1 Temporal and spatial dynamics in the apple flower microbiome in the presence of

2 the phytopathogen *Erwinia amylovora*

3

4 Running title: Flower microbiome dynamics with a phytopathe	ogen
--	------

5

6 Zhouqi Cui¹, Regan B. Huntley¹, Quan Zeng^{1*}, and Blaire Steven^{2*}

⁷ ¹Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment

8 Station, New Haven, Connecticut, 06504 USA;

9 ² Department of Environmental Sciences, The Connecticut Agricultural Experiment

10 Station, New Haven, Connecticut, 06504 USA

11

12

13

14

* Corresponding author: Blaire Steven. Email: blaire.steven@ct.gov; Quan Zeng. Email:

16 quan.zeng@ct.gov

17 Abstract:

18	Plant microbiomes have important roles in plant health and productivity. However,
19	despite flowers being directly linked to reproductive outcomes, little is known about the
20	microbiomes of flowers and their potential interaction with pathogen infection. Here, we
21	investigated the temporal dynamics and spatial traits of the apple stigma microbiome
22	when challenged with a phytopathogen Erwinia amylovora, the causal agent of fire blight
23	disease. We profiled the microbiome from the stigmas of a single flower, greatly
24	increasing the resolution at which we can characterize shifts in the composition of the
25	microbiome. Individual flowers harbored unique microbiomes at the OTU level.
26	However, taxonomic analysis of community succession showed a population gradually
27	dominated by bacteria within the families Enterobacteriaceae and Pseudomonadaceae.
28	Flowers inoculated E. amylovora established large populations of the phytopathogen,
29	with pathogen specific gene counts of $>3.0 \times 10^7$ in 90% of the flowers. Yet, only 42% of
30	inoculated flowers later developed fire blight symptoms. This reveals pathogen amount
31	on the stigma is not sufficient to predict disease outcome. Our data demonstrate that
32	apple flowers represent an excellent model in which to characterize how plant
33	microbiomes establish, develop, and interact with biological processes such as disease
34	progression in an experimentally tractable plant organ.
35	
36	

- 37
- 38
- 39

40 Introduction

Flowers, the reproductive organs of angiosperms, play a critical role in the plant's 41 lifecycle. The most important function of flowers is to provide a mechanism for 42 43 pollination, the union of sperm contained within pollen, to the ovules contained in the ovary. The fertilized ovules produce seeds that will later germinate to become the next 44 generation of plants. Yet, unlike other vegetative organs such as the roots, stems, and 45 46 leaves that are present through a large part of the plant's lifecycle, flowers develop on mature plants and are typically present for the limited period during bloom. As such, 47 research characterizing the microbiome of the flower is generally less developed than for 48 49 other plant organs. Flowers of apple (*Malus domestica*) have been subject to considerable research 50

attention as they are the direct precursors of apple fruits, one of the most consumed fruits 51 worldwide (1). The ephemeral nature of apple flowers, with mature flowers from petal 52 open to petal fall only lasting for 5-10 days in spring, offers a unique environment in 53 which to study community succession (1, 2). During bloom, petals open up in a relatively 54 55 short period of time, typically within one day, which exposes the internal flower parts to the environment and microorganisms. Several of these internal flower parts exude various 56 57 types of nutrient-rich secretions including nectar, stigmatic exudate, and pollen exudate, 58 for the purpose of attracting pollinators, and inducing the germination of pollen grains (1, 59 3). These secretions are rich in sugars, amino acids, polysaccharides, and glycoproteins, 60 which are excellent sources of nutrients for many microorganisms (1, 3, 4). The stigma is 61 particularly nutrient rich and harbors a larger microbial biomass than other flower parts 62 (5, 6). Previous research has documented a relatively low diversity of the stigma

63 microbiome, although certain lineages predominantly within the families

64 *Enterobacteriaceae* and *Pseudomonadaceae* tend to be dominant (7).

While the stigma provides an excellent niche for microbial colonization, it also 65 offers an opportunity for pathogen infection. Many pathogens have evolved to take 66 advantage of this environmental niche, among which one of the most important is the 67 68 phytopathogenic bacterium *Erwinia amylovora*, the causal agent of fire blight. Fire blight is considered as one of the most devastating diseases of apple, with annual losses and 69 costs of control estimated at over \$100 million in the U.S. (8). During bloom, E. 70 71 *amylovora* (*Ea*) cells are spread to apple flowers by insects, wind, or rain and multiply on the stigma surface (9). Ea cells can then migrate from the stigma to the hypanthium and 72 enter into the host through the natural opening, the nectarthodes. Initial infection occurs 73 74 at the ovary tissue and can spread to other parts of the plants through the plant vasculature system. Fire blight infection can result in significant yield reduction and / or 75 76 tree death. In this regard, uncovering environmental or biologic factors that can inhibit the spread or development of fire blight are of considerable research interest. 77

78 One potential source of fire blight control is the natural microbiome of the stigma. 79 Yet, there exist considerable knowledge gaps concerning how the stigma microbiome is established and structured. The studies that have considered the stigma microbiome have 80 generally focused on cataloging microbial diversity through various culture-dependent 81 82 and culture-independent methods (7, 10) and few studies have investigated the temporal development of the microbiome (2). Furthermore, previous research has predominantly 83 84 studied the microbiome using pooled flower samples, thus it is uncertain the extent to which the microbiome differs among individual flowers of the same genetic background. 85

86	Finally, how the colonization of a phytopathogen affects the development, composition,	
87	or structure of the stigma microbiome is essentially unknown. In this study, we examined	
88	the temporal development of the stigma microbiome in the presence and absence of Ea to	
89	investigate how this organism influences the development of the normal microflora of the	
90	apple flower stigma. Additionally, we characterized the variability of the microbiome	
91	amongst 100 individual stigmas inoculated with Ea to assess if certain microbiome	
92	members could regulate Ea colonization and growth on apple stigmas.	
93		
94	Materials and methods	
95	Sampling site	
96	To limit the effects of host and environmental conditions, we used flowers from	
97	nine trees of the same apple cultivar 'Early Macoun' (Malus domestica NY75414-1)	
98	planted at the same geographical location (Lockwood Farm, Hamden, Connecticut,	
99	41.406 N 72.906 W). All trees were the same age and under the same maintenance	
100	program. Weather data (temperature and humidity) prior to and during bloom (from April	
101	29 th to May 28 th 2018) is summarized in Table S1.	
102		
103	Experiment design and stigma collection	
104	Labeling flower clusters	
105	On May 6 th 2018, 40 flower clusters that were in 'King bloom' stage (central	
106	flower opened but the four side flowers still closed, see Fig. 1A) were labeled with plastic	

tags. The day after the flower clusters were tagged, we identified clusters in which the

side flowers were open and flower clusters with unopened flowers were not used. In this
manner, only side flowers of roughly the same age were used in subsequent experiments.

110

111 Sampling for temporal alterations of the stigma microbiome

On May 7th 2018, ten of the 40 tagged flower clusters were selected, and the 112 stigmas of an individual flower were harvested with sterile scissors (see Fig. 1B) and 113 placed in a sterile 1.5 ml microcentrifuge tube. Collected stigma samples were kept in 114 liquid nitrogen and transported to the laboratory for immediate processing. These samples 115 116 were labeled as day 1 samples. The next day, another 10 flowers were selected for DNA extraction as described above (as day 2 samples). Immediately after sample collection on 117 day 2, Ea was inoculated onto 20 tagged flower clusters and labeled as Ea treated. The 118 inoculum consisted of an overnight culture of E. amylovora 110 grown in lysogeny broth 119 (LB) diluted to a final concentration of 1×10^6 CFU ml⁻¹ in sterile water. The diluted 120 culture was spray-inoculated to the open flowers using a handheld sprayer to ensure 121 every flower was evenly exposed. Another twenty flower clusters were sprayed with 122 sterile water as water controls. On each subsequent day (day 3 to day 5), stigmas from 20 123 Ea-treated and 20 water-treated flowers were collected and processed according to the 124 same method described above. 125

126

127 Sampling for spatial patterns in the stigma microbiome

To investigate a larger spatial sampling of *Ea* inoculated flowers, we performed a parallel experiment, and tagged an additional 150 flower clusters to ensure flowers used in the experiment were the same age as the rest of the experimental set. As described for

131	the temporal sampling, the flower clusters were individually spray-inoculated with Ea (1
132	x 10^6 CFU ml ⁻¹) on day 2, and stigma samples of individual flowers were harvested on
133	day 4. A total of 100 flowers of the same developmental stage were harvested for DNA
134	extraction, while the remaining flowers of each flower cluster were left on the tree to
135	monitor disease development. Blossom blight symptoms, black withering and dying of
136	the remaining flowers (Fig. 1C), were evaluated two weeks after inoculation on May 24 th ,
137	2018. An illustrated scheme of both temporal and spatial sampling is shown in Fig. S1.
138	
139	DNA extraction and sequencing of bacterial 16S rRNA genes
140	For extraction of bacterial DNA, 200 µl of 0.5x phosphate-buffered saline (PBS)
141	was added to each microcentrifuge tube containing stigma samples. Epiphytic microbes
142	were removed from the stigma by a 5-minute water bath sonication followed by a 30-
143	second vortex. DNA was extracted from the 200 μ l of bacterial suspension by using the
144	DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) according to manufacturer's
145	instructions. The amount of template DNA added in the PCR reaction (25 $\mu l)$ ranged
146	from 10.0 ng to 20.0 ng as determined by Nanodrop2000 (Thermo Fisher Scientific,
147	Waltham, MA). DNA was amplified by using the 515f/806r primer set, which targets the
148	V4 region of the bacterial 16S rRNA gene, with both primers containing a 6-bp barcode
149	unique to each sample (11). PNA clamps were added to the PCR mixture at a
150	concentration of 0.75 μ M to block the PCR amplification of apple plastid and
151	mitochondrial sequences (7). PCR conditions were performed as described in Steven et
152	al. (2018) (7). Successful PCR amplifications at the correct amplicon size were confirmed
153	by gel electrophoresis. The PCR products were purified and normalized by using

154	SequalPrep normalization plate kit (Invitrogen, CA, USA). Pyrosequencing was
155	conducted on an Illumina MiSeq v2.2.0 platform through services provided by the
156	UConn MARS facility.
157	
158	Quantitative PCR for enumeration of E. amylovora
159	The abundance of <i>Ea</i> in each collected stigma sample was quantified by
160	determining the cycle threshold (CT) value of the Ea specific gene amsC (12).
161	Quantitative PCR (qPCR) was performed using a SsoAdvanced universal SYBR Green
162	supermix (Bio-Rad, CA, USA), as described previously (13). The CT values for a 1/10
163	dilution series of known amsC gene copies of E. amylovora chromosomal DNA was
164	determined to make a standard curve for calculation of copy numbers in stigma samples.
165	
166	Bioinformatics and statistical analysis.
167	Illumina sequencing reads were assembled into contigs and quality screened by
168	using mothur v1.39.5 as previously described (14). Sequences that were at least 253 bp in
169	length, contained no ambiguous bases, and no homopolymers of more than 8 bp were
170	used in the analysis. Chimeric sequences were identified by using the VSEARCH as
171	implemented in mothur (15), and all potentially chimeric sequences were removed. To
172	maintain a similar sampling effort between samples, samples with less than 10,000
173	sequences per sample were also removed. The resulting sequence counts per sample are
174	presented in Table S2. Negative control (PCR using sterile H ₂ O as a template) was also
175	included in both sequence datasets. The sequences data are deposited in the Sequence
176	Read Archive under accession number PRJNA597302.

177	Sampling effort was normalized to the depth of the smallest sample and
178	operational taxonomic units (OTUs) were defined at 100% sequence identity, employing
179	the OptiClust algorithm in mothur (16). Taxonomic classification of sequences was
180	performed with the Ribosomal Database Project (RDP) classifier against the SILVA v132
181	reference alignment in mothur (17, 18). Non-metric multidimensional scaling (NMDS)
182	was used to visualize the pairwise distances among samples with Bray-Curtis distances in
183	the Vegan package in R (19). Descriptive diversity statistics were calculated in mothur.
184	The correlation between alpha diversity determined with the non-parametric Shannon's
185	Diversity Index and E. amylovora abundance in each sample was generated with the
186	ggplot2.0 package for R (20). Statistically significant differences in diversity statistics
187	were identified with a one-way ANOVA and Tukey-Kramer post hoc test in the agricolae
188	package in R.
100	

189

190 **Results**

191 *Temporal patterns in stigma microbial community assembly*

We characterized the microbial community on stigmas collected from individual 192 flowers, over a period of 5 days after petal opening, to investigate the temporal dynamics 193 194 in community assembly and microbial succession on the stigma. Meanwhile, we included Ea inoculated stigmas to compare community succession in the presence of a 195 phytopathogen. A total of 2 930 231 high-quality filtered sequences were obtained from 196 96 samples with the number of sequences ranging from 10 210 to 97 668 (Table S2). 197 These sequences clustered into 46 809 OTUs (mean 222 per sample) at 100% sequence 198 199 similarity.

200	At the phylum level, 24 phyla were detected. In both the water control and Ea
201	inoculated datasets, the dominant phylum was Proteobacteria (94.3% of total sequences),
202	followed by Cyanobacteria (3.6%), Actinobacteria (0.8%), Firmicutes (0.2%) and
203	Bacteroidetes (0.2%). A temporal pattern was observed, in that phyla outside the
204	Proteobacteria were most abundant in the early time points (days 1 and 2) accounting for
205	15% of sequences and decreasing to <1% at later time points (Fig. S2).
206	Given the dominance of Proteobacteria, these sequences were classified to deeper
207	taxonomic ranks. Sixty-seven families were identified, with the majority belonging to the
208	Enterobacteriaceae (average 70.0%, blue bars) and Pseudomonadaceae (26.2%, red bars
209	in Fig. 2), with small contributions from <i>Moraxellaceae</i> (0.6%), <i>Beijerinckiaceae</i> (0.2%),
210	unclassified Gammaproteobacteria (0.3%), Burkholderiaceae (0.3%) and
211	Xanthomonadaceae (0.2%) (Fig. 2). Of note, both Pseudomonadaceae and
212	Enterobacteriaceae gradually accounted for a larger proportion of the microbiome as
213	time progressed in both water control and Ea inoculated datasets (Fig. 2). Yet, the
214	average proportion of <i>Enterobacteriaceae</i> (the family to which <i>Ea</i> belongs) was higher in
215	the Ea treated flowers compared to water control (89.7% versus 45.6% at day 5) (Fig. 2).
216	
217	Abundance of Ea on individual flowers

We employed two methods to assess the abundance of *Ea* in the datasets, relative abundance of *Ea* sequences in the dataset and *Ea* copy numbers quantified by qPCR of an *Ea* specific gene. First, we identified an OTU in the dataset that had 100% sequence identity with the inoculated *Ea* strain (OTU1; Table S3). OTU1 was detected every day but not in all samples. On days 1 and 2, prior to the stigma treatments, OTU1 made up an

223 average of 4% and 6% of the microbiome sequences, respectively (filled bars in Fig. 2). In the control water sprayed stigmas the proportion of OTU1 gradually increased from an 224 average of 2% of sequences on day 3 to 13% on day 4, finally making up an average of 225 226 24% of sequence on day 5. In contrast, the populations of OTU1 were larger in the Ea treated stigmas. By day 3 OTU1 accounted for an average of 50% of the sequence 227 libraries, increasing to 86% on day 4 and ending at 94% of sequences on day 5, a 2.9-fold 228 increase in comparison to the controls (Fig. 2). 229 In addition, qPCR was performed to quantify the genome copies of Ea in each 230 stigma sample. As was observed for OTU1, Ea was identified across the dataset. In the 231 pretreated stigmas (days 1 and 2) the average copy number of Ea DNA were $\sim 7.7 \times 10^6$ 232 (Fig. 2). In the control datasets, the DNA copy number were similar on days 3 and 4 at 233

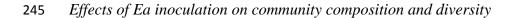
 5.7×10^6 and 7.4×10^6 , respectively, and increased to 1.5×10^7 on day 5 (Fig. 2). In the

Ea inoculated flowers the copy number of *Ea* on day 3 (one day after inoculation) was

similar to the control flowers, suggesting *Ea* had not yet established strong growth on the

stigma (Fig. 2). However, by day 4 the average abundance of *Ea* on the treated stigmas

reached 3.0×10^7 , a 300% increase compared to the controls, and increased further on


day 5 reaching an average of 4.3×10^8 , a 28-fold increase in comparison to the controls

240 (Fig. 2). Taken together, these data suggest that *Ea* may be naturally present in the

orchard, as it was commonly detected in the pretreated and control stigmas. Yet, the *Ea*

inoculation clearly benefited *Ea* colonization, which was readily apparent by day 5, threedays after the inoculation.

244

246	To test if <i>Ea</i> treatment had a significant effect on microbiome composition, we
247	visualized the Bray-Curtis distances among samples of each dataset using NMDS. The
248	samples clearly clustered due to Ea inoculation, which was confirmed by permutational
249	multivariate ANOVA ($P = 0.001$) (Fig. 3A). Additionally, samples were also clustered
250	based on days post-bloom ($P = 0.001$) (Fig. 3A). Diversity of the stigma communities
251	was assessed by calculating the Shannon's Diversity index. For both control and Ea
252	inoculated datasets there was a trend towards increased diversity in the early time points,
253	which then decreased by days 4 and 5 (Fig. 3B). When the control and Ea inoculated
254	datasets were combined to test the overall effect of pathogen presence on microbial
255	diversity, there was no significant difference in diversity due to <i>Ea</i> treatment (p=0.109;
256	Fig. 3B).
257	Collectively, these findings indicate that taxonomically diverse microbial
257 258	Collectively, these findings indicate that taxonomically diverse microbial populations initially colonize the stigma of the apple flower. Gradually, a community
258	populations initially colonize the stigma of the apple flower. Gradually, a community
258 259	populations initially colonize the stigma of the apple flower. Gradually, a community dominated by representatives of the <i>Pseudomonadaceae</i> and <i>Enterobacteriaceae</i> families
258 259 260	populations initially colonize the stigma of the apple flower. Gradually, a community dominated by representatives of the <i>Pseudomonadaceae</i> and <i>Enterobacteriaceae</i> families outcompetes these populations and become the predominant community members (Fig.
258 259 260 261	 populations initially colonize the stigma of the apple flower. Gradually, a community dominated by representatives of the <i>Pseudomonadaceae</i> and <i>Enterobacteriaceae</i> families outcompetes these populations and become the predominant community members (Fig. 2), which results in an overall decrease in diversity of the stigma microbial community
258 259 260 261 262	 populations initially colonize the stigma of the apple flower. Gradually, a community dominated by representatives of the <i>Pseudomonadaceae</i> and <i>Enterobacteriaceae</i> families outcompetes these populations and become the predominant community members (Fig. 2), which results in an overall decrease in diversity of the stigma microbial community (Fig. 3B &C). In the face of <i>Ea</i> challenge there is a significant shift in the composition of
258 259 260 261 262 263	 populations initially colonize the stigma of the apple flower. Gradually, a community dominated by representatives of the <i>Pseudomonadaceae</i> and <i>Enterobacteriaceae</i> families outcompetes these populations and become the predominant community members (Fig. 2), which results in an overall decrease in diversity of the stigma microbial community (Fig. 3B &C). In the face of <i>Ea</i> challenge there is a significant shift in the composition of the microbial community (Fig. 3A). Yet, there is no significant effect on the diversity of
258 259 260 261 262 263 263 264	 populations initially colonize the stigma of the apple flower. Gradually, a community dominated by representatives of the <i>Pseudomonadaceae</i> and <i>Enterobacteriaceae</i> families outcompetes these populations and become the predominant community members (Fig. 2), which results in an overall decrease in diversity of the stigma microbial community (Fig. 3B &C). In the face of <i>Ea</i> challenge there is a significant shift in the composition of the microbial community (Fig. 3A). Yet, there is no significant effect on the diversity of

268 To further explore the interaction of microbes when colonized by a phytopathogen, we

269	expanded the analysis to 100 spatially separated flower clusters (approximately 400
270	individual flowers) inoculated with Ea. Flowers were collected from the clusters for
271	microbiome characterization, while the remainder of the flowers were left on the tree to
272	monitor the rate of disease development. Three weeks after Ea inoculation, only 42.4% of
273	the flowers developed fire blight symptoms. Given that the genetic background of the
274	host, flower age, and pathogen exposure were all identical between the inoculated
275	flowers, and the trials were all performed in the same orchard and thus under the same
276	environmental conditions, these observations suggest that none of these factors are
277	sufficient to explain or predict disease occurrence at the single flower level.
278	
279	Genome copies of Erwinia amylovora
280	We measured the <i>amsC</i> copy number from 100 individual flowers by qPCR. The
281	copy number varied from 1.3 x 10^4 to 3.7 x 10^{10} . The average was 4.4 x 10^9 (dashed line,
282	Fig. 4A) and the majority (90%) of stigmas harbored $> 3.0 \times 10^7$ gene copies of <i>Ea</i> ,
283	which is similar to the average of day 4 inoculated flowers in the temporal dynamics
284	study. These results indicate most of the stigmas harbored large populations of Ea,
285	despite only a proportion of flowers later developing fire blight symptoms.
286	
287	Microbiome composition
288	A total of 4 176 840 high-quality 16S rRNA gene sequences were recovered from
289	the 100 flowers, with the number of sequences ranging from 19 297 to 80 130 per

sample. After normalizing sampling to the smallest dataset, clustering produced 27 843

OTUs (mean 282 per sample) at 100% sequence similarity. The detailed information for

each dataset is presented in Table S2.

292

At the phylum level, 22 phyla were identified among the sequences. The most 293 294 abundant, Proteobacteria, ranged from 96.8% to 100% of recovered sequences, followed by Actinobacteria (0-0.5%), Cyanobacteria (0-1.6%) and Firmicutes (0-1.5%) (Fig. S3). 295 Within the Proteobacteria, 59 families were identified and Pseudomonadaceae (red bar 296 in Fig. 4B) and Enterobacteriaceae (blue bar) were predominant (> 81.5% in each 297 sample). Notably, the proportion of *Pseudomonadaceae* and *Enterobacteriaceae* 298 significantly varied among the 100 samples, from 0.02% to 99.20% and from 0.45% to 299 99.97%, respectively (Fig. 4B). 300 301 302 OTUs within the Pseudomonadaceae and Enterobacteriaceae Sequences within Pseudomonadaceae and Enterobacteriaceae were classified to 303 deeper taxonomic ranks to investigate if particular OTUs were associated with Ea 304 abundance. Of the 10 most abundant OTUs in the dataset, four belonged to the 305 *Pseudomonadaceae* and six to the *Enterobacteriaceae*, representing five different genera 306 307 (Table S3). By in large each flower harbored a unique microbiome composition, with widely varying abundance of the predominant OTUs among the samples (Fig. 4C &D). 308 Furthermore, there was no observable pattern in specific OTUs being co-abundant in the 309 310 samples with a high relative abundance of *Pseudomonadaceae* (Fig. 4B &C). For example, when we tested the correlation between the relative abundance of the most 311 312 abundant *Pseudomonadaceae*-related OTU (OTU5; Table S3) and the relative abundance of *Pseudomonadaceae* in the dataset, the result showed no relationship ($R^2 = 0.26$, Fig. 313

314	S4). In other words, it was not a specific OTU that accounted for the high prevalence of
315	the family Pseudomonadaceae. In contrast, OTU1 (100% sequence identity to E.
316	amylovora; Table S3) tended to be highly abundant in samples with elevated counts of Ea
317	(Fig. 4A &D). However, in those samples with low <i>Ea</i> counts a particular
318	Enterobacteriaceae OTU was not predominant, suggesting that a specific OTU was not
319	outcompeting Ea in those samples in which Ea was not well established.
320	
321	Correlates of Ea abundance to metrics of the stigma microbiome
322	To test if there were any aspects in the community data that were predictive of Ea
323	abundance we performed four correlational analyses. First, the most abundant OTU in
324	the dataset (OTU1) shared 100% sequence identity with the inoculated Ea strain (Table
325	S3). Therefore, we tested the correlation between the relative abundance of OTU1 and
326	the <i>amsC</i> gene copy number of <i>Ea</i> , and thereby testing if the relative abundance of OTU1
327	was correlated to Ea absolute abundance (Fig. 5A). The result showed there was a
328	positive relationship between the two metrics, with an $R^2 = 0.29$, suggesting a
329	relationship but low explanatory power. Second, as shown in Fig. 4B, many of the
330	stigmas maintained a large proportion of Pseudomonadaceae populations. We
331	investigated if there was a predictive relationship between the relative abundance of the
332	Pseudomonadaceae and the copy number of Ea. The relationship displayed in a negative
333	pattern but again had a low predictive value ($R^2 = 0.26$, Fig. 5B). Thus, an increasing
334	proportion of <i>Pseudomonadaceae</i> was not associated with a reduction of <i>Ea</i> colonization
335	or abundance. Finally, we tested if Ea abundance was correlated to two different metrics
336	of diversity of the stigma microbiome, Shannon's diversity index and the number of

recovered OTUs. In both cases there was no relationship between *Ea* abundance and
diversity (Fig. 5C &D). Thus, there was no apparent effect of *Ea* abundance on the
overall diversity of the stigma microbial communities.

340

341 Discussion

The apple flower microbiome has been previously recognized as an important 342 factor for plant health and as a potential source of biocontrol agents against plant 343 pathogens (1, 10, 21). Additionally, since the stigma is the major site of pollination and 344 345 supports the growth of a large microbial population, microbial growth on the stigma may also influence pollination (22, 23). Thus, the stigma of a flower is a particularly important 346 plant tissue for studying the microflora that associate with plants. Yet, information 347 concerning the establishment, composition, and development of the microbiome on 348 flower stigmas, as well as the disturbance by the colonization of a phytopathogen, are 349 largely lacking. Previous studies have generally described the flower microbiome from 350 whole flowers or nectar (1, 2, 24). In this study, we present data based on collecting the 351 stigmas from a single flower, increasing both the temporal and spatial resolution at which 352 the microbiome can be characterized. 353

Temporal dynamics are important for understanding the evolution of microbial communities (25-27). Shade et al. (2013) characterized the development of the microbiome on pools of apple flowers under a management program of treating the flowers with the antibiotic streptomycin to control fire blight. They found bacteria in the phyla TM7 and *Deinococcus* were predominant and showed signals of ecological successions with flower age (2). In our study, bacteria within the families

360 Pseudomonadaceae and Enterobacteriaceae were numerically dominant (Fig. 2), which is more congruous with other studies of both the culture-dependent (10) and culture-361 independent characterizations (7) of apple flower microbial populations. This discrepancy 362 is likely due to methodological differences between studies, or PCR biases induced by 363 different PCR primer and blocking pairs. In either case, both studies identified strong 364 signals of temporal patterns in how the microbiome is structured with flower age. The 365 data presented here points to a core microbiome that was gradually established on the 366 stigma predominantly composed of *Pseudomonadaceae* and/or *Enterobacteriaceae* 367 within the phylum Proteobacteria (Fig. 2). The succession of these families was 368 associated with a reduction of other bacterial taxa, such as the Moraxellaceae, 369 *Xanthomonadaceae*, and *Burkholderiaceae*, which were only present in the early stages 370 of bloom (Fig. 2). Concurrently, the later stages of bloom were associated with a lower 371 diversity, supporting the observation that a small number of taxa had monopolized the 372 stigma environment as the flower aged (Fig. 2). These observations are consistent with 373 the stigmas being open to colonization by numerous bacteria in the initial stages of 374 bloom. As the petals open, multiple bacteria carried by wind, dew or insects are 375 376 introduced to the stigma creating a diverse microbial population (9). However, with time those bacteria best adapted to the stigma environment prevail and flourish. This is 377 analogous to other observations, that complex microbial communities inoculated into a 378 379 simple medium converge on a state similarly composed of bacteria in the families Pseudomonadaceae and Enterobacteriaceae, a phenomenon referred to as "emergent 380 simplicity" (28). Thus, there may be conserved rules that govern the assembly of 381 382 microbial communities, with respect to niche adaptation (5, 6), and microbial competition

383 (29). Yet, predicting specific microbiome states of individuals or whether the factors that
384 govern community assembly are deterministic or stochastic still remain significant
385 knowledge gaps.

386 Inoculation of the flowers with *Ea* induced a significant shift in the structure of the microbiome (Fig. 3A). The data indicated that the abundance of Ea did not alter 387 388 microbiome diversity (Fig. 5C &D), but *Ea* abundance may be negatively correlated with the presence of other microbes, particularly within the family Pseudomonadaceae (Fig. 389 5B). Most notably 90% of inoculated flowers inhabited large counts of Ea (> 3.0 x 10^7 390 391 gene copies) and a high relative abundance of sequences identical to the inoculated pathogen (Fig. 4A &D), yet less than half of the flowers (42%) later developed fire blight 392 symptoms. As the stigma sampling for microbiome characterization is necessity 393 destructive, we cannot definitively link the status of the microbiome to disease 394 development. However, these data strongly point to the absolute abundance of Ea to be a 395 poor predictive measurement of disease occurrence. Thus, there must be another 396 bottleneck in fire blight disease development beyond *Ea* growth on the stigma. These 397 could include microclimate (30), antimicrobial compounds or yeasts in the nectar (10, 398 399 24), and host system sensing signals of high bacterial density (31). Yet, the observation of a high carrier rate of a pathogen with low disease incidence is synonymous with 400 reports for many human pathogens. For instance, it is well established that 20-40% of the 401 402 population are asymptomatic persistent carriers of *Staphylococcus aureus*, with a further 70-90% of people considered transient carriers (32). Yet only a minority of people will 403 404 develop diseases such as sepsis, pneumonia, or osteomyelitis caused by S. auerus 405 infection (33, 34). Similar phenomenon are observed for *Cutibacterium acnes* as a

406 contributor to skin acne, which is also a major population in the healthy skin microbiome
407 (35). In this respect, the dynamics of *Ea* growth and fire blight development appear to
408 follow similar dynamics of other diseases, with a high carrier rate, but lower disease
409 incidence.

410

411 Conclusion

412 In this study we show that the apple flower stigma microbiome shares many 413 characteristics with other host microbiome systems. In the initial stages of stigma 414 colonization, the microbiome is temporally dynamic, which eventually settles into an 415 equilibrium community (Fig. 2). Similar dynamics have been found in mammalian 416 infants, fish, and soil (36-38). At the OTU level, individual flowers harbor largely unique microbiomes (Fig. 4C &D), similar to vertebrates and insects (39-41). Despite the 417 diversity of the stigma microbiome at the OTU level (~200 OTUs per sample), the OTUs 418 419 fell into just two predominant families (Pseudomonadaceae and Enterobacteriaceae) that differed in abundance between individual flowers (Fig. 2 &4). This mirrors the 420 observation of the dominance of the Firmicutes and Bacteroidetes in the human intestinal 421 422 tract, the so-called Firmicutes/Bacteroidetes ratio, and its potential influence on 423 characteristics such as obesity (42, 43). Finally, we observe that virtually all flowers 424 exposed to the phytopathogen *E. amylovora* developed large pathogen loads (Fig. 4), yet only a fraction (~42%) of the flowers developed disease, reflecting a common 425 observation that pathogen burden is not always predictive of disease development (31, 426 427 44). Thus, we propose that the stigma microbiome is not only an important system to 428 potentially identify biocontrol agents for impeding the development of fire blight, but

429	represents a model system that can be employed to investigate the rules that govern			
430	microbial community assembly, development, and influence on disease progression and			
431	severity.			
432				
433	Conflict of Interests			
434	The authors declare no conflict of interest.			
435				
436	Acknowledgments			
437	We thank Sali Diallo and Zach Seltzer for their technical support. This study was			
438	supported by the USDA-NIFA-Organic Transitions grant 2017-51106-27001,			
439	Northeastern IPM Center partnership grant and USDA-Specialty Crop Block Grant			
440	(SCBG) through the Department of Agriculture, State of Connecticut.			
441				
442	Supplementary information is available at ISME's website.			
443				
444	Reference:			
445	1. Aleklett K, Hart M, Shade A. The microbial ecology of flowers: an emerging frontier in			
446	phyllosphere research. Botany. 2014;92(4):253-66.			
447	2. Shade A, McManus PS, Handelsman J. Unexpected diversity during community			
448	succession in the apple flower microbiome. MBio. 2013;4(2):e00602-12.			
449	3. Ambika Manirajan B, Ratering S, Rusch V, Schwiertz A, Geissler Plaum R, Cardinale			
450	M, et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and			

451 shows a high degree of diversity and species specificity. Environmental microbiology.

452 2016;18(12):5161-74.

453 4. Tucker CM, Fukami T. Environmental variability counteracts priority effects to facilitate

454 species coexistence: evidence from nectar microbes. Proceedings of the Royal Society B:

- 455 Biological Sciences. 2014;281(1778):20132637.
- 456 5. Pusey PL, Rudell DR, Curry EA, Mattheis JP. Characterization of stigma exudates in
- 457 aqueous extracts from apple and pear flowers. HortScience. 2008;43(5):1471-8.
- 458 6. Stockwell V, McLaughlin R, Henkels M, Loper J, Sugar D, Roberts R. Epiphytic
- 459 colonization of pear stigmas and hypanthia by bacteria during primary bloom. Phytopathology.
- 460 1999;89(12):1162-8.

461 7. Steven B, Huntley RB, Zeng Q. The influence of flower anatomy and apple cultivar on
462 the apple flower phytobiome. Phytobiomes. 2018;2(3):171-9.

8. Norelli JL, Jones AL, Aldwinckle HS. Fire blight management in the twenty-first

464 century: using new technologies that enhance host resistance in apple. Plant Disease.

465 2003;87(7):756-65.

466 9. Thomson S, Wagner A, Gouk S, editors. Rapid epiphytic colonization of apple flowers467 and the role of insects and rain. VIII International Workshop on Fire Blight 489; 1998.

468 10. Pusey PL, Stockwell VO, Mazzola M. Epiphytic bacteria and yeasts on apple blossoms

and their potential as antagonists of Erwinia amylovora. Phytopathology. 2009;99(5):571-81.

470 11. Sinclair L, Osman OA, Bertilsson S, Eiler A. Microbial community composition and

471 diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PloS one.

472 2015;10(2):e0116955.

473 12. Pirc M, Ravnikar M, Tomlinson J, Dreo T. Improved fireblight diagnostics using

474 quantitative real time PCR detection of Erwinia amylovora chromosomal DNA. Plant

475 Pathology. 2009;58(5):872-81.

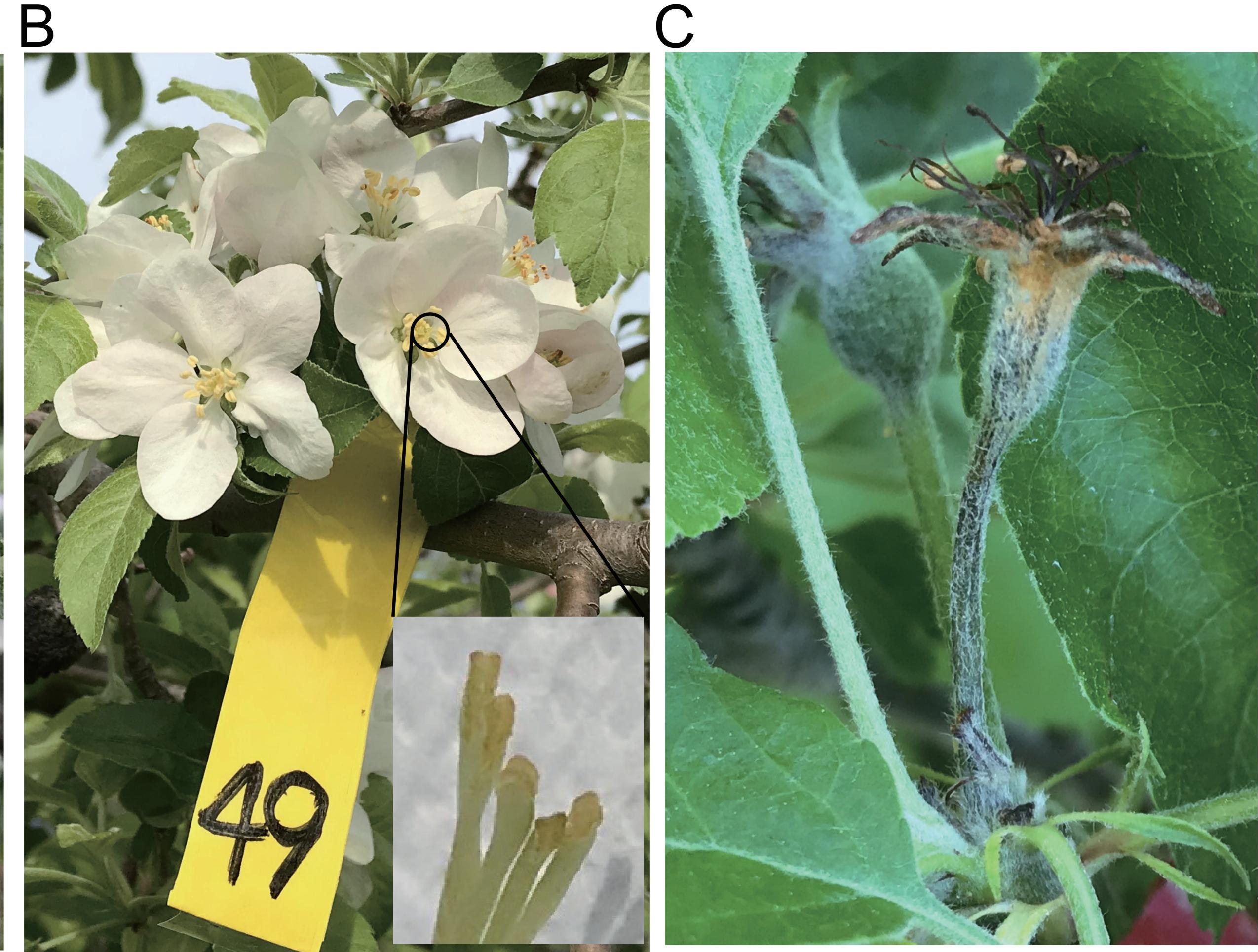
476	13.	Cui Z, Yuan X, Yang C-H, Huntley RB, Sun W, Wang J, et al. Development of a method
477	to moni	tor gene expression in single bacterial cells during the interaction with plants and use to
478	study the expression of the type III secretion system in single cells of Dickeya dadantii in potato.	
479	Frontiers in microbiology. 2018;9:1429.	
480	14.	Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al.
481	Introducing mothur: open-source, platform-independent, community-supported software for	
482	describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537-	
483	41.	
484	15.	Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source
485	tool for metagenomics. PeerJ. 2016;4:e2584.	
486	16.	Westcott SL, Schloss PD. OptiClust, an improved method for assigning amplicon-based
487	sequen	ce data to operational taxonomic units. MSphere. 2017;2(2):e00073-17.
488	17.	Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA
489	riboson	nal RNA gene database project: improved data processing and web-based tools. Nucleic
490	acids research. 2012;41(D1):D590-D6.	
491	18.	Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid
492	assignn	nent of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol.
493	2007;73(16):5261-7.	
494	19.	Dixon P. VEGAN, a package of R functions for community ecology. Journal of
495	Vegetation Science. 2003;14(6):927-30.	
496	20.	Wickham H. ggplot2: elegant graphics for data analysis: Springer; 2016.
497	21.	Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health.
498	Trends in plant science. 2012;17(8):478-86.	
499	22.	Albrecht M, Padrón B, Bartomeus I, Traveset A. Consequences of plant invasions on
500	compar	tmentalization and species' roles in plant-pollinator networks. Proceedings of the Royal
501	Society B: Biological Sciences. 2014;281(1788):20140773.	

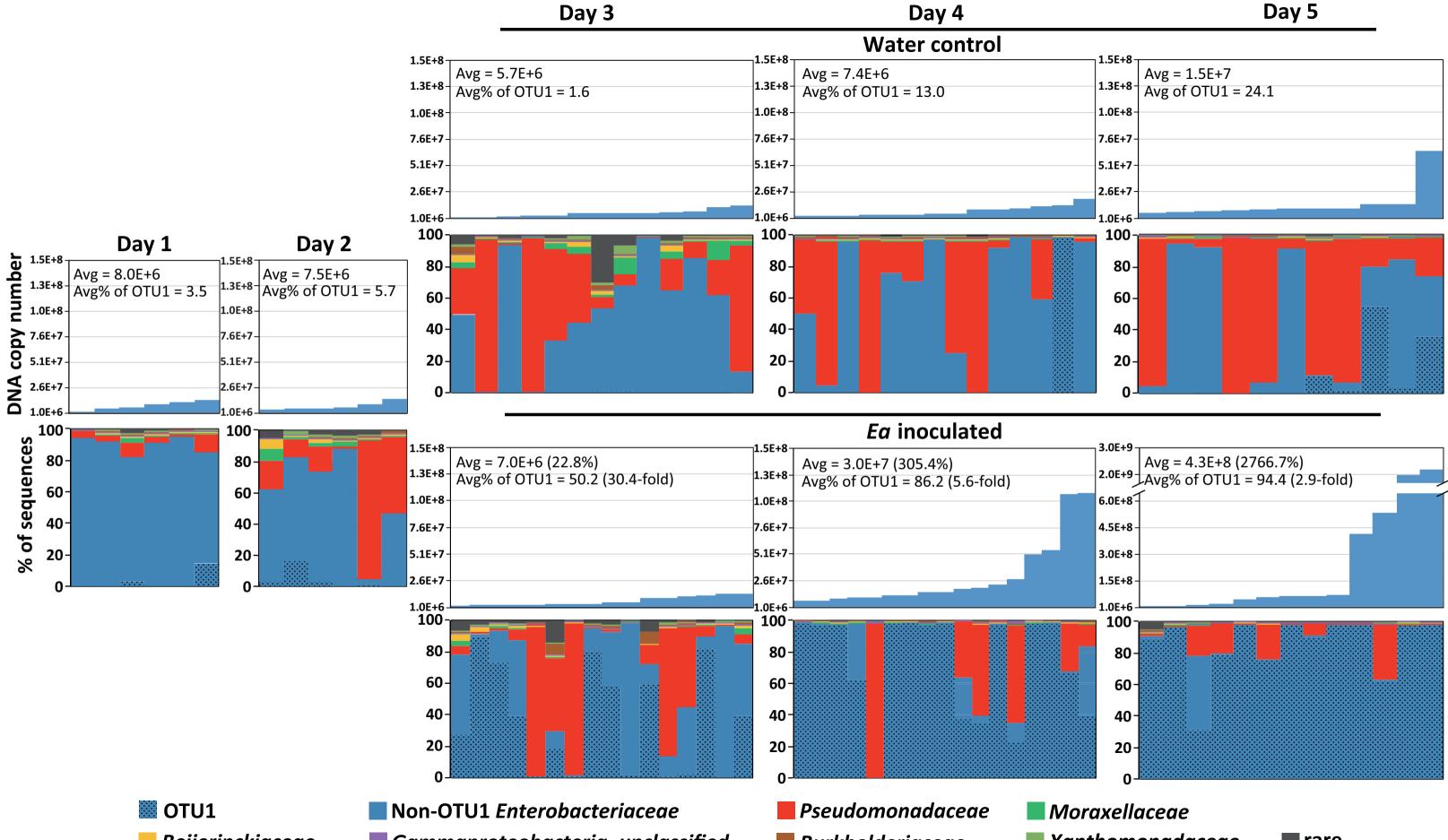
- 502 23. Edlund AF, Swanson R, Preuss D. Pollen and stigma structure and function: the role of
- diversity in pollination. The Plant Cell. 2004;16(suppl 1):S84-S97.
- 504 24. Fridman S, Izhaki I, Gerchman Y, Halpern M. Bacterial communities in floral nectar.
- 505 Environmental Microbiology Reports. 2012;4(1):97-104.
- 506 25. Yuan J, Chaparro JM, Manter DK, Zhang R, Vivanco JM, Shen Q. Roots from distinct
- 507 plant developmental stages are capable of rapidly selecting their own microbiome without the
- 508 influence of environmental and soil edaphic factors. Soil Biology and Biochemistry.
- 509 2015;89:206-9.
- 510 26. Marschner P, Neumann G, Kania A, Weiskopf L, Lieberei R. Spatial and temporal
- 511 dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin
- 512 (Lupinus albus L.). Plant and Soil. 2002;246(2):167-74.
- 513 27. Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. A temporal approach to linking
- aboveground and belowground ecology. Trends in ecology & evolution. 2005;20(11):634-41.
- 515 28. Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al.
- 516 Emergent simplicity in microbial community assembly. Science. 2018;361(6401):469-74.
- 517 29. Pusey P, Stockwell V, Reardon C, Smits T, Duffy B. Antibiosis activity of Pantoea
- agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas.
- 519 Phytopathology. 2011;101(10):1234-41.
- 30. Herrera CM. Microclimate and individual variation in pollinators: flowering plants are
 more than their flowers. Ecology. 1995;76(5):1516-24.
- 522 31. Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy.
- 523 Science. 2012;335(6071):936-41.
- 524 32. Hamdan-Partida A, González-García S, de la Rosa García E, Bustos-Martínez J.
- 525 Community-acquired methicillin-resistant Staphylococcus aureus can persist in the throat.
- 526 International Journal of Medical Microbiology. 2018;308(4):469-75.

- 527 33. Peacock SJ, de Silva I, Lowy FD. What determines nasal carriage of Staphylococcus
- 528 aureus? Trends in microbiology. 2001;9(12):605-10.
- 529 34. Von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of
- 530 Staphylococcus aureus bacteremia. New England Journal of Medicine. 2001;344(1):11-6.
- 531 35. Paetzold B, Willis JR, de Lima JP, Knödlseder N, Brüggemann H, Quist SR, et al. Skin
- 532 microbiome modulation induced by probiotic solutions. Microbiome. 2019;7(1):95.
- 533 36. Trosvik P, Stenseth NC, Rudi K. Convergent temporal dynamics of the human infant gut
- microbiota. The ISME journal. 2010;4(2):151.
- 535 37. Shenhav L, Furman O, Briscoe L, Thompson M, Silverman JD, Mizrahi I, et al.
- 536 Modeling the temporal dynamics of the gut microbial community in adults and infants. PLOS
- 537 Computational Biology. 2019;15(6):e1006960.
- 538 38. Giatsis C, Sipkema D, Smidt H, Verreth J, Verdegem M. The colonization dynamics of
- the gut microbiota in tilapia larvae. PLoS One. 2014;9(7):e103641.
- 540 39. Booijink CC, El Aidy S, Rajilić Stojanović M, Heilig HG, Troost FJ, Smidt H, et al.
- 541 High temporal and inter individual variation detected in the human ileal microbiota.
- 542 Environmental microbiology. 2010;12(12):3213-27.
- 543 40. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, et al. Individual diet
- has sex-dependent effects on vertebrate gut microbiota. Nature communications. 2014;5:4500.
- 54541.Colman DR, Toolson EC, TakacsVesbach C. Do diet and taxonomy influence insect
- 546 gut bacterial communities? Molecular ecology. 2012;21(20):5124-37.
- 547 42. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-
- station associated gut microbiome with increased capacity for energy harvest. nature.
- 549 2006;444(7122):1027.
- 43. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The
- 551 Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC microbiology.
- **552** 2009;9(1):123.

- 44. Råberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance
- to infectious diseases in animals. Science. 2007;318(5851):812-4.

556 Figure legends

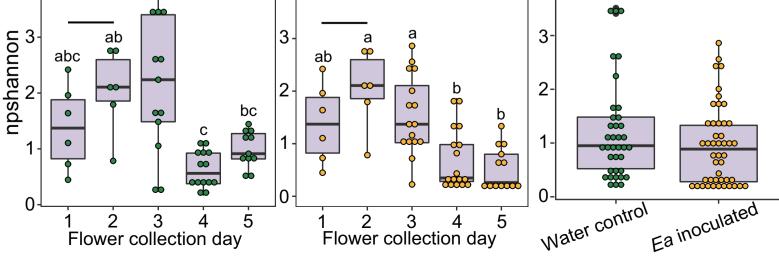

Figure 1. Illustration of apple flower clusters. (**A**) An apple flower cluster at "king bloom". This is when flower clusters of the same age were tagged. (**B**) Once the surrounding flowers opened (one day after king bloom), stigmas of flowers were sampled and named as "day 1". Each sample contains stigmas collected from an individual flower. A close up photo of individual stigmas is shown in the inset. (**C**) An example showing a flower with fire blight disease and a

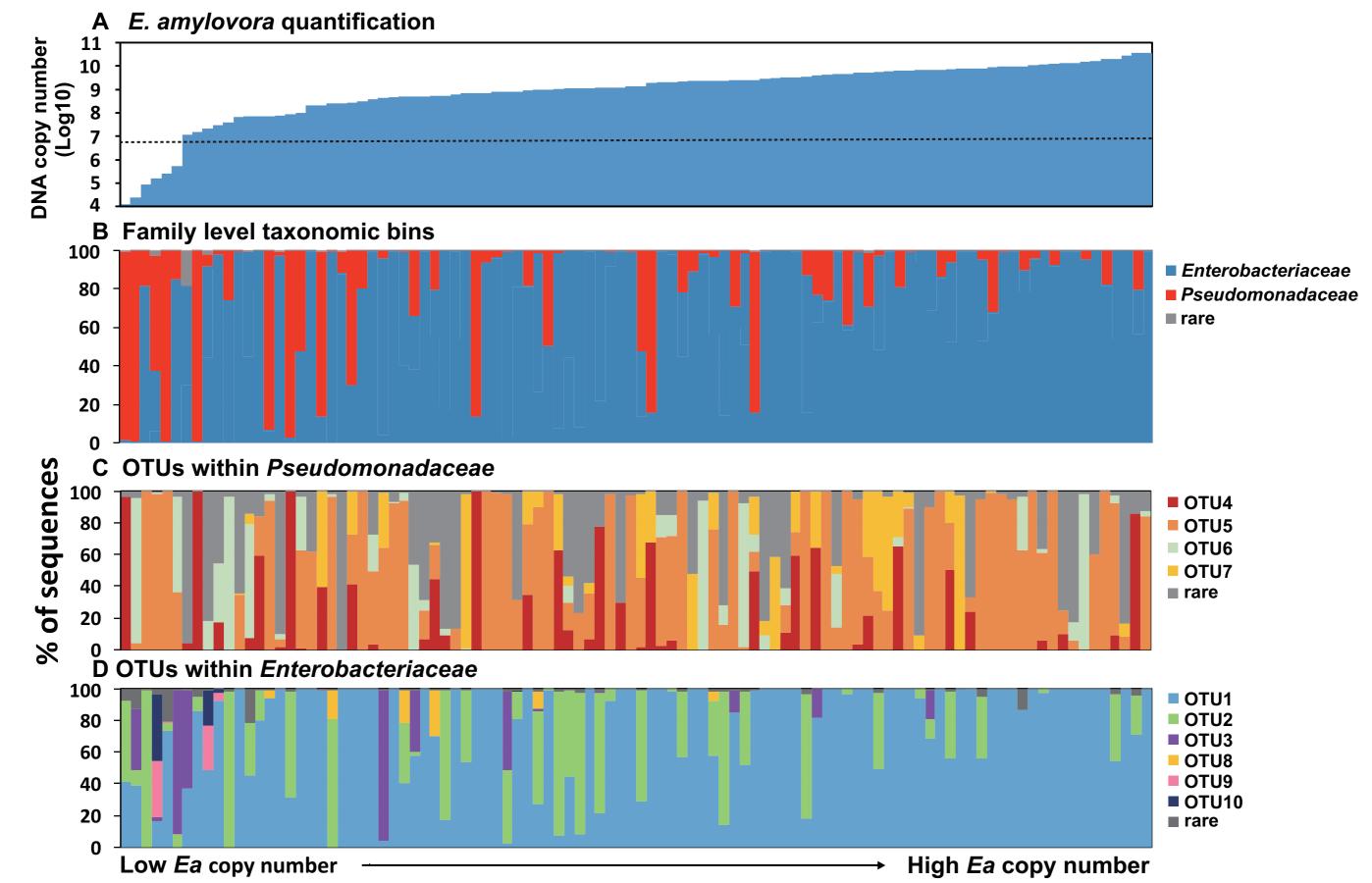

- healthy flower coexisting in the same flower cluster. (Photo courtesy: Q. Zeng)
- **Figure 2.** Temporal dynamics in the predominant bacterial families present on stigmas of individual flowers. Each column represents a single flower. The seven most abundant families
- are displayed, and the category "rare" represents the sum of the remaining taxa. The relative
- abundance of OTU1, identified as sharing 100% sequence identity with *Erwinia amylovora*, is
- 567 indicated by hatched lines. Copy numbers of *E. amylovora amsC* gene in each sample were
- determined by qPCR, and are displayed in the bar graphs above the stacked columns. The
- average DNA copies are indicated as well as the average relative abundance of OTU1. The
- 570 change in *Ea* inoculated compared to water control was labeled in the brackets. Water control:
- 571 flower clusters sprayed with sterile H₂O. *Ea* inoculated: flower clusters sprayed with a bacterial
- 572 suspension of *E. amylovora* strain 110. Day 1-day 5 represent the number of days after petals
- 573 opened during bloom.
- 574 Figure 3. (A) Non-metric Multidimensional Scaling (NMDS) plot displaying relationships of stigma 575 microbial community composition in samples from water control (green) and Ea inoculated 576 samples (gold). Symbols indicate stigma sample collection day. The distances were determined 577 using the Bray-Curtis metric and the stress value of the ordination is indicated. Statistically significant differences in clustering were evaluated via the Adonis permutation test and P-values 578 579 are indicated. (B) Comparative analysis of community diversity (Shannon index) among stigma 580 samples. Changes in diversity over time for the water control samples (left panel) and the Ea 581 inoculated samples (middle panel), respectively. The bar above day 1 and day 2 indicates the 582 pre-treatment samples, which are the same between the panels. Overall diversity of water 583 control samples versus Ea inoculated samples (far right panel). Statistically significant differences were identified by ANOVA comparisons of means, employing a post-hoc Tukey-584 585 Cramer test for multiple comparisons. Boxes labeled with different letters showed statistically
- 586 significant differences (P-value <0.05).
- 587 **Figure 4. (A)** DNA copy numbers of the *Ea* specific gene *amsC* ordered by abundance in 100 588 flowers. The dashed line represents average copy number across the samples. (**B**) Relative
- abundance (%) of the two major bacterial families within *Proteobacteria* in the stigma
- 590 microbiome of 100 flowers. Each column represents an individual flower. The columns are
- ordered by *amsC* copy number to match Fig. 4A. (C) OTUs within the family *Pseudomonadaceae*
- and (**D**) *Enterobacteriaceae.* The category "rare" represents the sum of the remaining taxa.
- 593 **Figure 5.** Correlations of *Ea* abundance as measured by qPCR against metrics of microbiome
- 594 composition. (A) Relative abundance (%) of OTU1 identified as Ea ($R^2 = 0.29$, P = 0.28), (B)
- Relative abundance (%) of sequences within the *Pseudomonadaceae* family ($R^2 = 0.26$, P = 0.00),
- 596 (C) community diversity (Shannon index) ($R^2 = 0.02$, P = 0.19), and (D) Number of recovered

- 597 OTUs ($R^2 = 0.005$, P = 0.49). The dashed line is best fit from a linear model test. RA: relative 598 abundance.
- 599 **Figure S1**. Schematic diagram describing temporal dynamics and spatial distribution sampling.
- 600 Figure S2. Temporal dynamics in the predominant bacterial phyla present on stigmas of
- 601 individual flowers. Each column represents a single flower and are ordered by *Ea* abundance as
- 602 determined by qPCR to match Fig. 2. The five most abundant phyla are displayed, and the
- 603 category "rare" represents the sum of the remaining taxa. Water control: flower clusters
- sprayed with sterile H_2O . *Ea* inoculated: flower clusters sprayed with a bacterial suspension of *E*.
- 605 *amylovora* strain 110.
- **Figure S3.** Relative abundance (%) of the four major bacterial phyla in the stigma microbiome of
- 100 flowers. Each column is an individual flower and are ordered by *amsC* copy number to
- match Fig. 4A. The five most abundant phyla are displayed, and the category "rare" represents
- 609 the sum of the remaining taxa.
- 610 **Figure S4.** Correlational analysis in the relative abundance of OTU5 (most abundant OTU within
- 611 the *Pseudomonadaceae*) against the relative abundance of *Pseudomonadaceae* ($R^2 = 0.26$, P =
- 612 0.00). The dashed line is best fit from a linear model test.

Beijerinckiaceae

Gammaproteobacteria_unclassified


Burkholderiaceae


📕 Xanthomonadaceae

