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Abstract: 17 

Plant microbiomes have important roles in plant health and productivity. However, 18 

despite flowers being directly linked to reproductive outcomes, little is known about the 19 

microbiomes of flowers and their potential interaction with pathogen infection. Here, we 20 

investigated the temporal dynamics and spatial traits of the apple stigma microbiome 21 

when challenged with a phytopathogen Erwinia amylovora, the causal agent of fire blight 22 

disease. We profiled the microbiome from the stigmas of a single flower, greatly 23 

increasing the resolution at which we can characterize shifts in the composition of the 24 

microbiome. Individual flowers harbored unique microbiomes at the OTU level. 25 

However, taxonomic analysis of community succession showed a population gradually 26 

dominated by bacteria within the families Enterobacteriaceae and Pseudomonadaceae. 27 

Flowers inoculated E. amylovora established large populations of the phytopathogen, 28 

with pathogen specific gene counts of >3.0 x 107 in 90% of the flowers. Yet, only 42% of 29 

inoculated flowers later developed fire blight symptoms. This reveals pathogen amount 30 

on the stigma is not sufficient to predict disease outcome. Our data demonstrate that 31 

apple flowers represent an excellent model in which to characterize how plant 32 

microbiomes establish, develop, and interact with biological processes such as disease 33 

progression in an experimentally tractable plant organ.   34 

 35 

 36 

 37 

 38 

39 
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Introduction 40 

Flowers, the reproductive organs of angiosperms, play a critical role in the plant’s 41 

lifecycle. The most important function of flowers is to provide a mechanism for 42 

pollination, the union of sperm contained within pollen, to the ovules contained in the 43 

ovary. The fertilized ovules produce seeds that will later germinate to become the next 44 

generation of plants. Yet, unlike other vegetative organs such as the roots, stems, and 45 

leaves that are present through a large part of the plant’s lifecycle, flowers develop on 46 

mature plants and are typically present for the limited period during bloom. As such, 47 

research characterizing the microbiome of the flower is generally less developed than for 48 

other plant organs.    49 

Flowers of apple (Malus domestica) have been subject to considerable research 50 

attention as they are the direct precursors of apple fruits, one of the most consumed fruits 51 

worldwide (1). The ephemeral nature of apple flowers, with mature flowers from petal 52 

open to petal fall only lasting for 5-10 days in spring, offers a unique environment in 53 

which to study community succession (1, 2). During bloom, petals open up in a relatively 54 

short period of time, typically within one day, which exposes the internal flower parts to 55 

the environment and microorganisms. Several of these internal flower parts exude various 56 

types of nutrient-rich secretions including nectar, stigmatic exudate, and pollen exudate, 57 

for the purpose of attracting pollinators, and inducing the germination of pollen grains (1, 58 

3). These secretions are rich in sugars, amino acids, polysaccharides, and glycoproteins, 59 

which are excellent sources of nutrients for many microorganisms (1, 3, 4). The stigma is 60 

particularly nutrient rich and harbors a larger microbial biomass than other flower parts 61 

(5, 6). Previous research has documented a relatively low diversity of the stigma 62 
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microbiome, although certain lineages predominantly within the families 63 

Enterobacteriaceae and Pseudomonadaceae tend to be dominant (7). 64 

While the stigma provides an excellent niche for microbial colonization, it also 65 

offers an opportunity for pathogen infection. Many pathogens have evolved to take 66 

advantage of this environmental niche, among which one of the most important is the 67 

phytopathogenic bacterium Erwinia amylovora, the causal agent of fire blight. Fire blight 68 

is considered as one of the most devastating diseases of apple, with annual losses and 69 

costs of control estimated at over $100 million in the U.S. (8). During bloom, E. 70 

amylovora (Ea) cells are spread to apple flowers by insects, wind, or rain and multiply on 71 

the stigma surface (9). Ea cells can then migrate from the stigma to the hypanthium and 72 

enter into the host through the natural opening, the nectarthodes. Initial infection occurs 73 

at the ovary tissue and can spread to other parts of the plants through the plant 74 

vasculature system. Fire blight infection can result in significant yield reduction and / or 75 

tree death. In this regard, uncovering environmental or biologic factors that can inhibit 76 

the spread or development of fire blight are of considerable research interest.  77 

One potential source of fire blight control is the natural microbiome of the stigma. 78 

Yet, there exist considerable knowledge gaps concerning how the stigma microbiome is 79 

established and structured. The studies that have considered the stigma microbiome have 80 

generally focused on cataloging microbial diversity through various culture-dependent 81 

and culture-independent methods (7, 10) and few studies have investigated the temporal 82 

development of the microbiome (2). Furthermore, previous research has predominantly 83 

studied the microbiome using pooled flower samples, thus it is uncertain the extent to 84 

which the microbiome differs among individual flowers of the same genetic background. 85 
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Finally, how the colonization of a phytopathogen affects the development, composition, 86 

or structure of the stigma microbiome is essentially unknown.  In this study, we examined 87 

the temporal development of the stigma microbiome in the presence and absence of Ea to 88 

investigate how this organism influences the development of the normal microflora of the 89 

apple flower stigma. Additionally, we characterized the variability of the microbiome 90 

amongst 100 individual stigmas inoculated with Ea to assess if certain microbiome 91 

members could regulate Ea colonization and growth on apple stigmas.   92 

 93 

Materials and methods 94 

Sampling site 95 

To limit the effects of host and environmental conditions, we used flowers from 96 

nine trees of the same apple cultivar ‘Early Macoun’ (Malus domestica NY75414-1) 97 

planted at the same geographical location (Lockwood Farm, Hamden, Connecticut, 98 

41.406 N 72.906 W). All trees were the same age and under the same maintenance 99 

program. Weather data (temperature and humidity) prior to and during bloom (from April 100 

29th to May 28th 2018) is summarized in Table S1. 101 

 102 

Experiment design and stigma collection 103 

Labeling flower clusters  104 

On May 6th 2018, 40 flower clusters that were in ‘King bloom’ stage (central 105 

flower opened but the four side flowers still closed, see Fig. 1A) were labeled with plastic 106 

tags. The day after the flower clusters were tagged, we identified clusters in which the 107 
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side flowers were open and flower clusters with unopened flowers were not used. In this 108 

manner, only side flowers of roughly the same age were used in subsequent experiments.  109 

 110 

Sampling for temporal alterations of the stigma microbiome 111 

On May 7th 2018, ten of the 40 tagged flower clusters were selected, and the 112 

stigmas of an individual flower were harvested with sterile scissors (see Fig. 1B) and 113 

placed in a sterile 1.5 ml microcentrifuge tube. Collected stigma samples were kept in 114 

liquid nitrogen and transported to the laboratory for immediate processing. These samples 115 

were labeled as day 1 samples. The next day, another 10 flowers were selected for DNA 116 

extraction as described above (as day 2 samples). Immediately after sample collection on 117 

day 2, Ea was inoculated onto 20 tagged flower clusters and labeled as Ea treated. The 118 

inoculum consisted of an overnight culture of E. amylovora 110 grown in lysogeny broth 119 

(LB) diluted to a final concentration of 1 x 106 CFU ml-1 in sterile water. The diluted 120 

culture was spray-inoculated to the open flowers using a handheld sprayer to ensure 121 

every flower was evenly exposed. Another twenty flower clusters were sprayed with 122 

sterile water as water controls. On each subsequent day (day 3 to day 5), stigmas from 20 123 

Ea-treated and 20 water-treated flowers were collected and processed according to the 124 

same method described above.       125 

 126 

Sampling for spatial patterns in the stigma microbiome 127 

To investigate a larger spatial sampling of Ea inoculated flowers, we performed a 128 

parallel experiment, and tagged an additional 150 flower clusters to ensure flowers used 129 

in the experiment were the same age as the rest of the experimental set. As described for 130 
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the temporal sampling, the flower clusters were individually spray-inoculated with Ea (1 131 

x 106 CFU ml-1) on day 2, and stigma samples of individual flowers were harvested on 132 

day 4. A total of 100 flowers of the same developmental stage were harvested for DNA 133 

extraction, while the remaining flowers of each flower cluster were left on the tree to 134 

monitor disease development. Blossom blight symptoms, black withering and dying of 135 

the remaining flowers (Fig. 1C), were evaluated two weeks after inoculation on May 24th, 136 

2018. An illustrated scheme of both temporal and spatial sampling is shown in Fig. S1. 137 

 138 

DNA extraction and sequencing of bacterial 16S rRNA genes 139 

For extraction of bacterial DNA, 200 µl of 0.5x phosphate-buffered saline (PBS) 140 

was added to each microcentrifuge tube containing stigma samples. Epiphytic microbes 141 

were removed from the stigma by a 5-minute water bath sonication followed by a 30-142 

second vortex. DNA was extracted from the 200 µl of bacterial suspension by using the 143 

DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) according to manufacturer’s 144 

instructions. The amount of template DNA added in the PCR reaction (25 µl) ranged 145 

from 10.0 ng to 20.0 ng as determined by Nanodrop2000 (Thermo Fisher Scientific, 146 

Waltham, MA). DNA was amplified by using the 515f/806r primer set, which targets the 147 

V4 region of the bacterial 16S rRNA gene, with both primers containing a 6-bp barcode 148 

unique to each sample (11). PNA clamps were added to the PCR mixture at a 149 

concentration of 0.75 µM to block the PCR amplification of apple plastid and 150 

mitochondrial sequences (7). PCR conditions were performed as described in Steven et 151 

al. (2018) (7). Successful PCR amplifications at the correct amplicon size were confirmed 152 

by gel electrophoresis. The PCR products were purified and normalized by using 153 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.956078doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956078
http://creativecommons.org/licenses/by/4.0/


8 
 

SequalPrep normalization plate kit (Invitrogen, CA, USA). Pyrosequencing was 154 

conducted on an Illumina MiSeq v2.2.0 platform through services provided by the 155 

UConn MARS facility. 156 

 157 

Quantitative PCR for enumeration of E. amylovora 158 

The abundance of Ea in each collected stigma sample was quantified by 159 

determining the cycle threshold (CT) value of the Ea specific gene amsC (12). 160 

Quantitative PCR (qPCR) was performed using a SsoAdvanced universal SYBR Green 161 

supermix (Bio-Rad, CA, USA), as described previously (13). The CT values for a 1/10 162 

dilution series of known amsC gene copies of E. amylovora chromosomal DNA was 163 

determined to make a standard curve for calculation of copy numbers in stigma samples.  164 

 165 

Bioinformatics and statistical analysis. 166 

 Illumina sequencing reads were assembled into contigs and quality screened by 167 

using mothur v1.39.5 as previously described (14). Sequences that were at least 253 bp in 168 

length, contained no ambiguous bases, and no homopolymers of more than 8 bp were 169 

used in the analysis. Chimeric sequences were identified by using the VSEARCH as 170 

implemented in mothur (15), and all potentially chimeric sequences were removed. To 171 

maintain a similar sampling effort between samples, samples with less than 10,000 172 

sequences per sample were also removed. The resulting sequence counts per sample are 173 

presented in Table S2. Negative control (PCR using sterile H2O as a template) was also 174 

included in both sequence datasets. The sequences data are deposited in the Sequence 175 

Read Archive under accession number PRJNA597302.  176 
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Sampling effort was normalized to the depth of the smallest sample and 177 

operational taxonomic units (OTUs) were defined at 100% sequence identity, employing 178 

the OptiClust algorithm in mothur (16). Taxonomic classification of sequences was 179 

performed with the Ribosomal Database Project (RDP) classifier against the SILVA v132 180 

reference alignment in mothur (17, 18). Non-metric multidimensional scaling (NMDS) 181 

was used to visualize the pairwise distances among samples with Bray-Curtis distances in 182 

the Vegan package in R (19). Descriptive diversity statistics were calculated in mothur. 183 

The correlation between alpha diversity determined with the non-parametric Shannon’s 184 

Diversity Index and E. amylovora abundance in each sample was generated with the 185 

ggplot2.0 package for R (20). Statistically significant differences in diversity statistics 186 

were identified with a one-way ANOVA and Tukey-Kramer post hoc test in the agricolae 187 

package in R.  188 

 189 

Results 190 

Temporal patterns in stigma microbial community assembly 191 

We characterized the microbial community on stigmas collected from individual 192 

flowers, over a period of 5 days after petal opening, to investigate the temporal dynamics 193 

in community assembly and microbial succession on the stigma. Meanwhile, we included 194 

Ea inoculated stigmas to compare community succession in the presence of a 195 

phytopathogen. A total of 2 930 231 high-quality filtered sequences were obtained from 196 

96 samples with the number of sequences ranging from 10 210 to 97 668 (Table S2). 197 

These sequences clustered into 46 809 OTUs (mean 222 per sample) at 100% sequence 198 

similarity. 199 
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At the phylum level, 24 phyla were detected. In both the water control and Ea 200 

inoculated datasets, the dominant phylum was Proteobacteria (94.3% of total sequences), 201 

followed by Cyanobacteria (3.6%), Actinobacteria (0.8%), Firmicutes (0.2%) and 202 

Bacteroidetes (0.2%). A temporal pattern was observed, in that phyla outside the 203 

Proteobacteria were most abundant in the early time points (days 1 and 2) accounting for 204 

15% of sequences and decreasing to <1% at later time points (Fig. S2).    205 

Given the dominance of Proteobacteria, these sequences were classified to deeper 206 

taxonomic ranks. Sixty-seven families were identified, with the majority belonging to the 207 

Enterobacteriaceae (average 70.0%, blue bars) and Pseudomonadaceae (26.2%, red bars 208 

in Fig. 2), with small contributions from Moraxellaceae (0.6%), Beijerinckiaceae (0.2%), 209 

unclassified Gammaproteobacteria (0.3%), Burkholderiaceae (0.3%) and 210 

Xanthomonadaceae (0.2%) (Fig. 2). Of note, both Pseudomonadaceae and 211 

Enterobacteriaceae gradually accounted for a larger proportion of the microbiome as 212 

time progressed in both water control and Ea inoculated datasets (Fig. 2). Yet, the 213 

average proportion of Enterobacteriaceae (the family to which Ea belongs) was higher in 214 

the Ea treated flowers compared to water control (89.7% versus 45.6% at day 5) (Fig. 2). 215 

 216 

Abundance of Ea on individual flowers 217 

 We employed two methods to assess the abundance of Ea in the datasets, relative 218 

abundance of Ea sequences in the dataset and Ea copy numbers quantified by qPCR of an 219 

Ea specific gene. First, we identified an OTU in the dataset that had 100% sequence 220 

identity with the inoculated Ea strain (OTU1; Table S3). OTU1 was detected every day 221 

but not in all samples. On days 1 and 2, prior to the stigma treatments, OTU1 made up an 222 
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average of 4% and 6% of the microbiome sequences, respectively (filled bars in Fig. 2). 223 

In the control water sprayed stigmas the proportion of OTU1 gradually increased from an 224 

average of 2% of sequences on day 3 to 13% on day 4, finally making up an average of 225 

24% of sequence on day 5. In contrast, the populations of OTU1 were larger in the Ea 226 

treated stigmas. By day 3 OTU1 accounted for an average of 50% of the sequence 227 

libraries, increasing to 86% on day 4 and ending at 94% of sequences on day 5, a 2.9-fold 228 

increase in comparison to the controls (Fig. 2).   229 

In addition, qPCR was performed to quantify the genome copies of Ea in each 230 

stigma sample. As was observed for OTU1, Ea was identified across the dataset. In the 231 

pretreated stigmas (days 1 and 2) the average copy number of Ea DNA were ~7.7 x 106 232 

(Fig. 2). In the control datasets, the DNA copy number were similar on days 3 and 4 at 233 

5.7 x 106 and 7.4 x 106, respectively, and increased to 1.5 x 107 on day 5 (Fig. 2). In the 234 

Ea inoculated flowers the copy number of Ea on day 3 (one day after inoculation) was 235 

similar to the control flowers, suggesting Ea had not yet established strong growth on the 236 

stigma (Fig. 2). However, by day 4 the average abundance of Ea on the treated stigmas 237 

reached 3.0 x 107, a 300% increase compared to the controls, and increased further on 238 

day 5 reaching an average of 4.3 x 108, a 28-fold increase in comparison to the controls 239 

(Fig. 2). Taken together, these data suggest that Ea may be naturally present in the 240 

orchard, as it was commonly detected in the pretreated and control stigmas. Yet, the Ea 241 

inoculation clearly benefited Ea colonization, which was readily apparent by day 5, three 242 

days after the inoculation.   243 

  244 

Effects of Ea inoculation on community composition and diversity 245 
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To test if Ea treatment had a significant effect on microbiome composition, we 246 

visualized the Bray-Curtis distances among samples of each dataset using NMDS. The 247 

samples clearly clustered due to Ea inoculation, which was confirmed by permutational 248 

multivariate ANOVA (P = 0.001) (Fig. 3A). Additionally, samples were also clustered 249 

based on days post-bloom (P = 0.001) (Fig. 3A). Diversity of the stigma communities 250 

was assessed by calculating the Shannon’s Diversity index. For both control and Ea 251 

inoculated datasets there was a trend towards increased diversity in the early time points, 252 

which then decreased by days 4 and 5 (Fig. 3B). When the control and Ea inoculated 253 

datasets were combined to test the overall effect of pathogen presence on microbial 254 

diversity, there was no significant difference in diversity due to Ea treatment (p=0.109; 255 

Fig. 3B).   256 

Collectively, these findings indicate that taxonomically diverse microbial 257 

populations initially colonize the stigma of the apple flower. Gradually, a community 258 

dominated by representatives of the Pseudomonadaceae and Enterobacteriaceae families 259 

outcompetes these populations and become the predominant community members (Fig. 260 

2), which results in an overall decrease in diversity of the stigma microbial community 261 

(Fig. 3B &C). In the face of Ea challenge there is a significant shift in the composition of 262 

the microbial community (Fig. 3A). Yet, there is no significant effect on the diversity of 263 

the community as a whole in comparison to the control flowers (Fig. 3B).    264 

 265 

The influence of Ea inoculation on 100 spatially separated flower clusters 266 

The data for the temporal dynamics were based on a limited number of samples. 267 

To further explore the interaction of microbes when colonized by a phytopathogen, we 268 
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expanded the analysis to 100 spatially separated flower clusters (approximately 400 269 

individual flowers) inoculated with Ea. Flowers were collected from the clusters for 270 

microbiome characterization, while the remainder of the flowers were left on the tree to 271 

monitor the rate of disease development. Three weeks after Ea inoculation, only 42.4% of 272 

the flowers developed fire blight symptoms. Given that the genetic background of the 273 

host, flower age, and pathogen exposure were all identical between the inoculated 274 

flowers, and the trials were all performed in the same orchard and thus under the same 275 

environmental conditions, these observations suggest that none of these factors are 276 

sufficient to explain or predict disease occurrence at the single flower level.  277 

 278 

Genome copies of Erwinia amylovora 279 

We measured the amsC copy number from 100 individual flowers by qPCR. The 280 

copy number varied from 1.3 x 104 to 3.7 x 1010. The average was 4.4 x 109 (dashed line, 281 

Fig. 4A) and the majority (90%) of stigmas harbored > 3.0 x 107 gene copies of Ea, 282 

which is similar to the average of day 4 inoculated flowers in the temporal dynamics 283 

study. These results indicate most of the stigmas harbored large populations of Ea, 284 

despite only a proportion of flowers later developing fire blight symptoms.  285 

 286 

Microbiome composition  287 

A total of 4 176 840 high-quality 16S rRNA gene sequences were recovered from 288 

the 100 flowers, with the number of sequences ranging from 19 297 to 80 130 per 289 

sample. After normalizing sampling to the smallest dataset, clustering produced 27 843 290 
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OTUs (mean 282 per sample) at 100% sequence similarity. The detailed information for 291 

each dataset is presented in Table S2. 292 

 At the phylum level, 22 phyla were identified among the sequences. The most 293 

abundant, Proteobacteria, ranged from 96.8% to 100% of recovered sequences, followed 294 

by Actinobacteria (0-0.5%), Cyanobacteria (0-1.6%) and Firmicutes (0-1.5%) (Fig. S3). 295 

Within the Proteobacteria, 59 families were identified and Pseudomonadaceae (red bar 296 

in Fig. 4B) and Enterobacteriaceae (blue bar) were predominant (> 81.5% in each 297 

sample). Notably, the proportion of Pseudomonadaceae and Enterobacteriaceae 298 

significantly varied among the 100 samples, from 0.02% to 99.20% and from 0.45% to 299 

99.97%, respectively (Fig. 4B).  300 

 301 

OTUs within the Pseudomonadaceae and Enterobacteriaceae 302 

Sequences within Pseudomonadaceae and Enterobacteriaceae were classified to 303 

deeper taxonomic ranks to investigate if particular OTUs were associated with Ea 304 

abundance. Of the 10 most abundant OTUs in the dataset, four belonged to the 305 

Pseudomonadaceae and six to the Enterobacteriaceae, representing five different genera 306 

(Table S3). By in large each flower harbored a unique microbiome composition, with 307 

widely varying abundance of the predominant OTUs among the samples (Fig. 4C &D).  308 

Furthermore, there was no observable pattern in specific OTUs being co-abundant in the 309 

samples with a high relative abundance of Pseudomonadaceae (Fig. 4B &C). For 310 

example, when we tested the correlation between the relative abundance of the most 311 

abundant Pseudomonadaceae-related OTU (OTU5; Table S3) and the relative abundance 312 

of Pseudomonadaceae in the dataset, the result showed no relationship (R2 = 0.26, Fig. 313 
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S4). In other words, it was not a specific OTU that accounted for the high prevalence of 314 

the family Pseudomonadaceae. In contrast, OTU1 (100% sequence identity to E. 315 

amylovora; Table S3) tended to be highly abundant in samples with elevated counts of Ea 316 

(Fig. 4A &D). However, in those samples with low Ea counts a particular 317 

Enterobacteriaceae OTU was not predominant, suggesting that a specific OTU was not 318 

outcompeting Ea in those samples in which Ea was not well established.  319 

 320 

Correlates of Ea abundance to metrics of the stigma microbiome  321 

 To test if there were any aspects in the community data that were predictive of Ea 322 

abundance we performed four correlational analyses.  First, the most abundant OTU in 323 

the dataset (OTU1) shared 100% sequence identity with the inoculated Ea strain (Table 324 

S3). Therefore, we tested the correlation between the relative abundance of OTU1 and 325 

the amsC gene copy number of Ea, and thereby testing if the relative abundance of OTU1 326 

was correlated to Ea absolute abundance (Fig. 5A). The result showed there was a 327 

positive relationship between the two metrics, with an R2 = 0.29, suggesting a 328 

relationship but low explanatory power.  Second, as shown in Fig. 4B, many of the 329 

stigmas maintained a large proportion of Pseudomonadaceae populations. We 330 

investigated if there was a predictive relationship between the relative abundance of the 331 

Pseudomonadaceae and the copy number of Ea. The relationship displayed in a negative 332 

pattern but again had a low predictive value (R2 = 0.26, Fig. 5B). Thus, an increasing 333 

proportion of Pseudomonadaceae was not associated with a reduction of Ea colonization 334 

or abundance. Finally, we tested if Ea abundance was correlated to two different metrics 335 

of diversity of the stigma microbiome, Shannon’s diversity index and the number of 336 
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recovered OTUs. In both cases there was no relationship between Ea abundance and 337 

diversity (Fig. 5C &D).  Thus, there was no apparent effect of Ea abundance on the 338 

overall diversity of the stigma microbial communities.  339 

 340 

Discussion 341 

The apple flower microbiome has been previously recognized as an important 342 

factor for plant health and as a potential source of biocontrol agents against plant 343 

pathogens (1, 10, 21). Additionally, since the stigma is the major site of pollination and 344 

supports the growth of a large microbial population, microbial growth on the stigma may 345 

also influence pollination (22, 23). Thus, the stigma of a flower is a particularly important 346 

plant tissue for studying the microflora that associate with plants. Yet, information 347 

concerning the establishment, composition, and development of the microbiome on 348 

flower stigmas, as well as the disturbance by the colonization of a phytopathogen, are 349 

largely lacking.  Previous studies have generally described the flower microbiome from 350 

whole flowers or nectar (1, 2, 24). In this study, we present data based on collecting the 351 

stigmas from a single flower, increasing both the temporal and spatial resolution at which 352 

the microbiome can be characterized.  353 

 Temporal dynamics are important for understanding the evolution of microbial 354 

communities (25-27). Shade et al. (2013) characterized the development of the 355 

microbiome on pools of apple flowers under a management program of treating the 356 

flowers with the antibiotic streptomycin to control fire blight. They found bacteria in the 357 

phyla TM7 and Deinococcus were predominant and showed signals of ecological 358 

successions with flower age (2). In our study, bacteria within the families 359 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.956078doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956078
http://creativecommons.org/licenses/by/4.0/


17 
 

Pseudomonadaceae and Enterobacteriaceae were numerically dominant (Fig. 2), which 360 

is more congruous with other studies of both the culture-dependent (10) and culture-361 

independent characterizations (7) of apple flower microbial populations. This discrepancy 362 

is likely due to methodological differences between studies, or PCR biases induced by 363 

different PCR primer and blocking pairs. In either case, both studies identified strong 364 

signals of temporal patterns in how the microbiome is structured with flower age. The 365 

data presented here points to a core microbiome that was gradually established on the 366 

stigma predominantly composed of Pseudomonadaceae and/or Enterobacteriaceae 367 

within the phylum Proteobacteria (Fig. 2). The succession of these families was 368 

associated with a reduction of other bacterial taxa, such as the Moraxellaceae, 369 

Xanthomonadaceae, and Burkholderiaceae, which were only present in the early stages 370 

of bloom (Fig. 2). Concurrently, the later stages of bloom were associated with a lower 371 

diversity, supporting the observation that a small number of taxa had monopolized the 372 

stigma environment as the flower aged (Fig. 2). These observations are consistent with 373 

the stigmas being open to colonization by numerous bacteria in the initial stages of 374 

bloom. As the petals open, multiple bacteria carried by wind, dew or insects are 375 

introduced to the stigma creating a diverse microbial population (9). However, with time 376 

those bacteria best adapted to the stigma environment prevail and flourish. This is 377 

analogous to other observations, that complex microbial communities inoculated into a 378 

simple medium converge on a state similarly composed of bacteria in the families 379 

Pseudomonadaceae and Enterobacteriaceae, a phenomenon referred to as “emergent 380 

simplicity” (28). Thus, there may be conserved rules that govern the assembly of 381 

microbial communities, with respect to niche adaptation (5, 6), and microbial competition 382 
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(29). Yet, predicting specific microbiome states of individuals or whether the factors that 383 

govern community assembly are deterministic or stochastic still remain significant 384 

knowledge gaps.  385 

Inoculation of the flowers with Ea induced a significant shift in the structure of 386 

the microbiome (Fig. 3A). The data indicated that the abundance of Ea did not alter 387 

microbiome diversity (Fig. 5C &D), but Ea abundance may be negatively correlated with 388 

the presence of other microbes, particularly within the family Pseudomonadaceae (Fig. 389 

5B). Most notably 90% of inoculated flowers inhabited large counts of Ea (> 3.0 x 107 390 

gene copies) and a high relative abundance of sequences identical to the inoculated 391 

pathogen (Fig. 4A &D), yet less than half of the flowers (42%) later developed fire blight 392 

symptoms. As the stigma sampling for microbiome characterization is necessity 393 

destructive, we cannot definitively link the status of the microbiome to disease 394 

development. However, these data strongly point to the absolute abundance of Ea to be a 395 

poor predictive measurement of disease occurrence. Thus, there must be another 396 

bottleneck in fire blight disease development beyond Ea growth on the stigma. These 397 

could include microclimate (30), antimicrobial compounds or yeasts in the nectar (10, 398 

24), and host system sensing signals of high bacterial density (31). Yet, the observation 399 

of a high carrier rate of a pathogen with low disease incidence is synonymous with 400 

reports for many human pathogens. For instance, it is well established that 20-40% of the 401 

population are asymptomatic persistent carriers of Staphylococcus aureus, with a further 402 

70-90% of people considered transient carriers (32). Yet only a minority of people will 403 

develop diseases such as sepsis, pneumonia, or osteomyelitis caused by S. auerus 404 

infection (33, 34). Similar phenomenon are observed for Cutibacterium acnes as a 405 
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contributor to skin acne, which is also a major population in the healthy skin microbiome 406 

(35). In this respect, the dynamics of Ea growth and fire blight development appear to 407 

follow similar dynamics of other diseases, with a high carrier rate, but lower disease 408 

incidence. 409 

 410 

Conclusion 411 

In this study we show that the apple flower stigma microbiome shares many 412 

characteristics with other host microbiome systems. In the initial stages of stigma 413 

colonization, the microbiome is temporally dynamic, which eventually settles into an 414 

equilibrium community (Fig. 2). Similar dynamics have been found in mammalian 415 

infants, fish, and soil (36-38). At the OTU level, individual flowers harbor largely unique 416 

microbiomes (Fig. 4C &D), similar to vertebrates and insects (39-41). Despite the 417 

diversity of the stigma microbiome at the OTU level (~200 OTUs per sample), the OTUs 418 

fell into just two predominant families (Pseudomonadaceae and Enterobacteriaceae) that 419 

differed in abundance between individual flowers (Fig. 2 &4). This mirrors the 420 

observation of the dominance of the Firmicutes and Bacteroidetes in the human intestinal 421 

tract, the so-called Firmicutes/Bacteroidetes ratio, and its potential influence on 422 

characteristics such as obesity (42, 43). Finally, we observe that virtually all flowers 423 

exposed to the phytopathogen E. amylovora developed large pathogen loads (Fig. 4), yet 424 

only a fraction (~42%) of the flowers developed disease, reflecting a common 425 

observation that pathogen burden is not always predictive of disease development (31, 426 

44).  Thus, we propose that the stigma microbiome is not only an important system to 427 

potentially identify biocontrol agents for impeding the development of fire blight, but 428 
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represents a model system that can be employed to investigate the rules that govern 429 

microbial community assembly, development, and influence on disease progression and 430 

severity.  431 
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Figure legends 556 

Figure 1. Illustration of apple flower clusters. (A) An apple flower cluster at “king bloom”. This is 557 
when flower clusters of the same age were tagged. (B) Once the surrounding flowers opened 558 
(one day after king bloom), stigmas of flowers were sampled and named as “day 1”. Each 559 
sample contains stigmas collected from an individual flower. A close up photo of individual 560 
stigmas is shown in the inset. (C) An example showing a flower with fire blight disease and a 561 
healthy flower coexisting in the same flower cluster. (Photo courtesy: Q. Zeng) 562 

Figure 2. Temporal dynamics in the predominant bacterial families present on stigmas of 563 
individual flowers.  Each column represents a single flower. The seven most abundant families 564 
are displayed, and the category “rare” represents the sum of the remaining taxa. The relative 565 
abundance of OTU1, identified as sharing 100% sequence identity with Erwinia amylovora, is 566 
indicated by hatched lines. Copy numbers of E. amylovora amsC gene in each sample were 567 
determined by qPCR, and are displayed in the bar graphs above the stacked columns. The 568 
average DNA copies are indicated as well as the average relative abundance of OTU1. The 569 
change in Ea inoculated compared to water control was labeled in the brackets. Water control: 570 
flower clusters sprayed with sterile H2O. Ea inoculated: flower clusters sprayed with a bacterial 571 
suspension of E. amylovora strain 110. Day 1-day 5 represent the number of days after petals 572 
opened during bloom. 573 

Figure 3. (A) Non-metric Multidimensional Scaling (NMDS) plot displaying relationships of stigma 574 
microbial community composition in samples from water control (green) and Ea inoculated 575 
samples (gold). Symbols indicate stigma sample collection day. The distances were determined 576 
using the Bray-Curtis metric and the stress value of the ordination is indicated. Statistically 577 
significant differences in clustering were evaluated via the Adonis permutation test and P-values 578 
are indicated. (B) Comparative analysis of community diversity (Shannon index) among stigma 579 
samples. Changes in diversity over time for the water control samples (left panel) and the Ea 580 
inoculated samples (middle panel), respectively. The bar above day 1 and day 2 indicates the 581 
pre-treatment samples, which are the same between the panels. Overall diversity of water 582 
control samples versus Ea inoculated samples (far right panel). Statistically significant 583 
differences were identified by ANOVA comparisons of means, employing a post-hoc Tukey-584 
Cramer test for multiple comparisons. Boxes labeled with different letters showed statistically 585 
significant differences (P-value <0.05).    586 

Figure 4. (A) DNA copy numbers of the Ea specific gene amsC ordered by abundance in 100 587 
flowers. The dashed line represents average copy number across the samples. (B) Relative 588 
abundance (%) of the two major bacterial families within Proteobacteria in the stigma 589 
microbiome of 100 flowers. Each column represents an individual flower. The columns are 590 
ordered by amsC copy number to match Fig. 4A. (C) OTUs within the family Pseudomonadaceae 591 
and (D) Enterobacteriaceae. The category “rare” represents the sum of the remaining taxa. 592 

Figure 5. Correlations of Ea abundance as measured by qPCR against metrics of microbiome 593 
composition. (A) Relative abundance (%) of OTU1 identified as Ea (R2 = 0.29, P = 0.28), (B) 594 
Relative abundance (%) of sequences within the Pseudomonadaceae family (R2 = 0.26, P = 0.00), 595 
(C) community diversity (Shannon index) (R2 = 0.02, P = 0.19), and (D) Number of recovered 596 
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OTUs (R2 = 0.005, P = 0.49). The dashed line is best fit from a linear model test. RA: relative 597 
abundance. 598 

Figure S1. Schematic diagram describing temporal dynamics and spatial distribution sampling. 599 

Figure S2. Temporal dynamics in the predominant bacterial phyla present on stigmas of 600 
individual flowers.  Each column represents a single flower and are ordered by Ea abundance as 601 
determined by qPCR to match Fig. 2. The five most abundant phyla are displayed, and the 602 
category “rare” represents the sum of the remaining taxa. Water control: flower clusters 603 
sprayed with sterile H2O. Ea inoculated: flower clusters sprayed with a bacterial suspension of E. 604 
amylovora strain 110. 605 

Figure S3. Relative abundance (%) of the four major bacterial phyla in the stigma microbiome of 606 
100 flowers. Each column is an individual flower and are ordered by amsC copy number to 607 
match Fig. 4A. The five most abundant phyla are displayed, and the category “rare” represents 608 
the sum of the remaining taxa.  609 

Figure S4. Correlational analysis in the relative abundance of OTU5 (most abundant OTU within 610 
the Pseudomonadaceae) against the relative abundance of Pseudomonadaceae (R2 = 0.26, P = 611 
0.00). The dashed line is best fit from a linear model test.  612 

 613 
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