. & Kemmner, W., Wdr66 is a novel marker for risk stratification and involved
528		in epithelial-mesenchymal transition of esophageal squamous cell carcinoma. Bmc Cancer 13,
529		137 (2013).
530	38.	Risk, J. M. et al., Envoplakin, a possible candidate gene for focal NEPPK/esophageal cancer
531		(TOC): The integration of genetic and physical maps of the TOC region on 17q25. <i>Genomics</i> 59 ,
532		234-242 (1999).
533	39.	Sheth, J., Mistri, M., Patel, H., Ankleshwaria, C. & Parikh, A., Autosomal dominant mutation in
534		COL7A1 gene causing epidermolysis bullosa dystrophica. Mol. Cytogenet. 7, P58 (2014).
535	40.	Bousquet, O. et al., The nonhelical tail domain of keratin 14 promotes filament bundling and

536		enhances the mechanical properties of keratin intermediate filaments in vitro. J. Cell Biol. 155,
537		747-754 (2001).
538	41.	Madsen, D. H., Szabo, R., Molinolo, A. A. & Bugge, T. H., TMPRSS13 deficiency impairs
539		stratum corneum formation and epidermal barrier acquisition. <i>Biochem. J.</i> 461, 487-495 (2014).
540	42.	Gareus, R. et al., Normal epidermal differentiation but impaired skin-barrier formation upon
541		keratinocyte-restricted IKK1 ablation. Nat. Cell Biol. 9, 461-469 (2007).
542	43.	Alberts, B., Johnson, A. & Lewis, J., Molecular biology of the cell. (Garland Pub., 1983).
543	44.	Mead, J. G., in <i>Encyclopedia of Marine Mammals (Second Edition)</i> (Academic Press, 2009).
544	45.	von Engelhardt, W., Dycker, C. & Lechner-Doll, M., Absorption of short-chain fatty acids,
545		sodium and water from the forestomach of camels. J. Comp. Physiol. B 177, 631-640 (2007).
546	46.	Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B., TimeTree: A resource for timelines,
547		timetrees, and divergence times. Mol. Biol. Evol. 34, 1812-1819 (2017).

548 47. Phillipson, A. T., *Physiology of digestion and metabolism in the ruminant*. (Oriel Press Ltd.,
549 1970).