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Abstract

In this work, we introduce new phenomenological neuronal models (eLIF and mAdExp) that account for
energy supply and demand in the cell as well as the inactivation of spike generation how these interact with
subthreshold and spiking dynamics. Including these constraints, the new models reproduce a broad range
of biologically-relevant behaviors that are identified to be crucial in many neurological disorders, but were
not captured by commonly used phenomenological models. Because of their low dimensionality eLIF and
mAdExp open the possibility of future large-scale simulations for more realistic studies of brain circuits
involved in neuronal disorders. The new models enable both more accurate modeling and the possibility to
study energy-associated disorders over the whole time-course of disease progression instead of only comparing
the initially healthy status with the final diseased state. These models, therefore, provide new theoretical and
computational methods to assess the opportunities of early diagnostics and the potential of energy-centered
approaches to improve therapies.

Author summary

Neurons, even “at rest”, require a constant supply of energy to function. They cannot sustain high-
frequency activity over long periods because of regulatory mechanisms, such as adaptation or sodium
channels inactivation, and metabolic limitations. These limitations are especially severe in many neuronal
disorders, where energy can become insufficient and make the neuronal response change drastically, leading
to increased burstiness, network oscillations, or seizures. Capturing such behaviors and impact of energy
constraints on them is an essential prerequisite to study disorders such as Parkinson’s disease and epilepsy.
However, energy and spiking constraints are not present in any of the standard neuronal models used in
computational neuroscience. Here we introduce models that provide a simple and scalable way to account
for these features, enabling large-scale theoretical and computational studies of neurological disorders and
activity patterns that could not be captured by previously used models. These models provide a way to
study energy-associated disorders over the whole time-course of disease progression, and they enable a better
assessment of energy-centered approaches to improve therapies.
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1. Introduction

Brain metabolism, even in its resting state, constitutes a major source of energy consumption in mammalian
species. Indeed, cells — and especially excitable cells such as neurons — undergo constant ion fluxes both
along and against the concentration and electric gradients. To move ions against these gradients, an active
mechanism is required, which consumes energy in the form of ATP. In cells, this work is mostly associated
with the sodium-potassium pump (Na/K pump or NKP) which moves 3 sodium ions out of the cell in
exchange for 2 potassium ions moving in for every hydrolyzed ATP molecule, thus creating a net electric
current [1]. As a result, Na/K pump is responsible for roughly 75% of the total energy consumption in
neurons [2], which arguably makes it one of the most important players in the cell: its action makes the
energy from the hydrolysis of ATP available to most other processes [3], allowing changes in the membrane
potential, regulation of the volume, or transport of nutrients inside the cell. Thus the energy level, through
the Na/K pump activity, modulates neuronal response and directly influences information processing [4].

Though the Na/K pump has been thoroughly researched in the past decades [3, 1], surprisingly few neuronal
models include the pump and its electrogenic properties [5, 6, 7] and even fewer account for its underlying
energy substrate [8, 9]. A probable reason for this fact comes from the significant focus of theoretical studies
on cortical areas that generally display sparse activity. Such conditions put little or no metabolic stress
on the neurons and thus limit the influence of the Na/K pump and energetic constraints on the dynamics.
However, the story changes drastically when energy-intensive behaviors such as bursting or fast pacemaking
dynamics are considered, or when studying neuronal disorders. Indeed, both situations can place neurons
under significant metabolic stress and induce fluctuation in the metabolite and ion concentrations which,
from NKP-driven coupling between metabolism and activity, can then lead to major changes in the neuronal
dynamics.

Outside of neuroscience, the influence of Na/K pump and energy consumption on activity and disorders
were investigated in the context of the cardiac electrophysiology [10, 11, 12]. However, awareness is now
raising in the neuroscience community, including its most theoretically-oriented members, as an increasing
number of publications start to stress the critical influence of mitochondria [13, 14] and Na/K pump [15]
and the intricate feedback loops between activity and energetics. Some well-known works on energetics in
computational neuroscience include the energy budgets from [16] and [2], as well as studies related to the link
between action potential shape and ATP consumption [17, 18]. Yet, these studies deal with general budgets
from the point of view of optimality theory and do not describe the local interactions between energy levels
and spike initiation.

The interactions between energetics and neuronal activity are most visible in neuronal disorders such
as epilepsy [19, 20, 21], Alzheimer [22], or Parkinson’s disease [23, 24]. It is therefore in the context of
neuronal diseases that one can find the few studies that really focused on these interactions [9, 8, 25, 26].
Unfortunately, because such studies are still scarce and the associated modeling frameworks are still limited,
computational studies of neuronal disorders currently suffer from at least one of the following issues: a) they
do not account for energetic constraints, b) the models do not reproduce important features of the relevant
neuronal behaviors, or c) the size of the simulated networks is extremely small (notably due to the use of
complex conductance-based models).

Here we present new models to help tackle these issues through theoretical descriptions of neuronal dynamics
that a) account for energy levels and their influence on neuronal behavior, b) are able to reproduce most
relevant neuronal dynamics in the context of disorders such as seizures or Parkinson’s disease, and c) can be
used in simulation of networks up to several million neurons.

2. Methods

In the following, we describe the implementation of the new models. We discuss the biological mechanisms
that gave rise to the variables and equations in our models and list the associated properties that an
energetic model should satisfy. Two major biological components considered in the models are the pumps
that degrade ATP into ADP to maintain ion gradients (most notably the Na/K and calcium pumps), and
ATP-gated potassium (K-ATP) channels that open or close depending on the ATP/ADP ratio. When ATP
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concentration or the ATP/ADP ratio decreases, the pump’s effectiveness decreases, resulting in a rise of
sodium concentration, thus increasing membrane potential and sometimes excitability. Conversely, a decrease
in the ATP/ADP ratio tends to open K-ATP channels, allowing potassium to flow out of the cell and decrease
membrane potential and excitability. These mechanisms directly or indirectly influence a neuron’s excitability
and its ability to generate action potentials. Depending on their relative importance, a neuron can, therefore,
end up in a depolarized or hyperpolarized state when energy levels decrease.

Based on these main mechanisms, the models were design to meet several conditions that can be split into
1) behavioral requirements, associated to the type of responses and biological situations that the models can
account for, and 2) practical constraints associated to the computational cost and theoretical complexity of
the model. As energetic constraints are especially relevant for behaviors associated with diseased or hypoxic
state, we designed our models so that they would be able to provide meaningful behaviors in such conditions.

Regarding behavioral requirements, we took care of reproducing the effects ATP/ADP changes on pumps
and K-ATP channels so that the models could account for three major observations:

• as mitochondrial health or metabolic resources decrease (e.g. during hypoxia), the excitability and
resting potential of the neuron can increase [27, 25], notably due to insufficient activity of the Na/K
pump,

• decrease in metabolic resources is also associated with an increase in calcium levels [27] due to insufficient
activity of the pumps,

• during seizures, or when submitted to excessive excitation, neurons undergo depolarization blocks
characterized by “superthreshold” membrane potential without spike emission [28] that is caused by
sodium-channel inactivation as the Na/K pump cannot move sodium out quickly enough.

In addition, the specific form of the equation was chosen to allow two specific behaviors to be switched on
or off depending on the parameters used:

• neuronal bistability, observed in several brain regions [29, 30], is involved in important mechanisms such
as up-and-down states and could also explain discontinuities in the progression of neurodegenerative
diseases [31],

• adaptation currents and bursting or rebound activities that are major players in neuronal disorders
[32, 33].

Our central goal is to develop models that do not only reproduce important behaviors, but also allow for
large-scale event-based simulations. To achieve this, the computational cost and complexity of the models
should be minimal. Thus, we decided to use hybrid models based on the integrate-and-fire paradigm.

We established that models including an adaptation current, such as the Quadratic Integrate-and-Fire
and the AdExp neurons [34, 35], were able to provide most of the required dynamics such as bursting and
rebound activity [36, 37]. The missing requirements — depolarization block and bistability — as well as
the inclusion of metabolic resources would thus come from the addition of dynamic resource availability
(broadly called energy in the following), as shown on Figure 1. This purpose of this variable is to represent
the ATP/ADP ratio in biological neurons, though the phenomenological nature of the models implies that
there are limits to this analogy.

For applications where bursting behavior and adaptation do not play an important role, a simple model
that accounts only for energy dynamics is provided: the eLIF neuron. It introduces energy dynamics as an
addition to the simpler leaky integrate-and-fire (LIF) model and enables us to analyze the consequences
of these constrains in a more straightforward and visual manner. The behavior of this model can also be
fully investigated analytically compared to the 3-dimensional system that arises in a second time when both
energy and adaptation dynamics are considered. This second model, called mAdExp, is built upon the
AdExp equations and cam reproduce all desired behaviors. Though analytical analysis of this model can
prove challenging, most of its dynamics can be understood from the complementary analyses of the eLIF and
AdExp models.
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Fig 1. Variables and interactions that must be present in the models to capture all relevant behaviors, the
main molecules associated to each of the variables are also displayed. The type of interaction is
marked on the arrow. For instance, w modulates (M) V as it influences the intrinsic dynamics of V
but does not usually cause it directly. On the other hand, as changes in the membrane potential are
the main cause of variations in w, V is said to drive (D) w. Eventually, all mechanisms consume (C)
energy.

2.1. Introducing energy: the eLIF model

The first proposed model is a straightforward modification of the standard Leaky Integrate-and-Fire (LIF)
model [38]. In order to provide an intuitive and analytically tractable implementation that would illustrate
the consequences of energy dynamics and the constraints it places on spike-emission, we developed a two-
dimensional dynamical system describing the evolution of a) the membrane potential V of a point neuron
and b) the available amount of energy ε that the neuron can access. To make the equations more readable
and the parameters easy to interpret, the model is displayed using three equations; however, it can be easily
simplified to a system of two equations only.

if V < Vth or ε < εc



CmV̇ = gL(EL − V ) + Isyn + Ie

τeε̇ =

(
1− ε

αε0

)3

− V − Ef
Ed − Ef

EL = E0 + (Eu − E0)

(
1− ε

ε0

) else

{
V ← Vr
ε ← ε− δ (1)

As in other standard integrate-and-fire models, the neuron possesses a leak potential EL, a membrane
capacitance Cm, and a leak conductance gL, the combination of the last two defining the membrane timescale
τm = Cm/gL. Input from other neurons are represented by Isyn while external input currents are associated
to Ie. When either of these inputs brings the neuron above its threshold potential Vth, provided that there is
enough energy (ε > εc) a spike is emitted and the voltage is instantaneously reset to Vr.

The available energy ε is introduced as a proxy for the ATP/ADP ratio in biological neurons. Its value varies
with a typical timescale τe and is regulated by an interplay of the energy production (which tries to maintain
it close to the typical energy value defined by the energetic health αε0) and two consumption mechanisms.
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Fig 2. Phase space of the eLIF model in bistable parameter regime. V -nullcline is given by the blue line,
ε-nullcline by the red curve. Fixed points (FPs) are shown by the circles (filled for stable and empty
for unstable) and the cross marks the inflection point of the ε-nullcline. Dashed lines represent the
shifts in the V -nullcline which lead to the disappearance of the unstable fixed point and of one of the
stable fixed points (saddle-node bifurcation via the external current Ie). The super-threshold region,
where spikes are elicited upon entrance, is marked by the light grey shading; the energy-limiting
region (ε < εc) is marked by the grey shading and overlaps with the super-threshold region in the
dark grey area, where energy limitations prevent spiking though the neuron is above threshold.

The production term reflects mostly the oxidative phosphorylation performed in mitochondria [39] that
enables a tight regulation of ATP levels in the cell.

The first consumption mechanism is associated with the fluctuations of the membrane potential and
accounts for the ATP consumed by the Na/K pump to maintain ion homeostasis [3]. Since there is no
available information about the functional form of the relationship between membrane potential and energy
consumption, we have almost no constraints on the choice of the functional class. We selected a function
allowing for a wide range of behaviors as observed in experiments while remaining as simple as possible: a
3rd order polynomial (see Figure 2, red line). Indeed, this is the simplest nonlinearity that can, depending on
parameter values, either lead to a behavior that is qualitatively equivalent to a linear relationship or to the
presence of a bistability, making it possible to asses the influence of bistable states on neurons’ and network
dynamics. The parameters defining the shape of the nullcline are: the flex potential Ef (that corresponds to
the inflection point, or flex, of the curve) and the energy-depletion potential Ed, that is a potential at which
ε-nullcline crosses the x-axis — Ed thus corresponds to the lowest voltage-clamp potential that will lead to
complete energy depletion and therefore neuronal death.

The second source of energy consumption is the energetic cost δ of the spike generation mechanisms.
Though the biological reason for this energy consumption is the same as the first term (ionic transfer by the
Na/K pump), a separate term is necessary because of the reset mechanism of integrate-and-fire neurons: in
such models, part of the spike duration is compressed into an instantaneous jump; δ thus accounts for the
energy consumed during this compressed period. The normal energy level that the neuron is able to maintain
depends on its “energetic health” described by the α parameter: a healthy neuron would have a value of α
equal to one, while diseased neuron would see their α parameter decrease towards zero.

Contrary to most previous models, the leak potential is not constant, as it depends on the energy level
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of the neuron. The steady-state value EL of the membrane potential thus varies linearly, starting from Eu
when the energy is zero and decreasing as ε increases, crossing the potential E0 for ε = ε0 (see Figure 2) for
details). Biologically, this account for the fact that a decrease in energy availability inhibits the function of
the Na/K pump, leading to sodium accumulation inside the cell and thus to a depolarization.

The behavior of the standard LIF is recovered when Eu = E0 and δ = 0.

2.2. Adaptation and bursting: mAdExp model

In order to model the whole range of biologically-relevant behaviors that can be observed in neuronal disorders
such as epilepsy or Parkinson’s disease, it is necessary to include a modulatory mechanism to account for
cellular and spike-driven adaptation. This second dynamical system keeps the basic properties introduced in
the eLIF model and extends them to accommodate the cellular adaptation and spike initiation mechanisms
of the adaptive Exponential Integrate-and-Fire model (aEIF or AdExp) by [35]. This leads to a 3D model
with three dynamical state variables which are the membrane potential V , the energy level ε (as for the eLIF
model), and an adaptation current w:

if V < Vpeak



CmV̇ = gL(EL − V ) + gL∆T
ε− εc
ε0

exp

(
V − Vth

∆T

)
− w + Isyn + Ie

τeε̇ =

(
1− ε

αε0

)3

− V − Ef
Ed − Ef

− w

γ

τwẇ = a(V − EL)− w +
εc

εc + 2ε
IKATP else

 V ← Vr
w ← w + b
ε ← ε− δ

EL = E0 + (Eu − E0)

(
1− ε

ε0

)
(2)

Compared to the eLIF implementation, the presence of the spike initiation mechanism through the
exponential function removes the necessity of a hard threshold for spike prevention due to energy limitation:
the (ε− εc)/ε0 factor suppresses the exponential divergence as soon as the amount of available energy goes
below εc.

The dynamics of the ε variable remains mostly unchanged except for the addition of a new consumption
term associated with the adaptation current w: biologically γ−1 corresponds to the energetic cost of bringing
back the potassium ions which exited the cell (through calcium-gated potassium channels) per pA unit of
the adaptation current. The model thus clearly separates the contributions of the energy (ε) and of the
calcium-gated adaptation (w).

Compared to the original AdExp model, the w dynamics includes an additional term, εc
εc+2εIKATP , to

account for ATP-sensitive potassium channels that trigger potassium outflow when the ATP/ADP ratio
becomes small, with a typical activation-threshold depending on the ADP/ATP ratio [40]. IKATP is thus the
maximum current at zero energy. Because of the numerous calcium exchangers in neuronal cells [41, 42], the
term responsible for the exponential decay of the adaptation current with timescale τw is considered to be
energy-independent. Thus, only EL and K-ATP induce energy-dependent changes in the adaptation current.

2.3. Numerical implementations

Implementations of the models are available for three major simulation platforms: NEST [1], through the
NESTML language [44], BRIAN [45], and NEURON [46]. Models are available on ModelDB and on GitHub1,
together with code to reproduce the figures. Networks were generated using NNGT 2.0 [4] and simulated
using NEST 2.20 [1].

1https://github.com/Silmathoron/elif-madexp
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2.4. Fitting procedure

To reproduce experimental recordings, we could set some of the model parameters directly from the data.
The rest had to be manually adjusted. The following parameters can be informed from the data: a) EL was
obtained by measuring the median resting value b) the membrane timescale τm was measured from the initial
slope of the membrane dynamics in response to hyperpolarizing currents c) the sum gL + a was obtained
through a linear regression from the difference between resting EL and steady-state Ess potentials in response
to depolarizing currents as ∆V = Ess − EL = I

a+gL
. These properties were used to constrain the following

parameters: Cm, gL, a, EL, E0, Eu. All other parameters were then manually adjusted to minimize the
discrepancy between subthreshold dynamics, number and time of spikes. Further research would be necessary
to find how to automate this procedure using a proper distance function in optimization toolboxes.

3. Results

The new eLIF and mAdExp models enable us to obtain a variety of new dynamics such as rebound spiking,
depolarization block, cellular bistability and up-and-down states, as well as biologically relevant transitions
from a healthy to a diseased state.

For hybrid models, most of the neuronal dynamics can be understood through two main concepts: a) fixed
points (FPs), which are equilibrium states of the model, and b) bifurcations, which are sudden changes in the
number or stability of the fixed points, and which make the neuron change its behavior, for instance from
resting to spiking.

This section details the aforementioned behaviors and their mechanistic origins through the theory of
dynamical systems, using fixed points and bifurcations.

3.1. Behaviors and bifurcations of the eLIF model

The eLIF model, like the integrate-and-fire (LIF) neuron, has only two dynamical states: quiescent or active
(spiking). Due to the energetic constraints, the model has two possible quiescent states which are the “normal”
resting state, with a membrane potential located below threshold, and a super-threshold state where depleted
energy levels prevent spike emission. The finite energy resources also imply that, contrary to the LIF neuron,
the active state can be transient, as the neuron transits from its resting state to a quiescent, super-threshold
state through an active period.

In the language of dynamical systems, the quiescent states are associated to FPs inside the continuous
region (if either VFP < Vth or εFP < εc), whereas the active state is associated to the absence of a stable FP
that can be accessed continuously in the region of phase-space where the neuron lies — see Figure 3.

We will focus here on the situation that is most relevant for the study of neuronal disorders, i.e. the
case where Eu > E0, meaning that decrease in energy levels leads to increase in membrane potential. This
situation leads to a neuronal behavior which is that of an integrator; another type of behavior, closer to that
of a resonator, with dampened oscillations is also possible for Eu < E0 and is discussed in section 3.4 and in
the Supplementary Information.

In this situation, due to the nonlinearity of the ε-nullcline, the biophysically acceptable domain for steady
states (ε ≥ 0 and V in a reasonable range of potential) can contain either zero, one, or three FPs. In the case
of a single, necessarily stable FP, it corresponds to a standard neuron with a single resting state. For certain
combinations of the neuronal parameters, the V -nullcline can intersect the ε-nullcline three times, leading
to two stable FPs and one unstable point. This situation corresponds to a bistable cell, where two distinct
resting states are possible: an up-state, characterized by lower energy levels and high membrane potential,
and a down-state, associated to higher energy and hyperpolarized membrane potential. Responses of the
bistable neuron to the different step-currents are illustrated in Figure 3. Depending on initial state and the
input the neuron transitions between the up- and down-states. Finally, the situation without FPs in the
biophysical domain is unsustainable and will lead to rapid neuronal death. Possible reasons for transitions
between these states will be detailed in the following section.
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Fig 3. Dynamics of the eLIF model as timeseries (left) and in phase-space (right) in the bistable regime.
The behavior of the model is shown in response to four different inputs, shown in grey on the V
subplot: a low depolarizing current (a: 10 pA), a stronger depolarizing current (b: 30 pA), a large
depolarization (c: 80 pA), and a hyperpolarizing current (d: -60 pA). For visualization purposes,
action potentials are made visible by setting the voltage to -50 mV at spike time. Corresponding
behavior in phase-space is shown in the four right panels, corresponding to each of the four domains
separated by the grey dashed lines on the right panel. The black curves mark the resting nullclines
and the light grey line marks the input-driven V -nullcline; resting fixed points (FPs) are marked by
the large black circles while input-driven FPs are show by the small grey circles and spike emissions
are marked by empty left triangles while reset positions are marked by blue dots. The neuron
displays the following behaviors: (a) subthreshold dynamics, where the neuron temporarily leaves the
high-energy FP, associated to the down-state, then goes back towards it, (b) transition from the
initial high-energy FP to the low-energy FP (up-state) through a spiking period, (c) transition from
the up-state to a depolarization block via a spiking period before returning towards the up-state, (d)
transition from up- to down-state. See Table S2 in Supplementary Information E.1 for detailed
parameters.

We use the transitions in the number of FPs, called bifurcations, to predict the behavior of the neuron.
The bifurcations can have two separate kinds of consequences, that can potentially happen simultaneously: a)
a change in the steady-state behavior of the neuron such as the switch from a unistable to a bistable state or
vice-versa, b) a transition from a quiescent to an active state.

Let us discuss these bifurcations in response to an external stimulation associated to an applied current Ie.
The consequence of Ie is to shift the V -nullcline horizontally (towards more negative potentials if Ie < 0, or
towards more positive if Ie > 0), which can lead to transition between the unistable and bistable states as
one stable FP either splits into one stable and one unstable FP or, on the contrary, merges with the unstable
FP and disappears. This type of transition is called a saddle-node bifurcation and occurs for:

I∗e± = gL

[
Ef − Eu + α(Eu − E0)

(
1± 2

3

√
α(Eu − E0)

3(Ed − Ef )

)]
(3)

Depending on the value of Ie, the neuron can thus display either a single or two stable FPs — see Figure 3
and Supplementary Information B.3 for the analytic derivation of the FPs.

As Ie increases, the transition from three FPs to one FP can also lead the neuron to fire, either transiently
if the remaining FP is located in the continuous region (if either VFP < Vth or εFP < εc) or continuously (if
VFP ≥ Vth and εFP > εc).
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3.2. Transition from health to disease

As energy availability decreases, either due to disease [25] or hypoxia [27], neurons often display a parallel
increase in their resting membrane potential and excitability, which can lead to highly active periods before
the neuron ends up in a highly depolarized yet completely non-responsive state also called depolarization
block. Biologically, this low-energy state — (d) and below on Figure 4 — would be associated to deregulation
of calcium levels and accumulation of oxidizing agents which eventually lead to cell death (occuring when α
reaches zero in the model).

Due to the interaction between energy and membrane potential in the eLIF neuron, the model can reproduce
this kind of dynamics through the evolution of one or more parameters. The most straightforward way to
model this transition is through the α parameter which represents the energetic health of the neuron — see
Figure 4. The progressive decrease in the value of α, from values close to 1 for a healthy neuron to values that
tend towards zero for a diseased cell, leads to progressive changes in the membrane potential and excitability
of the neuron. The typical behavior of the model, illustrated on Figure 4, consists of a slow increase of the
resting membrane potential, and thus of the excitability, until the background noise or external input is
sufficient to trigger spike emission from the neuron. Once that happens, the cell enters a highly active state
in which it remains until the progressive decrease of α brings the target energy below εc, at which point spike
emission stops and the neurons enters a highly depolarized and non-responsive state.

When it comes to collective dynamics, a decrease in neuronal health can go unnoticed especially if the
homeostatic regulation adjusts excitability of individual neurons. It happens, for instance, in excitatory and
inhibitory networks displaying asynchronous-irregular (AI) activity with low firing rates — see Figure 5.

Without external input, the distribution of firing rates as well as the average properties of the activity
(cross-correlations and coefficients of variation) can remain stable despite neuronal health decrease (Figure 5,
panels B and C). This happens because compensatory mechanisms enable neurons to maintain firing rate
homeostasis by means of synaptic scaling and regulation of cell excitability, that we modeled numerically by
a decrease of excitatory synaptic weights and an increase of Vth — see Supplementary Information E.2 for
more details.

However, the response to an external input can be drastically modified (Figure 5, panel A), transitioning
from an almost continuous tonic response (top), to an intermittent, bursty dynamics (bottom). This example
demonstrates how, depending on the homeostatic capabilities of the brain region of study and the recording
protocol, the effect of energetic constraints can be either masked or clearly visible in the neuronal responses.
There are multiple ways in which the energetic health can influence the information processing capabilities.
Using our models these mechanisms can be studied further in large recurrent networks.
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Disease progression
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Fig 4. One possible pathway for the transition between healthy and diseased state in the eLIF model. In
the model, progressive decrease in the “energetic health” factor α, from 1 to 0.3, leads to a succession
of changes in both the number of fixed points (FPs) and in their properties. The middle panel shows
the evolution of the FPs’ energy levels — filled circles for stable FPS, empty for unstable FPs — with
the grey line marking εc. Four stages of the disease progression are also illustrated in phase-space:
(a) healthy neuron with a single FP. (b) bifurcation to a 3 FPs state without major changes in the
dynamical properties (susceptible but potentially “asymptomatic” cell). (c) bifurcation to a single
low-energy FP associated to an extremely excitable state (diseased cell). (d) further decrease of the
energetic health brings the FP below the energy threshold εc, leading the neuron to become
unresponsive. In stages (a) and (b), the neuron lies in its resting state in the absence of input;
however, at stages (c) and (d), the two insets on the upper panel show the membrane dynamics of
the neuron for a hypothetical “accelerated evolution” of the disease, where the neuron respectively
enters (35-second simulation) and leaves (45-second simulation) the “hyperactive” region where
usually subthreshold inputs (here modeled by a Poisson noise) are sufficient to trigger uncontrolled
spiking. See Table S2 in Supplementary Information E.1 for detailed parameters.
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Fig 5. Decrease in health can be partly compensated by homeostatic mechanisms and be invisible from the
statistical properties of background activity, as shown by the behavior on an excitatory and
inhibitory population with N = 1000 neurons in the asynchronous irregular (AI) state. A. For such a
network, changes in the neuronal health, modeled by a decrease in the α parameter, do not appear in
the background activity of the raster (non-grayed areas), where the activity of both excitatory (red
circles) and inhibitory (gray triangles) neurons remain very similar. To see the actual consequences
of the decrease in health, one must look at the response of the network to an additional input, which
is shown in the grayed areas on panel A. In response to a threefold increase in the rate of Poisson
input between 1400 and 1650 ms, the activity of 100 excitatory neurons (marked by the orange area)
progressively switches from continuous tonic firing (top) to well-separated bursts (bottom). B. More
quantitative analyses also confirm that the background activity remains close to Poissonian, with
coefficients of variation (CVs) around 0.7–0.8, and asynchronous, with an average cross-correlation
(CC) smaller than 1/

√
N . C. The distributions of firing rates over 5 seconds remain almost identical

and centered around 2 Hz; dotted and dashed lines respectively denote the quartiles and medians.
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3.3. Dynamics of the mAdExp model, biologically-relevant behaviors

Despite the multiple interesting features of the eLIF model, several important dynamics such as bursting
or adaptation cannot be reproduced within the model. In order to recover all relevant behaviors, we added
a spike-generation mechanism as well as an adaptation current to the eLIF model to obtain the mAdExp
model (modified AdExp with energy dependency).

This 3-dimensional model is then able to provide all the features of the eLIF and AdExp models while
bringing the dynamics closer to biological observations, especially in large-input or stress-inducing situations.
Figure 6 shows several standard neuronal responses reproduced by the model, as well as how these responses
evolve as the input intensity increases up to values where the neuron cannot sustain continuous activity.

Though the theoretical analysis of the model becomes more complex, “standard” resting states2 for healthy
neurons can be very well approximated by the fixed point of the eLIF model because the adaptation current is
usually close to zero at rest. Furthermore, their response to low-intensity stimuli can be accurately predicted

2“standard” meaning that VFP is several ∆T smaller than Vth − ∆T ln
(

Eu−E0
∆T

)

RS AS

IB RB

TS DB

DA IR*

ER IS

Fig 6. Typical dynamics of the mAdExp model with different parameter settings in response to current
steps given by the scale bars — 500 ms for all entries — in yellow to mark lower excitation, red to
mark higher excitation, blue bar and asterisk on IR to mark inhibitory current. The behaviors
include regular spiking (RS), adaptive spiking (AS), initial burst (IB), regular bursting (RB),
transient spiking (TS), delayed bursting (DB), and delayed accelerating (DA). Similar responses to
the lower (yellow) currents can be achieved by the original AdExp model. However, each of these
dynamics now comes with an “energy-depleted” state for high input current (red), associated to a
depolarization block (responses associated to red bars), that cannot be captured by AdExp model. In
addition to these standard behaviors, dynamical repertoire of the mAdExp neuron also includes a
different mechanism for post-inhibitory rebound spiking (IR), and can display post-excitatory
rebound (ER) or intermittent spiking dynamics (IS). See Table S3 in Supplementary Information
E.1 for detailed parameters.
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by the AdExp model with the same common parameters and the corresponding EL value3. Most healthy
neurons thus share the bifurcations associated to the AdExp model [36, 3], with the notable addition of a
new bifurcation for rebound spiking which will be developed in the next section.

3.4. Rebound spiking mechanisms in the different models

Rebound spiking is a common property in neurons, with is potentially significant in epilepsy [49] and for
information processing, be it in the striatum [50], the thalamocortical loop [51], or in auditory processing [52]
and grid cells response generation [53, 54].

This mechanism, though already available in several models such as AdExp [35], strongly restricts the
responses of the neuron such that only a fraction of the typical dynamics of rebound-spiking neurons can
be recovered. The reason is that, in the AdExp model, rebound bursting is always associated to a sag and
significant adaptation — see conditions in [3] and Supplementary Information D — and therefore cannot
reproduce either non-sag subthreshold responses or some spiking behaviors associated to excitatory inputs, cf.
Figure 7.

The mAdExp model provides two new ways of extending the variety of rebound behaviors that can be
modeled: a) by introducing a new mechanism for rebound spike generation without inhibitory sag and
b) through the energy dynamics, leading to less significant sags and lower excitability compared to the
adaptation mechanism — see also Figure S9 in the Supplementary Information.

3see Supplementary Information for detailed calculations as well as comparison of predictions and models

30 mV

data

mAdExp
(+2)

AdExp
(+2) (−4)

50 pA 1 s

current

mAdExp

200 ms

15 mV AdExp

sag

A.1

A.2

30 mV
data

mAdExp

AdExp
(+7) (+31)

50 pA 1 s

current

mAdExp

200 ms

15 mV AdExp

sag

B.1

B.2

Fig 7. Voltage traces for two cell types (566978098 and 570896413 in Allen Brain Atlas) and associated fits
with mAdExp and AdExp neuron models. Fourth row represents the input current. Additional or
missed spikes are marked in parentheses on the left of the associated spike train. Activities in the
rectangles are expanded in the lower panels. A. Cell presenting little to no sag upon
hyperpolarization and adaptive spiking behavior (A.1); expanded activity (A.2) enables to see the
discrepancies between the AdExp model (green) and the data (thin black line) while mAdExp (blue)
matches the dynamics much more precisely. B. Cell presenting significant sag upon
hyperpolarization and almost immediate depolarization block upon depolarizing input (B.1). Both
AdExp and mAdExp match the rebound dynamics; however, AdExp cannot reproduce the
depolarization block as shown in the expanded dynamics (B.2). See Table S4 in Supplementary
Information E.1 for detailed parameters.
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Rebound spiking in mAdExp can occur through a new bifurcation for Eu− E0 < ∆T and Vth sufficiently
low (see Supplementary Information D for details) which leads to the positive divergence of the V -nullcline
before Vth and thus to the existence of a stable fixed point such that Vth > VFP > V ∗, with

V ∗ = Vth + ∆T ln

(
Eu − E0

∆T

)
< Vth.

Figure 7 shows how the mAdExp model can successfully reproduce complex behaviors found in the Allen
Cell Types Database4 such as rebound bursting with little to no sag5 (A.2) or cells displaying both rebound
spiking and rapid depolarization block6 (B.2). Due to the mAdExp properties, the possibility of rebound
dynamics is thus extended compared to the AdExp model and can be obtained with or without sag, as well
as with or without spike adaptation.

4. Discussion

4.1. Choices underlying the models

The eLIF and mAdExp models where chosen as integrate-and-fire models because of the analytic simplicity
of such equations and their computational efficiency compared to conductance-based models. Indeed, the
straightforward detection of spike times in such models makes them especially suited for simulations of large
scale neuronal networks using standard spike-based simulators and their discontinuous dynamics makes
bursting possible with only two equations instead of three for continuous models like the Hindmarsh–Rose
neuron [55] or general conductance-based models.

Though our models are almost completely phenomenological, their parameters can be directly related to
biological phenomena, often even in a quantitative manner, enabling precise predictions from their theoretical
analysis. The objective of obtaining single-neuron models where the variables can be interpreted and
mapped in a straightforward manner also prevented us from working with previous models such as the
Epileptors [56, 57] or Model 2 from [26] — see discussion below.

To obtain a model capable of reproducing all the behaviors that we deemed necessary, the mAdExp model
was derived from the AdExp neuron [35] and not from other well known implementations such as the QIF,
first proposed by Izhikevich in his seminal paper [34]. This choice was made because, despite some obvious
drawbacks regarding the more complex analytics and slightly slower integration of its exponential term, the
AdExp model best reproduces the I-V curve of neurons and the dynamics of spike initiation [58], and is
exempt of some of the mathematical shortcomings of the QIF model [59].

The ε variable was designed to qualitatively reproduce biological mechanisms and behaviors associated to
neuronal metabolism. However, the complexity of these mechanisms led us to choose a strongly reductionist
approach to reproduce some of the features that came out of previous studies using more detailed conductance-
based or multicompartmental models [9, 25, 26, 60]. Therefore, though it can be qualitatively mapped to
some specific mechanisms, ε cannot be quantitatively related to any biological measurement.

4.2. Novelty and biological relevance

The eLIF and mAdExp neurons are the first integrate-and-fire models to provide an unambiguous description
of energy dynamics, enabling to investigate its consequences in single-cell or in recurrent-network configurations.
Indeed, contrary to previous models where slow variables were usually introduced to model adaptation from
calcium-gated potassium and bursting7, the eLIF and mAdExp models provide the ε variable as a way to
explicitly model energy-related and spike-initiation constraints. Though other implementations of models
including slow variables might be able to reproduce some of the behaviors examined here, to the best of our

4Allen Institute for Brain Science (2015). Allen Cell Types Database. Available from: celltypes.brain-map.org
5cell ID 566978098: celltypes.brain-map.org/mouse/experiment/electrophysiology/566978098
6cell ID 570896413 celltypes.brain-map.org/mouse/experiment/electrophysiology/570896413
7This is notably the case for the z variable in the Hindmarsh–Rose model, the u and w variables in the Izhikevich and AdExp

models, or adaptive-threshold models.
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knowledge, the eLIF and mAdExp are the only phenomenological models that permit the investigation of
feedback loops between energy levels, neuronal excitability, and spike emission. The fact that the model’s
variable are interpretable and directly linked to biological mechanisms enabled us to extend the AdExp model
in a straightforward manner; this will also let others expand the models if they need to capture additional
mechanisms or external interactions, e.g. with glial cells.

The only other examples of models with an explicit variable representing energy levels we found were
developed in [61] and in Model 2 from [26]. While the former is quite simple and not connected to any specific
biological mechanism, the latter explicitly presents the second variable as a proxy for the ATP concentration
in the neuron. In Model 2, the interpretation of A as a proxy for ATP level notably stems from the fact that
it was designed as a simplification of the more detailed Model 1, a conductance-based model that included
K-ATP channels, where the A variable was defined as the ATP concentration. The model provides interesting
dynamical properties and enabled the authors to develop a new way of modeling the neuro-glio-vascular
system. However, if one’s purpose is to investigate dynamics where both calcium-gated potassium adaptation
and energetic constraints are involved, then one would not be able to use Model 2 as it does not provide a
clear distinction between these two mechanisms. Indeed, the newly introduced A variable only influences the
value of the threshold and is therefore quite close to a GLIF model [62], which makes it impossible to separate
effects that would biologically stem from “standard” adaptation mechanisms, associated to calcium-gated
potassium currents, and effects that would be specific to ATP-related dynamics.

The implementation chosen in the mAdExp model solves this issue by establishing a clear separation
between the retroactions associated to adaptation and those related to changes in energy levels. In this
model, the effects of ε and w on the membrane potential can be opposite and occur (in general) on different
timescales. The ε variable also regulates the spike initiation mechanism of the neuron, meaning that, contrary
to previous models, energy depletion may render a neuron totally unresponsive regardless of the input strength.
In addition, our models consider all sources of energy consumption including spikes and subthreshold ion
currents.

Thus, over long timescales, the ε parameter qualitatively accounts for energy availability as the ATP/ADP
ratio to which pumps and channels are sensitive [63, 39], with this sensitivity summarized in the IKATP
parameter of the mAdExp model. Contrary to slow current variables that can vary arbitrarily into the positive
and negative realm, ε represents an energy stock that must remain positive for the neuron to survive: if the
neurons encounter conditions where ε reaches zero with V ≥ Vd, the models provide an explicit condition for
neuronal death.

Over shorter timescales, sharp decreases in ε following spike emission can lead to depolarization block. This
phenomenon is mostly associated with sodium channel inactivation in neurons, and is caused by a sodium
accumulation that is too quick to be compensated by the Na/K pump. Though it is not directly related to
energetic constraints, we consider that having this mechanism associated to the “energy” variable makes sense
because the timescale of sodium channel inactivation depends on the resting sodium levels, which in turn
depend on the energetic health of the neuron: a neuron with a very active pump would be able to sustain
more spikes than one with a defective pump. This mechanism is related to the δ and εc parameters in the
models.

Finally, as ε represents the ATP/ADP ratio, the α parameter quantifies the metabolic and mitochondrial
state of the neuron and can be used to investigate the transition from health to disease as exemplified in the
Results. A decrease of the α parameter can be related to metabolic insults associated to either mitochondrial
defects [64, 65], a decrease of oxygen or glucose availability, or the buildup of various molecules such as
reactive oxygen species (ROS) [66, 67] that prevent proper metabolic homeostasis.

4.3. Consequences of the V/ε relationship

One of the major features of the model is the interaction between the energy level and the resting potential
of the neuron. This interaction can lead to a transition from “healthy” or “optimally responsive” neurons to
“diseased”, non-responsive neurons. Interestingly the neuron may go through a hyper-excitable state during
this transition, meaning that disease progression can be marked by a broad range of neuronal dynamics and
properties.
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Because changes in the energy level affect the neuronal excitability, the synchronizability and information
processing properties of the neurons change significantly as their available energy decreases. This property of
the model matches observations in various neurodegenerative diseases. Synchronizability notably changes in
Parkinson’s disease (PD), for instance, where oscillations in the beta range (13–30 Hz) become predominant
and are thought to be involved in some motor symptoms. Though known variations in the connectivity
strongly influence this dynamical change, modification of intrinsic neuronal properties due to metabolic insult
are also likely to contribute to the transition towards more synchronized activity [32, 68]. Even more obvious,
epileptic seizure are characterized by excessive or hypersynchronous neuronal activity and their onset and
termination are likely to be related to the metabolic state of the neurons [69, 19, 20]. Finally, the transition
through an hyperactive phase before entering the non-responsive depolarized state has also be proposed for
diseases such as ALS [25].

From an information transfer perspective, the positive retroaction between depolarization and energy
depletion can lead to increased false positives due to hyperexcitable neurons in diseased conditions. Fur-
thermore, because of the necessity of a minimum “metabolic level” for spike emission, this also means that
energy-impaired neurons cannot sustain long-term responses, and would tend to display phasic responses.
These combined effects could further drive bursty activity such as what is observed in PD, where the reliability
of thalamic relay breaks down and the cells start emitting bursts of activity which could lead to tremor [70, 71].

The mAdExp model can reproduce the main relevant dynamical properties in these phenomena and
therefore enables detailed and potentially large-scale computational studies. Such simulations could lead to
more realistic dynamical models and thus to new experimentally testable predictions.

4.4. Limitations

Due to their simplicity, the eLIF and mAdExp models still suffer from many of the limitations of the original
LIF and AdExp models.

For example, the eLIF cannot reproduce bursting behavior and can only exhibit simple accelerating or
decelerating spiking patterns. Though the dynamical richness of mAdExp is greater than the LIF and AdExp
models, its adaptation mechanism also possesses the same drawbacks as the original model: the presence of
a single adaptation timescale τw. As for the AdExp and QIF, though, the mAdExp can be extended in a
straightforward manner to account for multiple adaptation timescales by adding additional w-like variables.

Since multiple biological phenomena are associated to or can affect the ε variable (Naf inactivation,
ATP/ADP ratio, oxygen concentration, pH, ROS. . . ), precise experimental verifications and relations to
biochemical pathways can be quite complex or even impossible to predict, at least if several phenomena are
occurring on similar timescales. The depolarization block, for instance, only stems from the combination
of metabolic parameters δ and εc in our model. It is indeed strongly related to sodium or potassium
accumulation (though not ‘metabolic’ per se, these directly depend on the efficiency of the NKP), to general
energetic considerations [72, 73], and may have been selected due to energetic constraints [74]. Yet, other
slow mechanisms that are not accounted for in our models also contribute to this behavior in biological
neurons; notably chloride-related changes in cell volume [75]. However, the purpose of our models is to
explore how changes in energy availability may increase or reduce the occurrence of specific behaviors such as
the depolarization block. Thus, for the sake of simplicity, we did not include such passive mechanisms as
they do not directly influence energy availability.

Eventually, complex interactions between sodium or calcium levels and ATP production [76, 77] is only
coarsely implemented in the model. In particular, because the adaptation variable w represents calcium-gated
potassium, and not directly the calcium levels, interactions between ε and w would not capture precise
biological mechanisms. Overall, calcium dynamics can have very different impacts on ATP production,
depending on concentrations and timescales, which cannot be completely accounted for by the simple
relationship present in the model.
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5. Conclusion

The two models introduced in the present study provide a novel reductionist approach to include generic
energetic constraints and energy-mediated dynamics to the models of single neurons. The low-dimensional
nature of these two dynamical systems makes them suitable for analytical investigation of energy-based
bifurcations in neuronal behaviors, as well as for large scale simulations.

The mAdExp model, in particular, is able to replicate a large range of biologically-relevant behaviors as
well as their evolution under metabolic stress. Complex behaviors that are crucial for some brain regions
and disorders, such as rebound spiking or depolarization block, now can be successfully reproduced. Since
energetics plays a critical role in many disorders, this model is especially well suited to explore possible origins
of the differences observed between normal and diseased activities in neuronal populations.

Finally, these new models are not limited to the comparison between specific healthy or diseased states, as
they provide a tunable parameter to represent neuronal health. Thus, the continuous transition between
states can now be investigated, as well as dynamical feedback between activity and resource consumption in
resource-limited conditions such as in neuronal cultures or seizures.
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2 Max Planck Institute for Biological Cybernetics, Tübingen, Germany
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A. Benchmarks

The runtime of the models was measured using NEST 2.20 [1] and compared with existing implementations.
The neurons were parametrized to spike at 25 Hz during 60 s and compared to a baseline run of 60 s
without any neuron model. Table S1 compares the runtime of all models mentioned in this papers, as well as
conductance-based neurons.

As can be seen from Table S1, the runtime of the models are similar to or faster than those of the AdExp
and conductance-based models, while accounting for energy dynamics and displaying a larger variety of
behaviors.

B. Fixed points and bifurcations of the eLIF model

B.1. Nullclines

The two nullclines of the model are given by:
VV n = E0 +

Ie
gL

+ (Eu − E0)

(
1− ε

ε0

)

Vεn = Ef + (Ed − Ef )

(
1− ε

αε0

)3
(S4)

Model None LIF AdExp eLIF mAdExp HH HH+Ca
Runtime (s) 0.75 0.8 2.7 2.86 (1.79) 3.52 (2.56) 3.47 4.92

Table S1. Runtime of various models in NEST. A “baseline” run with no neuron (None), compared to runs
with one neuron of each of the mentioned models. For the new energy-based models (eLIF and
mAdExp), two runs were performed: one using a naive implementation and another using
slightly optimized implementation (numbers in parentheses). Conductance-based models are also
included: a standard Hodgkin-Huxley (HH) model which can display regular spiking an
depolarization block, and one with calcium and calcium-gated potassium (HH+Ca) to reproduce
bursting dynamics
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B.2. Saddle-node bifurcation via Ie

For a state where 3 FPs are present (see Figure 2), the coalescence of the higher stable FP, S+, and the
unstable FP, U , occurs at a point B = (VB , εB), when the V -nullcline touches the 3rd order polynomial, i.e.
when the local slope of the tangent to the curve is equal to

− Eu − E0

ε0
= −3(Ed − Ef )

αε0

(
1− ε

αε0

)2

(S5)

which leads to  εB = αε0

(
1±

√
α(Eu−E0)
3(Ed−Ef )

)
VB = Ef ∓ 1√

Ed−Ef

[
α
3 (Eu − E0)

]3/2 (S6)

Using also the second equation for VB , one gets the two critical values for Ie = ±I∗e

I∗e
gL

= (Ef − E0)± 1√
Ed − Ef

[α
3

(Eu − E0)
]3/2
− (Eu − E0)

[
1− α

(
1±

√
α

3

Eu − E0

Ed − Ef

)]
(S7)

= Ef − E0 + α(Eu − E0)

(
1− 1

α
± 2

3

√
α(Eu − E0)

3(Ed − Ef )

)
(S8)

Which can be further simplified to give Equation 3.

B.3. General solution for the fixed points

The FPs of the eLIF model are the intersection of the two nullclines given by Equation S4. Writing out the
equation for the FPs results in the 3rd order polynomial. From [2], we can get the general solution for the
roots of this 3rd order polynomial in the case where Eu > E0. Let us write it under the form ax3 +bx2 +cx+d,
given x = ε/ε0

Coefficients here are given by:

• a = (Ed − Ef )/α3, b = −3(Ed − Ef )/α2, c = 3(Ed − Ef )/α− (Eu − E0), d = Eu − Ed + Ie/gL

• xN = −b/(3a) = α, yN = 2b3/27a2 − bc/3a+ d = Eu − Ef − α(Eu − E0) + Ie/gL

• δ2 = (b2 − 3ac)/9a2 = α3(Eu − E0)/ [3(Ed − Ef )]

• h = 2aδ3 = 2(Ed − Ef )
[
α(Eu−E0)
3(Ed−Ef )

]3/2
Note that, though δ was used for coherence with [2], it is not related to the δ parameter which appears in

Equation 1 and is associated with the spiking cost in the neuronal model.

3 real solutions If Ie ∈ [I∗e−, I
∗
e+], we define

θ =
1

3
arccos

(
−yN
h

)
and get

rk = xN + 2δ cos

(
θ +

2(k − 1)

3
π

)
= α+ 2α

√
α(Eu − E0)

3(Ed − Ef )
cos

(
θ +

2(k − 1)

3
π

)
for k ∈ {1, 2, 3}

which leads to
εk = ε0(1− rk)
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At the bifurcation points If Ie = I∗e±, one recomputes δ as − 3
√

yN
2a to get its correct sign.

This gives

r = δ = −

[
1

2
+
α(Eu − E0)

2(Ed − Ef )

(
1− 2

α
± 2

3

√
α(Eu − E0)

3(Ed − Ef )

)]1/3

Then
ε1 = ε0(1 + r), ε2 = ε0(1− 2r)

Single real solution In the case where Ie 6∈ [I∗e−, I
∗
e+] or Eu ≤ E0, the single real root and is obtained

through Cardano’s formula:

r = − b

3a
+

[
−q

2
+

√
q2

4
+
p3

27

]1/3

+

[
−q

2
−
√
q2

4
+
p3

27

]1/3

(S9)

with p = c
a −

b2

3a2 , q = 2
(
b

3a

)3 − bc
3a2 + d

a and ε = ε0(1 + r)
In all cases, the associated values of V can then directly be calculated from the equation of one of the

nullclines in Equation S4.

C. Fixed points and bifurcations of the mAdExp model

Nullclines

The nullclines of the mAdExp model can be expressed in multiple ways, among which:

εV n(V,w) = ε0
Eu − V −∆T

εc
ε0

exp [(V − Vth)/∆T ] + (Ie − w)/gL

Eu − E0 −∆T exp [(V − Vth)/∆T ]

Vεn(ε, w) = Ef + (Ed − Ef )

[(
1− ε

αε0

)3

− w

γ

]

Vwn(ε, w) = E0 + (Eu − E0)

(
1− ε

ε0

)
+
w

a
− εc
εc + 2ε

IKATP

(S10)

Approximation of the fixed points

In this section, we consider parameter sets where the effect of IKATP is negligible. As long as the fixed points
have a value of VFP which is lower than Vth −∆T , their value can be well approximated by replacing gL by
(gL + a) in the solutions of the eLIF model (see previous section), then considering:

wFP = a(VFP − EL) +
εc

εc − 2ε
IKATP (S11)

Numerically, on can then converge iteratively towards an improved solution, starting from this initial
guess FP0, then correcting the external current that will be used to compute FPi+1 by Ie,i+1 = Ie − wFP,i +

gL∆T
εFP,i−εc

ε0
exp

(
VFP,i−Vth

∆T

)
.

D. Behaviors

This section provides some additional information regarding the behaviors that can be obtained through the
eLIF and mAdExp models.

Figure S8 shows how different parameters can give rise to both type I and type II I − f curves.
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Fig S8. I − f curves of the eLIF neuron for different threshold values Vth (left/right). The corresponding
phase-space is shown in the middle. Threshold values are -65.5 (dark grey), -63, -61, and -59 mV
(light grey); they correspond to the associated curves on the I − f plots and to the dashed vertical
lines on the phase-space representation. The type of the curve depends on the position of Vth
compared to the position of the low-energy fixed point (FP) at the bifurcation point which is shown
as a filled black circle: for Vth > VFP , the neuron has a continuous type I response curve whereas
for Vth > VFP the curve, though still continuous, becomes closer to a type II curve, with a sharp
increase starting immediately at the bifurcation current I∗e . See Table S2 in Supplementary
Information E.1 for detailed parameters.
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Fig S9. Dynamics of the eLIF model as timeseries (left) and in phase-space (right) for Eu < E0 (resonant
behavior). The behavior of the model is shown in response to four different inputs, shown in grey
on the V subplot: a low depolarizing current (a: 10 pA), a stronger depolarizing current (b: 30 pA),
a large depolarization (c: 80 pA), and a hyperpolarizing current (d: -60 pA). Corresponding
behavior in phase-space is shown in the four right panels, with spike emission marked by an empty
left triangle and reset position marked by a dot: (a) the neuron leaves the fixed point (FP), then
goes back towards it (both transitions are associated to and up/downshoot), (b) the neuron spikes
at decreasing frequency as its energy is depleted, (c) the neuron spikes, then enters a depolarization
block for high stimulation, (d) post-inhibitory overshoot is associated to rebound spiking. See Table
S2 in Supplementary Information E.1 for detailed parameters.

Rebound spiking/bursting

The following paragraphs show an example of “rebound activity” with the eLIF model (Figure S9), as well as
details about the conditions leading to rebound activity for the AdExp and mAdExp models.

AdExp For the AdExp model, rebound spiking occurs [3] either:

• for type I excitability (a/gL < τm/τw)

– a) if τm/τw < 1

– or b) if τm
4τw

(
1− τw

τm

)2

< a/gL

• in all situations for type II excitability (a/gL > τm/τw)

– a) if τm/τw < 1

– or b) if τm/τw ≥ 1

Cases I.b and II.b correspond to a neuron exhibiting dampened oscillations, so the presence of the sag
is obvious. For cases I.a and II.a, the faster timescale associated to the membrane potential conditions the

presence of a sag. Because type II excitability with τm
4τw

(
1− τw

τm

)2

> a/gL is impossible, as τm
4τw

(
1− τw

τm

)2

<
τm
τw

< a
gL

for τm/τw ≥ 0, this covers all cases. Thus, rebound spiking in the AdExp model is always associated
to a sag.

This can also be shown mathematically for I.a and II.a by looking at the eigenvector associated to the
lowest eigenvalue:

λ− = − τm
2τw

1 +
τw
τm

+

√(
1− τw

τm

)2

− 4
aτw
gLτm

 and e− =

( 2τw/τm

1− τw
τm

+
√

(1− τw
τm

)
2−4 aτw

gLτm

1

)
(S12)
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For τm/τw < 1 (I.a and II.a), the denominator d of the x component of e− gives its sign, and since

d = 1− τw
τm

+

√(
1− τw

τm

)2

− 4
aτw
gLτm

< 1− τw
τm

+

∣∣∣∣1− τw
τm

∣∣∣∣ = 0 (S13)

one can see that, as expected from the ratio of timescales, there is always an overshoot and a sag for I.a and
II.a.

mAdExp The new rebound bursting behavior is associated to a positive divergence of the V -nullcline (cf.
Equation S10). Since the divergence occurs for

V ∗ = Vth −∆T ln

(
Eu − E0

∆T

)
, (S14)

the positive sign is obtained for

Vth ≤ Eu −∆T ln

(
Eu − E0

∆T

)
− εc
ε0

(Eu − EL) +
Ie − w
gL

. (S15)

To get the mAdExp model to display rebound spiking and no sag one must combine the previous condition
with the constraints of the AdExp and eLIF models:

• the condition for no overshoot is a type I neuron with either τm
τw

> 1 or a
gL

> τm
4τw

(
1− τw

τm

)2

, or any

neuronal type with a ≤ 0 (note that for small values of a, the sag, though technically present, can be
neglected for all practical purposes),

• the condition for no overshoot due to energy dynamics is Eu ≥ E0 (necessary for the ).

E. Parameters

Detailed parameter sets used in the different figures can be found in the following tables.
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Figure 3 Figure 4 Figure S8 Figure S9
Value Unit Value Unit Value Unit Value Unit

Cm 100. pF 200. pF 100. pF 100. pF
gL 9. nS 12. nS 9. nS 9. nS
E0 −62.5 mV −58.5 mV −69. mV −61. mV
Ie 0. pA 35. pA 0. pA 0. pA
Eu −58.5 mV −55. mV −62. mV −65. mV
Vth −60. mV −53. mV [−65.5,−59.] mV −60.5 mV
α 1. 1. 1. 1.
Ed −40. mV 0. mV 0. mV −40. mV
Ef −62. mV −55. mV −66. mV −62. mV
ε0 0.5 0.5 0.5 0.5
εc 0.18 0.15 0.1 0.2
δ 0.018 0.02 {0, 0.01} 0.02

Vreset −62. mV −57. mV −66. mV −62. mV
tref 0. ms 2. ms 2. ms 2. ms
τe 200. ms 500. ms 1000. ms 200. ms

Table S2. Parameters used with the eLIF model.

E.1. Neuronal parameters

RS AS IB RB TS DB DA IR ER IS Unit
Cm 104 104 130 130 100 100 84 40 104 84 pF
gL 4.3 4.3 18 8 9 6 5 6 4.4 5 nS
E0 -64 -52.5 -56 -55 -56 -62.5 -52.5 -59.6 -54.4 -52.5 mV
Vth -58 -52 -53 -54 -52 -55 -52 -58 -55 -52 mV
∆T 0.8 0.8 2 2 1.2 1.2 0.8 2 0.9 0.8 mV
a 0 2 2 3 51 -0.1 -0.5 1 0 -0.5 pA
τw 20 300 150 110 300 20 150 200 150 150 ms
b 0.5 5 50 60 150 35 0 20 5 0 pA

Vreset -61 -54 -52.5 -50 -50 -53 -56 -58 -58 -54 mV
tref 0 0 0 0 0 0 0 0 0 0 ms
Eu -60 -45 -52 -50 -52 -60 -45 -59 -51 -45 mV
α 1 1 1 1 1 1 1 1.5 1 0.5
Ed -40 -35 -20 -35 -30 -20 -35 -35 0 -20 mV
Ef -46 -45 -45 -45 -45 -45 -45 -60 -35 -35 mV
ε0 0.5 0.5 0.5 0.5 0.5 5 5 5 5 2
εc 0.15 0.15 0.15 0.15 0.15 1.5 1 2 2 0.3
δ 0.02 0.02 0.02 0.02 0.02 0.1 0.4 0.2 0.5 0.15
γ 1000 200 200 300 200 500 200 500 200 200 pA
τe 500 500 500 150 500 50 200 100 500 2000 ms

IKATP 1 1 1 1 1 100 100 5 1 100 pA
Ilow 50 50 100 100 85 57 40 -36 30 10 pA
Ihigh 300 200 250 300 400 300 100 200 100 250 pA

Table S3. Parameters used for the different behaviors of the mAdExp model on Figure 6.
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Rebound (no sag) Rebound (no sag)
mAdExp AdExp mAdExp AdExp Unit

Cm 80 62.5 50. 47. pF
gL 3.2 2.5 2. 1.9 nS
E0 -61.7 / -60. / mV
EL / -62.1 / -71. mV
Vth -54.1 -54.3 -57.5 -56.2 mV
∆T 3.9 3. 3. 3. mV
a 0.2 1. 1.8 1.4 pA
τw 500. 500. 250. 320. ms
b 1.5 5. 10. 5.7 pA

Vreset -56.5 -56.5 -53. -53. mV
tref 2. 2. 2. 2. ms
Ie 0. 0. 0. 0. ms
Eu -61.5 / -48. / mV
α 1.8 / 1. /
Ed -26. / 0. / mV
Ef -65. / -40. / mV
ε0 10. / 10. /
εc 1. / 8. /
δ 0.2 / 4. /
γ 1000. / 200 / pA
τe 15. / 7. / ms

IKATP 0.1 / 0.1 / pA

Table S4. Parameters used to match rebound spiking behaviors on Figure 7.
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E.2. Network simulation

These are the parameters used for the network simulations of Figure 5.

Cm gL E0 Ie Eu Ed Ef ε0 εc δ tref τe
Value 200 12 -58.5 0 -57 0 -48 0.5 0.15 0.007 2 500
Unit pF nS mV pA mV mV mV ms ms

Table S5. Static neuronal parameters used with the all eLIF neurons in Figure 5.

α 1 0.6 0.3 0.2
Vth (mV) -55.3 -55.3 -54.66 -54.44

Vreset (mV) -60 -57 -57 -57
se (pA) 30 4.41 2.91 2.7

Table S6. Specific parameters used for each of the simulations at a different neuronal health in Figure 5.
Each health level, corresponding to a value of α is associated to the corresponding values for Vth
and Vreset in the same column.

The networks were all Erdös–Renyi graphs containing 800 excitatory neurons and 200 inhibitory neurons,
each having an average degree of 100. There were generated using the NNGT library [4]. Even for the healthy
situation with α = 1, the network was placed in the inhibition-dominated regime, with an inhibitory synaptic
strength 120 pA and a synaptic timescale of 2 ms against excitatory synapses with strength 30 pA and a
timescale of 0.2 ms. The inhibitory strength and all timescales were kept unchanged for all conditions, only
excitatory strength was scaled according to the values se in Table S6.
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