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Abstract

In this work, we introduce new phenomenological neuronal models (eLIF and mAdExp) that
account for energy supply and demand in the cell as well as their interactions with spiking
dynamics. Through energetic considerations, these new models reproduce a broad range of
biologically-relevant behaviors that are identified to be crucial in many neurological disorders,
but were not captured by commonly used phenomenological models. Because of their low
dimensionality eLIF and mAdExp enable large-scale simulations that are necessary for more
realistic studies of brain circuits involved in neuronal disorders. The new models enable both
more accurate modeling and the possibility to study energy-associated disorders over the whole
time-course of disease progression instead of only comparing the initially healthy status with
the final diseased state. These models, therefore, provide new theoretical and computational
methods to assess the opportunities of early diagnostics and the potential of energy-centered
approaches to improve therapies.
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1. Introduction1

Brain metabolism, even in its resting state, constitutes a major source of energy consumption in mammalian2

species. Indeed, cells — and especially excitable cells such as neurons — undergo constant ion fluxes both3

along and against the concentration and electric gradients. To move ions against these gradients, an active4

mechanism is required, which consumes energy in the form of ATP. In cells, this work is mostly associated with5

the sodium-potassium pump (Na/K pump or NKP) which moves 3 sodium ions out of the cell in exchange for6

2 potassium ions moving in for every hydrolyzed ATP molecule, thus creating a net electric current (Glynn7

2002). As a result, Na/K pump is responsible for roughly 75% of the total energy consumption in neurons8

(Howarth, Gleeson, and Attwell 2012), which arguably makes it one of the most important players in the cell:9

its action makes the energy from the hydrolysis of ATP available to most other processes (Skou 1990), allowing10

changes in the membrane potential, regulation of the volume, or transport of nutrients inside the cell. Thus the11

energy level, through the Na/K pump activity, modulates neuronal response and directly influences information12

processing (Forrest 2014).13

Though the Na/K pump has been thoroughly researched in the past decades (Skou 1990; Glynn 2002),14

surprisingly few neuronal models include the pump and its electrogenic properties (Jasinski et al. 2013; Krishnan15

et al. 2015; Perez, Ziburkus, and Ghanim Ullah 2016) and even fewer account for its underlying energy substrate16

(Pissadaki and Bolam 2013; Wei, G. Ullah, and Schiff 2014). A probable reason for this fact comes from the17

significant focus of theoretical studies on cortical areas that generally display sparse activity. Such conditions18

put little or no metabolic stress on the neurons and thus limit the influence of the Na/K pump and energetic19

constraints on the dynamics. However, the story changes drastically when energy-intensive behaviors such20

as bursting or fast pacemaking dynamics are considered, or when studying neuronal disorders. Indeed, both21

situations can place neurons under significant metabolic stress and induce fluctuation in the metabolite and22

ion concentrations which, from NKP-driven coupling between metabolism and activity, can then lead to major23

changes in the neuronal dynamics.24

Outside of neuroscience, the influence of Na/K pump and energy consumption on activity and disorders25

were investigated in the context of the cardiac electrophysiology (Noma 1983; Luo and Rudy 1994; Bueno-26

Orovio et al. 2014). However, awareness is now raising in the neuroscience community, including its most27

theoretically-oriented members, as an increasing number of publications start to stress the critical influence of28

mitochondria (Kann and Kovács 2007; Kim et al. 2019) and Na/K pump (Baeza-Lehnert et al. 2019) and the29

intricate feedback loops between activity and energetics. Some well-known works on energetics in computational30

neuroscience include the energy budgets from Attwell and Laughlin 2001 and Howarth, Gleeson, and Attwell31

2012, as well as studies related to the link between action potential shape and ATP consumption (Hasenstaub32

et al. 2010; Sengupta et al. 2010). Yet, these studies deal with general budgets from the point of view of33

optimality theory and do not describe the local interactions between energy levels and spike initiation.34

The interactions between energetics and neuronal activity are most visible in neuronal disorders such as35

epilepsy (Bazzigaluppi et al. 2017; Katsu-Jiménez, Alves, and Giménez-Cassina 2017; Kovács et al. 2018),36

Alzheimer (Kapogiannis and Mattson 2011), or Parkinson’s disease (Büeler 2009; Haddad and Nakamura 2015).37

It is therefore in the context of neuronal diseases that one can find the few studies that really focused on these38

interactions (Wei, G. Ullah, and Schiff 2014; Pissadaki and Bolam 2013; Le Masson, Przedborski, and Abbott39

2014). Unfortunately, because such studies are still scarce and the associated modeling frameworks are still40

limited, computational studies of neuronal disorders currently suffer from at least one of the following issues: a)41

they do not account for energetic constraints, b) the models do not reproduce important features of the relevant42

neuronal behaviors, or c) the size of the simulated networks is extremely small.43

Here we present new models to help tackle these issues through theoretical descriptions of neuronal dynamics44

that a) account for energy levels and their influence on neuronal behavior, b) are able to reproduce most relevant45

neuronal dynamics in the context of disorders such as seizures or Parkinson’s disease, and c) can be used in46

simulation of networks up to several million neurons.47

2. Methods48

In the following we describe and discuss the implementation of the new models, starting with a list of features49

that these models should satisfy. As energetic constraints are especially relevant for behaviors associated to50

diseased or hypoxic state, we designed our models so that they would be able to provide meaningful behaviors51

in such conditions.52

The requirements fell into two categories: 1) behavioral requirements, associated to the type of responses and53

biological situations that the models can account for, and 2) practical constraints associated to the computational54

cost and theoretical complexity of the model.55

Regarding the behavioral requirements, the models were designed to account for the following observations:56

2

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.19.955898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.955898
http://creativecommons.org/licenses/by/4.0/


• as mitochondrial health or metabolic resources decrease (e.g. during hypoxia), the excitability of the57

neuron can increase (Mironov 2007; Le Masson, Przedborski, and Abbott 2014),58

• decrease in metabolic resources is also associated to an increase in calcium levels (Mironov 2007),59

• during seizures or when submitted to excessive excitation, neurons undergo depolarization blocks charac-60

terized by “superthreshold” membrane potential without spike emission (Bikson et al. 2003),61

• neuronal bistability, observed in several brain regions (Plenz and Kitai 1998; Loewenstein et al. 2005), is62

involved in important mechanisms such as up-and-down states and could also explain discontinuities in63

the progression of neurodegenerative diseases (Reinoso et al. 2015),64

• adaptation currents and bursting or rebound activities which are major players in neuronal disorders65

(Jonathan E. Rubin et al. 2012; Buchin et al. 2018).66

Our central goal is to develop models that do not only reproduce important behaviors, but also allow for67

large-scale event-based simulations. To achieve this, the computational cost and complexity of the models68

should be minimal. Thus, we decided to use hybrid models based on the integrate-and-fire paradigm.69

We established that models including an adaptation current, such as the AdExp neuron (Brette and Gerstner70

2005), were able to provide most of the required dynamics such as bursting and rebound activity (Naud et71

al. 2008; Destexhe 2009). The missing requirements — depolarization block and bistability — as well as the72

inclusion of metabolic resources would thus come from the addition of dynamic resource availability (broadly73

called energy in the following), as shown on Figure 1.74

For applications where bursting behavior and adaptation do not play an important role, a simple model75

that accounts only for energy dynamics is provided: the eLIF neuron. It introduces energy dynamics as an76

addition to the simpler leaky integrate-and-fire (LIF) model and enables us to analyze the consequences of77

these constrains in a more straightforward and visual manner. The behavior of this model can also be fully78

investigated analytically compared to the 3-dimensional system that arises in a second time when both energy79

and adaptation dynamics are considered. This second model, called mAdExp, is built upon the AdExp equations80

and cam reproduce all desired behaviors. Though analytical analysis of this model can prove challenging, most81

of its dynamics can be understood from the complementary analyses of the eLIF and AdExp models.82

Figure 1: Variables and interactions that must be present in the models to capture all relevant behaviors, the
main molecules associated to each of the variables are also displayed. The type of interaction is marked
on the arrow. For instance, w modulates (M) V as it influences the intrinsic dynamics of V but does
not usually cause it directly. On the other hand, as changes in the membrane potential are the main
cause of variations in w, V is said to drive (D) w. Eventually, all mechanisms consume (C) energy.

2.1. Introducing energy: the eLIF model83

The first proposed model is a straightforward modification of the standard Leaky Integrate-and-Fire (LIF)84

model (Brunel 2008). In order to provide an intuitive and analytically tractable implementation that would85

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.19.955898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.955898
http://creativecommons.org/licenses/by/4.0/


illustrate the consequences of energy dynamics and the constraints it places on spike-emission, we developed a86

two-dimensional dynamical system describing the evolution of a) the membrane potential V of a point neuron87

and b) the available amount of energy ϵ that the neuron can access. To make the equations more readable88

and the parameters easy to interprete, the model is displayed using three equations; However, it can be easily89

simplified to a system of two equations only.90

if V < Vth or ϵ < ϵc



CmV̇ = gL(EL − V ) + Isyn + Ie

τeϵ̇ =

(
1− ϵ

αϵ0

)3

− V − Ef

Ed − Ef

EL = E0 + (Eu − E0)

(
1− ϵ

ϵ0

) else
{

V ← Vr

ϵ ← ϵ− δ
(1)

As in other standard integrate-and-fire models, the neuron possesses a leak potential EL, a membrane ca-91

pacitance Cm, and a leak conductance gL, the combination of the last two defining the membrane timescale92

τm = Cm/gL. Input from other neurons are represented by Isyn while external input currents are associated93

to Ie. When either of these inputs brings the neuron above its threshold potential Vth, provided that there is94

enough energy (ϵ > ϵc) a spike is emitted and the voltage is instantaneously reset to Vr.95

The available energy ϵ varies with a typical timescale τe and is regulated by a production term (which tries96

to maintain it close to the typical energy value ϵ0) and two consumption mechanisms. The first consumption97

mechanism is associated to the fluctuations of the membrane potential. It is responsible for the nonlinear shape98

of the ϵ-nullcline (see Figure 2, red line). The parameters defining the shape of the nullcline are: the flex99

potential Ef (that corresponds to the inflection point, or flex, of the curve) and the energy-depletion potential100

Ed, that is a potential at which ϵ-nullcline crosses the x-axis — Ed thus corresponds to the lowest voltage-clamp101

potential that will lead to complete energy depletion and therefore neuronal death. The second source of energy102

consumption is the energetic cost δ of the spike generation mechanisms. The ability of the neuron to maintain103

its energy levels close to ϵ0 depends on its “energetic health” described by the α parameter: a healthy neuron104

would have a value of α equal to one, while diseased neuron would see their α parameter decrease towards zero.105

Contrary to most previous models, the leak potential is not constant, as it depends on the energy level of the106

neuron. The steady-state value EL of the membrane potential thus varies linearly, starting from Eu when the107

energy is zero and decreasing as ϵ increases, crossing the potential E0 for ϵ = ϵ0 (see Figure 2) for details).108

The behavior of the standard LIF is recovered when Eu = E0 and δ = 0.109

2.2. Adaptation and bursting: mAdExp model110

In order to model the whole range of biologically-relevant behaviors that can be observed in neuronal disorders111

such as epilepsy or Parkinson’s disease, it is necessary to include a modulatory mechanism to account for112

cellular and spike-driven adaptation. This second dynamical system keeps the basic properties introduced in113

the eLIF model and extends them to accommodate the cellular adaptation and spike initiation mechanisms of114

the adaptive Exponential Integrate-and-Fire model (aEIF or AdExp) by Brette and Gerstner 2005. This leads115

to a 3D model with three dynamical state variables which are the membrane potential V , the energy level ϵ (as116

for the eLIF model), and an adaptation current w:117

if V < Vpeak



CmV̇ = gL(EL − V ) + gL∆T
ϵ− ϵc
ϵ0

exp

(
V − Vth

∆T

)
− w + Isyn + Ie

τeϵ̇ =

(
1− ϵ

αϵ0

)3

− V − Ef

Ed − Ef
− w

γ

τwẇ = a(V − EL)− w +
ϵc

ϵc + 2ϵ
IKATP else

 V ← Vr

w ← w + b
ϵ ← ϵ− δ

EL = E0 + (Eu − E0)

(
1− ϵ

ϵ0

)
(2)

Compared to the eLIF implementation, the presence of the spike initiation mechanism through the exponential118

function removes the necessity of a hard threshold for spike prevention due to energy limitation: the (ϵ− ϵc)/ϵ0119

factor suppresses the exponential divergence as soon as the amount of available energy goes below ϵc.120

The dynamics of the ϵ variable remains mostly unchanged except for the addition of a new consumption term121

associated with the adaptation current w: biologically γ−1 corresponds to the energetic cost of bringing back122

the potassium ions which exited the cell per pA unit of the adaptation current.123
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Figure 2: Phase space of the eLIF model in bistable parameter regime. V -nullcline is given by the blue line,
ϵ-nullcline by the red curve. Fixed points (FPs) are shown by the circles (filled for stable and empty
for unstable) and the cross marks the inflection point of the ϵ-nullcline. Dashed lines represent the
shifts in the V -nullcline which lead to the disappearance of the unstable fixed point and of one of the
stable fixed points (saddle-node bifurcation via the external current Ie). The super-threshold region,
where spikes are elicited upon entrance, is marked by the light grey filling; the energy-limiting region
(ϵ < ϵc) is marked by the grey filling and overlaps with the super-threshold region in the dark grey
area, where energy limitations prevent spiking though the neuron is above threshold.

Compared to the original AdExp model, the w dynamics includes an additional term, ϵc
ϵc+2ϵIKATP , to account124

for ATP-sensitive potassium channels that trigger potassium outflow when the ATP/ADP ratio becomes small.125

IKATP is thus the maximum current at zero energy. Because of the numerous calcium exchangers in neuronal126

cells (Altimimi and Schnetkamp 2007; Gomez-Villafuertes, Mellström, and Naranjo 2007), the term responsible127

for the exponential decay of the adaptation current with timescale τw is considered to be energy-independent.128

Thus, only EL and K-ATP induce energy-dependent changes in the adaptation current.129

2.3. Numerical implementations130

Implementations of the models are available for three major simulation platforms: NEST (Fardet et al. 2020),131

through the NESTML language (Perun et al. 2018), BRIAN (Goodman 2009), and NEURON (Hines 2009).132

Models are available on ModelDB and on GitHub1, together with code to reproduce the figures.133

2.4. Fitting procedure134

To reproduce experimental recordings, we could set some of the model parameters directly from the data. The135

rest had to be manually adjusted. The following parameters can be informed from the data: a) EL was obtained136

by measuring the median resting value b) the membrane timescale τm was measured from the initial slope of the137

membrane dynamics in response to hyperpolarizing currents c) the sum gL + a was obtained through a linear138

regression from the difference between resting EL and steady-state Ess potentials in response to depolarizing139

currents as ∆V = Ess − EL = I
a+gL

. These properties were used to constrain the following parameters: Cm,140

gL, a, EL, E0, Eu. All other parameters were then manually adjusted to minimize the discrepancy between141

subthreshold dynamics, number and time of spikes. Further research would be necessary to find how to automate142

this procedure using a proper distance function in optimization toolboxes.143

3. Results144

The new eLIF and mAdExp models enable us to obtain a variety of new dynamics such as rebound spiking,145

depolarization block, cellular bistability and up-and-down states, as well as biologically relevant transitions from146

a healthy to a diseased state.147

For hybrid models, most of the neuronal dynamics can be understood through two main concepts: a) fixed148

points (FPs), which are equilibrium states of the model, and b) bifurcations, which are sudden changes in the149

1https://github.com/Silmathoron/elif-madexp
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Figure 3: Dynamics of the eLIF model as timeseries (left) and in phase-space (right) in the bistable regime. The
behavior of the model is shown in response to four different inputs, shown in grey on the V subplot: a
low depolarizing current (a: 10 pA), a stronger depolarizing current (b: 30 pA), a large depolarization
(c: 80 pA), and a hyperpolarizing current (d: -60 pA). Corresponding behavior in phase-space is
shown in the four right panels, corresponding to each of the four domains separated by the grey
dashed lines on the right panel. The black curves mark the resting nullclines and the light grey line
marks the input-driven V -nullcline; resting fixed points (FPs) are marked by the large black circles
while input-driven FPs are show by the small grey circles and spike emissions are marked by empty left
triangles while reset positions are marked by blue dots. The neuron displays the following behaviors:
(a) subthreshold dynamics, where the neuron temporarily leaves the high-energy FP, associated to the
down-state, then goes back towards it, (b) transition from the initial high-energy FP to the low-energy
FP (up-state) through a spiking period, (c) transition from the up-state to a depolarization block via
a spiking period before returning towards the up-state, (d) transition from up- to down-state. See
Table 2 in Appendix A.6 for detailed parameters.

number or stability of the fixed points, and which make the neuron change its behavior, for instance from resting150

to spiking.151

This section details the aforementioned behaviors and their mechanistic origins through the theory of dynam-152

ical systems, using fixed points and bifurcations.153

3.1. Behaviors and bifurcations of the eLIF model154

The eLIF model, like the integrate-and-fire (LIF) neuron, has only two dynamical states: quiescent or active155

(spiking). Due to the energetic constraints, the model has two possible quiescent states which are the “normal”156

resting state, with a membrane potential located below threshold, and a super-threshold state where depleted157

energy levels prevent spike emission. The finite energy resources also imply that, contrary to the LIF neuron,158

the active state can be transient, as the neuron transits from its resting state to a quiescent, super-threshold159

state through an active period.160

In the language of dynamical systems, the quiescent states are associated to FPs inside the continuous region161

(if either VFP < Vth or ϵFP < ϵc), whereas the active state is associated to the absence of a stable FP that can162

be accessed continuously in the region of phase-space where the neuron lies — see Figure 3.163

We will focus here on the situation that is most relevant for the study of neuronal disorders, i.e. the case where164

Eu > E0, meaning that decrease in energy levels leads to increase in membrane potential. This situation leads165

to a neuronal behavior which is that of an integrator; another type of behavior, closer to that of a resonator,166

with dampened oscillations is also possible for Eu < E0 and is discussed in section 3.4 and in the Appendix.167

In this situation, due to the nonlinearity of the ϵ-nullcline, the biophysically acceptable domain for steady168

states (ϵ ≥ 0 and V in a reasonable range of potential) can contain either zero, one, or three FPs. In the case169

of a single, necessarily stable FP, it corresponds to a standard neuron with a single resting state. For certain170

combinations of the neuronal parameters, the V -nullcline can intersect the ϵ-nullcline three times, leading to171

two stable FPs and one unstable point. This situation corresponds to a bistable cell, where two distinct resting172

states are possible: an up-state, characterized by lower energy levels and high membrane potential, and a down-173

state, associated to higher energy and hyperpolarized membrane potential. Responses of the bistable neuron174

to the different step-currents are illustrated in Figure 3. Depending on initial state and the input the neuron175

transitions between the up- and down-states. Finally, the situation without FPs in the biophysical domain is176
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unsustainable and will lead to rapid neuronal death. Possible reasons for transitions between these states will177

be detailed in the following section.178

We use the transitions in the number of FPs, called bifurcations, to predict the behavior of the neuron. The179

bifurcations can have two separate kinds of consequences, that can potentially happen simultaneously: a) a180

change in the steady-state behavior of the neuron such as the switch from a unistable to a bistable state or181

vice-versa, b) a transition from a quiescent to an active state.182

Let us discuss these bifurcation in response to an external stimulation associated to an applied current Ie.183

The consequence of Ie is to shift the V -nullcline horizontally (towards more negative potentials if Ie < 0, or184

towards more positive if Ie > 0), which can lead to transition between the unistable and bistable states as one185

stable FP either splits into one stable and one unstable FP or, on the contrary, merges with the unstable FP186

and disappears. This type of transition is called a saddle-node bifurcation and occurs for:187

I∗e± = gL

[
Ef − Eu + α(Eu − E0)

(
1± 2

3

√
α(Eu − E0)

3(Ed − Ef )

)]
(3)

Depending on the value of Ie, the neuron can thus display either a single or two stable FPs — see Figure 3188

and Appendix A.3.3 for the analytic derivation of the FPs.189

As Ie increases, the transition from three FPs to one FP can also lead the neuron to fire, either transiently190

if the remaining FP is located in the continuous region (if either VFP < Vth or ϵFP < ϵc) or continuously (if191

VFP ≥ Vth and ϵFP > ϵc).192

3.2. Transition from health to disease193

As energy availability decreases, either due to disease (Le Masson, Przedborski, and Abbott 2014) or hypoxia194

(Mironov 2007), neurons often display a parallel increase in their resting membrane potential and excitability,195

which can lead to highly active periods before the neuron end up in a highly depolarized yet completely non-196

responsive state also called depolarization block. Biologically, this low-energy state — (d) and below on Figure 4197

— would be associated to deregulation of calcium levels and accumulation of oxidizing agents which eventually198

lead to cell death (occuring when α reaches zero in the model).199

Due to the interaction between energy and membrane potential in the eLIF neuron, the model can reproduce200

this kind of dynamics through the evolution of one or more parameters. The most straightforward way to model201

this transition is through the α parameter which represents the energetic health of the neuron — see Figure 4.202

The progressive decrease in the value of α, from values close to 1 for a healthy neuron to values that tend203

towards zero for a diseased cell, leads to progressive changes in the membrane potential and excitability of the204

neuron. The typical behavior of the model, illustrated on Figure 4, consists of a slow increase of the resting205

membrane potential, and thus of the excitability, until the background noise or external input is sufficient to206

trigger spike emission from the neuron. Once that happens, the cell enters a highly active state in which it207

remains until the progressive decrease of α brings the target energy below ϵc, at which point spike emission208

stops and the neurons enters a highly depolarized and non-responsive state.209

3.3. Dynamics of the mAdExp model, biologically-relevant behaviors210

Despite the multiple interesting features of the eLIF model, several important dynamics such as bursting or211

adaptation cannot be reproduced within the model. In order to recover all relevant behaviors, we added a212

spike-generation mechanism as well as an adaptation current to the eLIF model to obtain the mAdExp model213

(modified AdExp with energy dependency).214

This 3-dimensional model is then able to provide all the features of the eLIF and AdExp models while bringing215

the dynamics closer to biological observations, especially in large-input or stress-inducing situations. Figure 5216

shows several standard neuronal responses reproduced by the model, as well as how these responses evolve as217

the input intensity increases up to values where the neuron cannot sustain continuous activity.218

Though the theoretical analysis of the model becomes more complex, “standard” resting states2 for healthy219

neurons can be very well approximated by the fixed point of the eLIF model because the adaptation current is220

usually close to zero at rest. Furthermore, their response to low-intensity stimuli can be accurately predicted by221

the AdExp model with the same common parameters and the corresponding EL value3. Most healthy neurons222

thus share the bifurcations associated to the AdExp model (Naud et al. 2008; Touboul and Brette 2008), with223

the notable addition of a new bifurcation for rebound spiking which will be developed in the next section.224

2“standard” meaning that VFP is several ∆T smaller than Vth −∆T ln
(

Eu−E0
∆T

)
3see Appendix for detailed calculations as well as comparison of predictions and models
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Figure 4: One possible pathway for the transition between healthy and diseased state in the eLIF model. In
the model, progressive decrease in the “energetic health” factor α, from 1 to 0.3, leads to a succession
of changes in both the number of fixed points (FPs) and in their properties. The middle panel shows
the evolution of the FPs’ energy levels — filled circles for stable FPS, empty for unstable FPs —
with the grey line marking ϵc. Four stages of the disease progression are also illustrated in phase-
space: (a) healthy neuron with a single FP. (b) bifurcation to a 3 FPs state without major changes
in the dynamical properties (susceptible but potentially “asymptomatic” cell). (c) bifurcation to a
single low-energy FP associated to an extremely excitable state (diseased cell). (d) further decrease
of the energetic health brings the FP below the energy threshold ϵc, leading the neuron to become
unresponsive. In stages (a) and (b), the neuron lies in its resting state in the absence of input; however,
at stages (c) and (d), the two insets on the upper panel show the membrane dynamics of the neuron for
a hypothetical “accelerated evolution” of the disease, where the neuron respectively enters (35-second
simulation) and leaves (45-second simulation) the “hyperactive” region where usually subthreshold
inputs (here modeled by a Poisson noise) are sufficient to trigger uncontrolled spiking. See Table 2 in
Appendix A.6 for detailed parameters.
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RS AS

IB RB

TS DB

DA IR*

ER IS

Figure 5: Typical dynamics of the mAdExp model with different parameter settings in response to current steps
given by the scale bars — 500 ms for all entries — in yellow to mark lower excitation, red to mark
higher excitation, blue bar and asterisk on IR to mark inhibitory current. The behaviors include
regular spiking (RS), adaptive spiking (AS), initial burst (IB), regular bursting (RB), transient
spiking (TS), delayed bursting (DB), and delayed accelerating (DA). Similar responses to the lower
(yellow) currents can be achieved by the original AdExp model. However, each of these dynamics now
comes with an “energy-depleted” state for high input current (red), associated to a depolarization
block (responses associated to red bars), that cannot be captured by AdExp model. In addition
to these standard behaviors, dynamical repertoire of the mAdExp neuron also includes a different
mechanism for post-inhibitory rebound spiking (IR), and can display post-excitatory rebound (ER)
or intermittent spiking dynamics (IS). See Table 3 in Appendix A.6 for detailed parameters.
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Figure 6: Voltage traces for two cell types (566978098 and 570896413 in Allen Brain Atlas) and associated fits
with mAdExp and AdExp neuron models. Fourth row represents the input current. Additional or
missed spikes are marked in parentheses on the left of the associated spike train. Activities in the
rectangles are expanded in the lower panels. A. Cell presenting little to no sag upon hyperpolarization
and adaptive spiking behavior (A.1); expanded activity (A.2) enables to see the discrepancies between
the AdExp model (green) and the data (thin black line) while mAdExp (blue) matches the dynamics
much more precisely. B. Cell presenting significant sag upon hyperpolarization and almost immediate
depolarization block upon depolarizing input (B.1). Both AdExp and mAdExp match the rebound
dynamics; however, AdExp cannot reproduce the depolarization block as shown in the expanded
dynamics (B.2). See Table 4 in Appendix A.6 for detailed parameters.

3.4. Rebound spiking mechanisms in the different models225

Rebound spiking is a common property in neurons, with is potentially significant in epilepsy (Chang et al. 2018)226

and for information processing, be it in the striatum (Steuber et al. 2011), the thalamocortical loop (Grenier,227

Timofeev, and Steriade 1998), or in auditory processing (Rajaram et al. 2019) and grid cells response generation228

(Ferrante et al. 2016; Shay et al. 2016).229

This mechanism, though already available in several models such as AdExp (Brette and Gerstner 2005),230

strongly restricts the responses of the neuron such that only a fraction of the typical dynamics of rebound-spiking231

neurons can be recovered. The reason is that, in the AdExp model, rebound bursting is always associated to a sag232

and significant adaptation — see conditions in (Touboul and Brette 2008) and Appendix A.5 — and therefore233

cannot reproduce either non-sag subthreshold responses or some spiking behaviors associated to excitatory234

inputs, cf. Figure 6.235

The mAdExp model provides two new ways of extending the variety of rebound behaviors that can be modeled:236

a) by introducing a new mechanism for rebound spike generation without inhibitory sag and b) through the237

energy dynamics, leading to less significant sags and lower excitability compared to the adaptation mechanism238

— see also Figure 8 in the Appendix.239

Rebound spiking in mAdExp can occur through a new bifurcation for Eu−E0 < ∆T and Vth sufficiently low
(see Appendix A.5 for details) which leads to the positive divergence of the V -nullcline before Vth and thus to
the existence of a stable fixed point such that Vth > VFP > V ∗, with

V ∗ = Vth +∆T ln

(
Eu − E0

∆T

)
< Vth.

Figure 6 shows how the mAdExp model can successfully reproduce complex behaviors found in the Allen Cell240

Types Database4 such as rebound bursting with little to no sag5 (A.2) or cells displaying both rebound spiking241

and rapid depolarization block6 (B.2). Due to the mAdExp properties, the possibility of rebound dynamics242

is thus extended compared to the AdExp model and can be obtained with or without sag, as well as with or243

without spike adaptation.244

4Allen Institute for Brain Science (2015). Allen Cell Types Database. Available from: celltypes.brain-map.org
5cell ID 566978098: celltypes.brain-map.org/mouse/experiment/electrophysiology/566978098
6cell ID 570896413 celltypes.brain-map.org/mouse/experiment/electrophysiology/570896413
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4. Discussion245

4.1. Biological roots of the energy variable246

Because of the strong reductionist approach chosen in designing these models, the ϵ variable cannot directly,247

and especially not quantitatively, be related to any biological measurement. However, since the models were248

made to reproduce biological mechanisms and behaviors, some qualitative analysis is possible.249

Indeed, with respect to the transition from health to disease, as well as to the K-ATP channels (associated to250

the IKATP parameter in the mAdExp model), the ϵ parameter would represent the ATP/ADP ratio to which251

pumps and channels are sensitive (Proks et al. 2016; Meyrat and von Ballmoos 2019).252

Finally, the evolution of the α parameter can be related to metabolic insults associated to either mitochondrial253

defects (Coskun et al. 2012; Franco-Iborra, Vila, and Perier 2016) or buildup of various molecules such as reactive254

oxygen species (ROS) (Pandya, Nukala, and Sullivan 2013; Zsurka and Kunz 2015).255

4.2. Consequences of the V/ϵ relationship256

One of the major features of the model is the interaction between the energy level and the resting potential257

of the neuron. This interaction can lead to a transition from “healthy” or “optimally responsive” neurons to258

“diseased”, non-responsive neurons. Interestingly the neuron may go through a hyper-excitable state during259

this transition, meaning that disease progression can be marked by a broad range of neuronal dynamics and260

properties.261

Because changes in the energy level affect the neuronal excitability, the synchronizability and information262

processing properties of the neurons change significantly as their available energy decreases. This property263

of the model matches observations in various neurodegenerative diseases. Synchronizability notably changes264

in Parkinson’s disease (PD), for instance, where oscillations in the beta range (13–30 Hz) become predomi-265

nant and are thought to be involved in some motor symptoms. Though known variations in the connectivity266

strongly influence this dynamical change, modification of intrinsic neuronal properties due to metabolic insult267

are also likely to contribute to the transition towards more synchronized activity (Jonathan E. Rubin et al.268

2012; Jonathan E Rubin 2017). Even more obvious, epileptic seizure are characterized by excessive or hyper-269

synchronous neuronal activity and their onset and termination are likely to be related to the metabolic state270

of the neurons (Jirsa et al. 2014; Bazzigaluppi et al. 2017; Katsu-Jiménez, Alves, and Giménez-Cassina 2017).271

Finally, the transition through an hyperactive phase before entering the non-responsive depolarized state has272

also be proposed for diseases such as ALS (Le Masson, Przedborski, and Abbott 2014).273

From an information transfer perspective, the positive retroaction between depolarization and energy deple-274

tion can lead to increased false positives due to hyperexcitable neurons in diseased conditions. Furthermore,275

because of the necessity of a minimum “metabolic level” for spike emission, this also means that energy-impaired276

neurons cannot sustain long-term responses, and would tend to display phasic responses. These combined effects277

could further drive bursty activity such as what is observed in PD, where the reliability of thalamic relay breaks278

down and the cells start emitting bursts of activity which could lead to tremor (Zirh et al. 1998; Devergnas279

et al. 2016).280

The mAdExp model can reproduce the main relevant dynamical properties in these phenomena and therefore281

enables detailed and potentially large-scale computational studies. Such simulations could lead to more realistic282

dynamical models and thus to new experimentally testable predictions.283

4.3. Limitations284

Due to their simplicity, the eLIF and mAdExp models still suffer from many of the limitations of the original285

LIF and AdExp models.286

For example, the eLIF cannot reproduce bursting behavior and can only exhibit simple accelerating or de-287

celerating spiking patterns. Though the dynamical richness of mAdExp is greater than the LIF and AdExp288

models, its adaptation mechanism also possesses the same drawbacks as the original model: the presence of a289

single adaptation timescale τw.290

Furthermore, since multiple biological phenomena are associated to or can affect the ϵ variable (Naf inactiva-291

tion, ATP/ADP ratio, pH, ROS…), precise experimental predictions and relations to biochemical pathways can292

be quite complex or even impossible to predict, at least if several phenomena are occurring on similar timescales.293

For instance, the depolarization block (ϵc in the model) is often associated to sodium inactivation. Though this294

feature was probably selected due to energetic constraints (in order to prevent hyperactivity) and is therefore295

generally associated to energetic considerations both in neurons (Carter and Bean 2009) and in other excitable296

cells (Zou et al. 2013), it is not directly related to metabolic substrate.297

Eventually, complex interactions between sodium or calcium levels and ATP production (Llorente-Folch et298

al. 2015; Giorgi, Marchi, and Pinton 2018) is only coarsely implemented in the model. In particular, because299
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the adaptation variable w represents calcium-gated potassium, and not directly the calcium levels, interactions300

between ϵ and w would not capture precise biological mechanisms. Overall, calcium dynamics can have very301

different impacts on ATP production, depending on concentrations and timescales, which cannot be completely302

accounted for by the simple relationship present in the model.303

5. Conclusion304

The two models introduced in the present study provide a novel reductionist approach to include generic ener-305

getic constraints and energy-mediated dynamics to the models of single neurons. The low-dimensional nature306

of these two dynamical systems makes them suitable for analytical investigation of energy-based bifurcations in307

neuronal behaviors, as well as for large scale simulations.308

The mAdExp model, in particular, is able to replicate a large range of biologically-relevant behaviors as well as309

their evolution under metabolic stress. Complex behaviors that are crucial for some brain regions and disorders,310

such as rebound spiking or depolarization block, now can be successfully reproduced. Since energetics plays a311

critical role in many disorders, this model is especially well suited to explore possible origins of the differences312

observed between normal and diseased activities in neuronal populations.313

Finally, these new models are not limited to the comparison between specific healthy or diseased states,314

as they provide a tunable parameter to represent neuronal health. Thus, the continuous transition between315

states can now be investigated, as well as dynamical feedback between activity and resource consumption in316

resource-limited conditions such as in neuronal cultures or seizures.317
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A.2. Benchmarks323

The runtime of the models was measured using NEST 2.20 (Fardet et al. 2020) and compared with existing324

implementations. The neurons were parametrized to spike at 25 Hz during 60 s and compared to a baseline run325

of 60 s without any neuron model. Table 1 compares the runtime of all models mentioned in this papers, as326

well as conductance-based neurons.327

As can be seen from Table 1, the runtime of the models are similar to or faster than those of the AdExp and328

conductance-based models, while accounting for energy dynamics and displaying a larger variety of behaviors.329

A.3. Fixed points and bifurcations of the eLIF model330

A.3.1. Nullclines331

The two nullclines of the model are given by:332 
VV n = E0 +

Ie
gL

+ (Eu − E0)

(
1− ϵ

ϵ0

)

Vϵn = Ef + (Ed − Ef )

(
1− ϵ

αϵ0

)3
(4)

A.3.2. Saddle-node bifurcation via Ie333

For a state where 3 FPs are present (see Figure 2), the coalescence of the higher stable FP, S+, and the unstable334

FP, U , occurs at a point B = (VB , ϵB), when the V -nullcline touches the 3rd order polynomial, i.e. when the335

local slope of the tangent to the curve is equal to336

− Eu − E0

ϵ0
= −3(Ed − Ef )

αϵ0

(
1− ϵ

αϵ0

)2

(5)

which leads to337  ϵB = αϵ0

(
1±

√
α(Eu−E0)
3(Ed−Ef )

)
VB = Ef ∓ 1√

Ed−Ef

[
α
3 (Eu − E0)

]3/2 (6)

Using also the second equation for VB , one gets the two critical values for Ie = ±I∗e338

I∗e
gL

= (Ef − E0)±
1√

Ed − Ef

[α
3
(Eu − E0)

]3/2
− (Eu − E0)

[
1− α

(
1±

√
α

3

Eu − E0

Ed − Ef

)]
(7)

= Ef − E0 + α(Eu − E0)

(
1− 1

α
± 2

3

√
α(Eu − E0)

3(Ed − Ef )

)
(8)

Which can be further simplified to give Equation 3.339

Model None LIF AdExp eLIF mAdExp HH HH+Ca
Runtime (s) 0.75 0.8 2.7 2.86 (1.79) 3.52 (2.56) 3.47 4.92

Table 1: Runtime of various models in NEST. A “baseline” run with no neuron (None), compared to runs
with one neuron of each of the mentioned models. For the new energy-based models (eLIF and
mAdExp), two runs were performed: one using a naive implementation and another using slightly
optimized implementation (between parentheses). Conductance-based models are also included: a
standard Hodgkin-Huxley (HH) model which can display regular spiking an depolarization block, and
one with calcium and calcium-gated potassium (HH+Ca) to reproduce bursting dynamics
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A.3.3. General solution for the fixed points340

The FPs of the eLIF model are the intersection of the two nullclines given by Equation 4. Writing out the341

equation for the FPs results in the 3rd order polynomial. From Nickalls 1993, we can get the general solution for342

the roots of this 3rd order polynomial in the case where Eu > E0. Let us write it under the form ax3+bx2+cx+d,343

given x = ϵ/ϵ0344

Coefficients here are given by:345

• a = (Ed − Ef )/α
3, b = −3(Ed − Ef )/α

2, c = 3(Ed − Ef )/α− (Eu − E0), d = Eu − Ed + Ie/gL346

• xN = −b/(3a) = α, yN = 2b3/27a2 − bc/3a+ d = Eu − Ef − α(Eu − E0) + Ie/gL347

• δ2 = (b2 − 3ac)/9a2 = α3(Eu − E0)/ [3(Ed − Ef )]348

• h = 2aδ3 = 2(Ed − Ef )
[
α(Eu−E0)
3(Ed−Ef )

]3/2
349

Note that, though δ was used for coherence with Nickalls 1993, it is not related to the δ parameter which350

appears in Equation 1 and is associated with the spiking cost in the neuronal model.351

3 real solutions If Ie ∈ [I∗e−, I
∗
e+], we define352

θ =
1

3
arccos

(
−yN
h

)
and get353

rk = xN + 2δ cos

(
θ +

2(k − 1)

3
π

)
= α+ 2α

√
α(Eu − E0)

3(Ed − Ef )
cos

(
θ +

2(k − 1)

3
π

)
for k ∈ {1, 2, 3}

which leads to
ϵk = ϵ0(1− rk)

At the bifurcation points If Ie = I∗e±, one recomputes δ as − 3
√

yN

2a to get its correct sign.354

This gives

r = δ = −

[
1

2
+

α(Eu − E0)

2(Ed − Ef )

(
1− 2

α
± 2

3

√
α(Eu − E0)

3(Ed − Ef )

)]1/3
Then

ϵ1 = ϵ0(1 + r), ϵ2 = ϵ0(1− 2r)

Single real solution In the case where Ie ̸∈ [I∗e−, I
∗
e+] or Eu ≤ E0, the single real root and is obtained through355

Cardano’s formula:356

r = − b

3a
+

[
−q

2
+

√
q2

4
+

p3

27

]1/3
+

[
−q

2
−
√

q2

4
+

p3

27

]1/3
(9)

with p = c
a −

b2

3a2 , q = 2
(

b
3a

)3 − bc
3a2 + d

a and ϵ = ϵ0(1 + r)357

In all cases, the associated values of V can then directly be calculated from the equation of one of the nullclines358

in Equation 4.359

A.4. Fixed points and bifurcations of the mAdExp model360

Nullclines361

The nullclines of the mAdExp model can be expressed in multiple ways, among which:362 

ϵV n(V,w) = ϵ0
Eu − V −∆T

ϵc
ϵ0

exp [(V − Vth)/∆T ] + (Ie − w)/gL

Eu − E0 −∆T exp [(V − Vth)/∆T ]

Vϵn(ϵ, w) = Ef + (Ed − Ef )

[(
1− ϵ

αϵ0

)3

− w

γ

]

Vwn(ϵ, w) = E0 + (Eu − E0)

(
1− ϵ

ϵ0

)
+

w

a
− ϵc

ϵc + 2ϵ
IKATP

(10)
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Figure 7: I − f curves of the eLIF neuron for different threshold values Vth (left/right). The corresponding
phase-space is shown in the middle. Threshold values are -65.5 (dark grey), -63, -61, and -59 mV (light
grey); they correspond to the associated curves on the I − f plots and to the dashed vertical lines
on the phase-space representation. The type of the curve depends on the position of Vth compared
to the position of the low-energy fixed point (FP) at the bifurcation point which is shown as a filled
black circle: for Vth > VFP , the neuron has a continuous type I response curve whereas for Vth > VFP

the curve, though still continuous, becomes closer to a type II curve, with a sharp increase starting
immediately at the bifurcation current I∗e . See Table 2 in Appendix A.6 for detailed parameters.

Approximation of the fixed points363

In this section, we consider parameter sets where the effect of IKATP is negligible. As long as the fixed points364

have a value of VFP which is lower than Vth − ∆T , their value can be well approximated by replacing gL by365

(gL + a) in the solutions of the eLIF model (see previous section), then considering:366

wFP = a(VFP − EL) +
ϵc

ϵc − 2ϵ
IKATP (11)

Numerically, on can then converge iteratively towards an improved solution, starting from this initial guess367

FP0, then correcting the external current that will be used to compute FPi+1 by Ie,i+1 = Ie − wFP,i +368

gL∆T
ϵFP,i−ϵc

ϵ0
exp

(
VFP,i−Vth

∆T

)
.369

A.5. Behaviors370

This section provides some additional information regarding the behaviors that can be obtained through the371

eLIF and mAdExp models.372

Figure 7 shows how different parameters can give rise to both type I and type II I − f curves.373

Rebound spiking/bursting374

The following paragraphs show an example of “rebound activity” with the eLIF model (Figure 8), as well as375

details about the conditions leading to rebound activity for the AdExp and mAdExp models.376

AdExp For the AdExp model, rebound spiking occurs (Touboul and Brette 2008) either:377

• for type I excitability (a/gL < τm/τw)378

– a) if τm/τw < 1379

– or b) if τm
4τw

(
1− τw

τm

)2
< a/gL380

• in all situations for type II excitability (a/gL > τm/τw)381
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Figure 8: Dynamics of the eLIF model as timeseries (left) and in phase-space (right) for Eu < E0 (resonant
behavior). The behavior of the model is shown in response to four different inputs, shown in grey
on the V subplot: a low depolarizing current (a: 10 pA), a stronger depolarizing current (b: 30
pA), a large depolarization (c: 80 pA), and a hyperpolarizing current (d: -60 pA). Corresponding
behavior in phase-space is shown in the four right panels, with spike emission marked by an empty
left triangle and reset position marked by a dot: (a) the neuron leaves the fixed point (FP), then
goes back towards it (both transitions are associated to and up/downshoot), (b) the neuron spikes
at decreasing frequency as its energy is depleted, (c) the neuron spikes, then enters a depolarization
block for high stimulation, (d) post-inhibitory overshoot is associated to rebound spiking. See Table
2 in Appendix A.6 for detailed parameters.

– a) if τm/τw < 1382

– or b) if τm/τw ≥ 1383

Cases I.b and II.b correspond to a neuron exhibiting dampened oscillations, so the presence of the sag is384

obvious. For cases I.a and II.a, the faster timescale associated to the membrane potential conditions the presence385

of a sag. Because type II excitability with τm
4τw

(
1− τw

τm

)2
> a/gL is impossible, as τm

4τw

(
1− τw

τm

)2
< τm

τw
< a

gL
386

for τm/τw ≥ 0, this covers all cases. Thus, rebound spiking in the AdExp model is always associated to a sag.387

This can also be shown mathematically for I.a and II.a by looking at the eigenvector associated to the lowest388

eigenvalue:389

λ− = − τm
2τw

1 + τw
τm

+

√(
1− τw

τm

)2

− 4
aτw
gLτm

 and e− =

( 2τw/τm

1− τw
τm

+
√
(1− τw

τm
)
2−4 aτw

gLτm

1

)
(12)

For τm/τw < 1 (I.a and II.a), the denominator d of the x component of e− gives its sign, and since390

d = 1− τw
τm

+

√(
1− τw

τm

)2

− 4
aτw
gLτm

< 1− τw
τm

+

∣∣∣∣1− τw
τm

∣∣∣∣ = 0 (13)

one can see that, as expected from the ratio of timescales, there is always an overshoot and a sag for I.a and391

II.a.392

mAdExp The new rebound bursting behavior is associated to a positive divergence of the V -nullcline (cf.393

Equation 10). Since the divergence occurs for394

V ∗ = Vth −∆T ln

(
Eu − E0

∆T

)
, (14)

the positive sign is obtained for395

Vth ≤ Eu −∆T ln

(
Eu − E0

∆T

)
− ϵc

ϵ0
(Eu − EL) +

Ie − w

gL
. (15)

To get the mAdExp model to display rebound spiking and no sag one must combine the previous condition396

with the constraints of the AdExp and eLIF models:397
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• the condition for no overshoot is a type I neuron with either τm
τw

> 1 or a
gL

> τm
4τw

(
1− τw

τm

)2
, or any398

neuronal type with a ≤ 0 (note that for small values of a, the sag, though technically present, can be399

neglected for all practical purposes),400

• the condition for no overshoot due to energy dynamics is Eu ≥ E0 (necessary for the ).401

A.6. Parameters402

Detailed parameter sets used in the different figures can be found in the following tables.403

Figure 3 Figure 4 Figure 7 Figure 8
Value Unit Value Unit Value Unit Value Unit

Cm 100. pF 200. pF 100. pF 100. pF
gL 9. nS 12. nS 9. nS 9. nS
E0 −62.5 mV −58.5 mV −69. mV −61. mV
Ie 0. pA 35. pA 0. pA 0. pA
Eu −58.5 mV −55. mV −62. mV −65. mV
Vth −60. mV −53. mV [−65.5,−59.] mV −60.5 mV
α 1. 1. 1. 1.
Ed −40. mV 0. mV 0. mV −40. mV
Ef −62. mV −55. mV −66. mV −62. mV
ϵ0 0.5 0.5 0.5 0.5
ϵc 0.18 0.15 0.1 0.2
δ 0.018 0.02 {0, 0.01} 0.02

Vreset −62. mV −57. mV −66. mV −62. mV
tref 0. ms 2. ms 2. ms 2. ms
τe 200. ms 500. ms 1000. ms 200. ms

Table 2: Parameters used with the eLIF model.

RS AS IB RB TS DB DA IR ER IS Unit
Cm 104 104 130 130 100 100 84 40 104 84 pF
gL 4.3 4.3 18 8 9 6 5 6 4.4 5 nS
E0 -64 -52.5 -56 -55 -56 -62.5 -52.5 -59.6 -54.4 -52.5 mV
Vth -58 -52 -53 -54 -52 -55 -52 -58 -55 -52 mV
∆T 0.8 0.8 2 2 1.2 1.2 0.8 2 0.9 0.8 mV
a 0 2 2 3 51 -0.1 -0.5 1 0 -0.5 pA
τw 20 300 150 110 300 20 150 200 150 150 ms
b 0.5 5 50 60 150 35 0 20 5 0 pA

Vreset -61 -54 -52.5 -50 -50 -53 -56 -58 -58 -54 mV
tref 0 0 0 0 0 0 0 0 0 0 ms
Eu -60 -45 -52 -50 -52 -60 -45 -59 -51 -45 mV
α 1 1 1 1 1 1 1 1.5 1 0.5
Ed -40 -35 -20 -35 -30 -20 -35 -35 0 -20 mV
Ef -46 -45 -45 -45 -45 -45 -45 -60 -35 -35 mV
ϵ0 0.5 0.5 0.5 0.5 0.5 5 5 5 5 2
ϵc 0.15 0.15 0.15 0.15 0.15 1.5 1 2 2 0.3
δ 0.02 0.02 0.02 0.02 0.02 0.1 0.4 0.2 0.5 0.15
γ 1000 200 200 300 200 500 200 500 200 200 pA
τe 500 500 500 150 500 50 200 100 500 2000 ms

IKATP 1 1 1 1 1 100 100 5 1 100 pA
Ilow 50 50 100 100 85 57 40 -36 30 10 pA
Ihigh 300 200 250 300 400 300 100 200 100 250 pA

Table 3: Parameters used for the different behaviors of the mAdExp model on Figure 5.
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Rebound (no sag) Rebound (no sag)
mAdExp AdExp mAdExp AdExp Unit

Cm 80 62.5 50. 47. pF
gL 3.2 2.5 2. 1.9 nS
E0 -61.7 / -60. / mV
EL / -62.1 / -71. mV
Vth -54.1 -54.3 -57.5 -56.2 mV
∆T 3.9 3. 3. 3. mV
a 0.2 1. 1.8 1.4 pA
τw 500. 500. 250. 320. ms
b 1.5 5. 10. 5.7 pA

Vreset -56.5 -56.5 -53. -53. mV
tref 2. 2. 2. 2. ms
Ie 0. 0. 0. 0. ms
Eu -61.5 / -48. / mV
α 1.8 / 1. /
Ed -26. / 0. / mV
Ef -65. / -40. / mV
ϵ0 10. / 10. /
ϵc 1. / 8. /
δ 0.2 / 4. /
γ 1000. / 200 / pA
τe 15. / 7. / ms

IKATP 0.1 / 0.1 / pA

Table 4: Parameters used to match rebound spiking behaviors on Figure 6.
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