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Abstract  22	

Pathology differentiation of renal cancer types is challenging due to tissue similarities or 23	

overlapping histological features of various tumor (sub)types. As assessment is often 24	

manually conducted outcomes can be prone to human error and therefore require high-level 25	

expertise and experience. Mass spectrometry can provide detailed histo-molecular 26	

information on tissue and is becoming increasingly popular in clinical settings. Spatially 27	

resolving technologies such as mass spectrometry imaging and quantitative microproteomics 28	

profiling in combination with machine learning approaches provide promising tools for 29	

automated tumor classification of clinical tissue sections. 30	

In this proof of concept study we used MALDI-MS imaging (MSI) and rapid LC-MS/MS-based 31	

microproteomics technologies (15 min/sample) to analyze formalin-fixed paraffin embedded 32	

(FFPE) tissue sections and classify renal oncocytoma (RO, n=11), clear cell renal cell 33	

carcinoma (ccRCC, n=12) and chromophobe renal cell carcinoma (ChRCC, n=5). Both 34	

methods were able to distinguish ccRCC, RO and ChRCC in cross-validation experiments. 35	

MSI correctly classified 87% of the patients whereas the rapid LC-MS/MS-based 36	

microproteomics approach correctly classified 100% of the patients.  37	

This strategy involving MSI and rapid proteome profiling by LC-MS/MS reveals molecular 38	

features of tumor sections and enables cancer subtype classification. Mass spectrometry 39	

provides a promising complementary approach to current pathological technologies for 40	

precise digitized diagnosis of diseases. 41	

42	
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Introduction 43	

Kidney cancer (renal cell carcinoma, RCC) accounts for 2.2% of all diagnosed cancers and is 44	

the 13th most common cause of cancer deaths worldwide [1]. Clear cell renal cell carcinoma 45	

(ccRCC) constitutes 70% of all kidney cancers [2] and exhibits the highest rate of metastasis 46	

among renal carcinomas. Two other common but less aggressive subtypes of renal 47	

carcinoma are chromophobe renal cell carcinoma (ChRCC) and the essentially benign renal 48	

oncocytoma (RO), which account for 5% and 3-7 % of all cases, respectively [3, 4]. The ability 49	

to distinguish between the malignant cancer types ccRCC and ChRCC and the benign RO is 50	

crucial for a patient in terms of prognosis, progression and intervention strategies as severe 51	

as total nephrectomy. Histopathological kidney cancer diagnostics faces many challenges in 52	

daily routine. Typically, test panels consisting of a combination of different chemical and 53	

immuno-histochemical staining methods are used to systematically obtain a diagnosis [5]. 54	

Overlapping histological features can make it difficult to differentiate tumor types. Analysis, 55	

interpretation and diagnosis/prognosis greatly rely on visual inspection and the experience of 56	

the involved clinical pathologists. Complementary techniques such as magnet resonance 57	

imaging (MRI) and electron microscopy involve costly instrumentation. Moreover, specific 58	

antibodies for staining can be expensive or unavailable for certain molecular targets. Mass 59	

spectrometry is emerging as a promising new tool in translational research, from molecular 60	

imaging of tissue sections to deep protein profiling of tissue samples [6]. The digital data 61	

readout provided by high mass accuracy mass spectrometry and feasibility of molecular 62	

quantification makes it a very attractive technology in translational research for investigating 63	

human diseases and for diagnostics and prognostics purposes in the clinic. Improvements in 64	
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mass spectrometry instrument performance and computational analysis paved the way for 65	

applications in clinical microbiology [7] and clinical genetics analysis [8]. The fact that mass 66	

spectrometry can be applied to a variety of different bio-molecules such as peptides, lipids, 67	

nucleic acid makes it extremely versatile and expands the translational and diagnostic 68	

possibilities greatly [8-11]. 69	

Molecular imaging of tissue sections by MALDI mass spectrometry (MSI) was introduced 70	

more than 20 years ago [12, 13] and it has been applied in translational research and clinical 71	

applications, to study injuries, diseases, or distinguish between different cancer types such as 72	

Pancreatic Ductal Adenocarcinoma or Epithelial Ovarian Cancer Histotypes [14-18]. 73	

Mass spectrometry-based proteomics relies on advanced LC-ESI-MS/MS technology, where 74	

peptide mixtures are separated by liquid chromatography (LC) prior analysis by electrospray 75	

ionization tandem mass spectrometry (ESI MS/MS) and protein identification by protein 76	

database searching [19, 20]. Current LC-MS/MS strategies enable comprehensive 77	

quantitative protein profiling from tissues and body fluids [21, 22]. While having been used to 78	

identify potential biomarkers or new candidate cancer targets and molecular signaling 79	

networks the relatively long LC gradients (hours) and extensive sample preparation protocols 80	

make it difficult to apply in a routine clinical setting. Modern mass spectrometers are steadily 81	

increasing in sensitivity and scanning speed [23]. In addition, improved chromatographic 82	

systems that enable rapid solid phase extraction integrated with reproducible separations are 83	

emerging [24-27], enabling fast (minutes) and sensitive (nanogram) analysis of complex 84	

biological samples.  85	
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We hypothesized that histo-molecular information from both MALDI MS imaging (MSI), in situ 86	

protein digestion and LC-MS/MS applied to detailed characterization of 5 µm cancer formalin 87	

fixed paraffin embedded (FFPE) tissue sections will provide spatial molecular maps and 88	

sufficiently deep proteome profiles to characterize and classify tumor subtypes. We 89	

investigated this by testing a series of malignant and benign renal carcinomas, including clear 90	

cell renal cell carcinoma (ccRCC), chromophobe renal cell carcinoma (ChRCC) and renal 91	

oncocytoma (RO). We obtained histo-molecular images at a resolution of 150µm x 150µm 92	

that sufficed to spatially resolve features to distinguish tumor subtype areas from surrounding 93	

tissue. Miniaturized sample preparation by in situ protein digestion was used to recover 94	

peptides from distinct areas of the FFPE tumor sections for rapid proteome profiling by LC-95	

MS/MS.   96	

 97	

Material and Methods: 98	

Materials  99	

Xylene (analytical grade), ammonium bicarbonate, Sodium citrate, trifluor-acetic acid (TFA), 100	

formic acid (FA), acetic acid (AcOH), acetonitrile (ACN), methanol and α-Cyano-4-101	

hydroxycinnamic acid (CHCA) were purchased from Sigma. Polyimide coated fused silica 102	

capillary (75 µm ID) was from PostNova, C18 Reprosil Pur reversed phase material was from 103	

Dr. Maisch (Ammerbuch-Entringe, Germany), recombinant Trypsin was purchased from 104	

Promega (WI. USA), Indium-tin-oxide (ITO) glass slides were purchased from Bruker 105	

(Bremen, Germany), water was Milli-Q filtered.  106	
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Formalin fixed paraffin embedded samples: 107	

Patient samples were collected at Odense University Hospital, Denmark.  All samples were 108	

obtained upon patient’s consent. Formalin fixed paraffin embedded (FFPE) tissues from 11 109	

RO patients, 12 ccRCC patients and 5 ChRCC patients were used for LC-MSMS analysis (for 110	

ChRCC due to the lower number of patients 2 subsequent slides were used from 2 patients 111	

adding up to a total of 7 sections). Out of the patient cohort 9 RO, 9 ccRCC and 5 ChRCC 112	

were used for mass spectrometry imaging analysis.   113	

Tissue preparation: 114	

Preparation of formalin fixed paraffin embedded samples 115	

FFPE blocks were cut into 5 µm thick sections and mounted onto indium tin oxide (ITO) 116	

covered glass slides (for MSI) or regular microscopy glass slides (for LC-MS/MS). Before 117	

deparaffination slides were left on a heated block at 65° C for 1 hour to improve adhesion (an 118	

overview on the used FFPE samples can be found in supplementary table S1 and S2). 119	

Deparaffination 120	

FFPE section slides were incubated in Xylene for an initial 10 min. and then another 5 min.  121	

using fresh solution each time. Slides were shortly dipped into 96% EtOH before they were 122	

washed for 2 min in a mixture of chloroform/Ethanol/AcOH (3:6:1; v:v:v). The slides were then 123	

washed in 96% EtOH, 70% EtOH, 50% EtOH and Water for 30 sec. each.   124	

Antigen retrieval  125	
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Tissue slides were heated in 10mM citric acid buffer pH 6 for 10 min in a microwave oven at 126	

400 Watt (just below the boiling point) before left for further 60 min incubation at 98°C on a 127	

heating plate. Slides were cooled down to room temperature and incubated for 5 minutes in 128	

25 mM ammonium bicarbonate (ABC) buffer. Slides were allowed to dry before application of 129	

trypsin protease. 130	

Tryptic digest 131	

For MALDI MS imaging:  132	

20µg of Trypsin (Promega) was used per slide and was dissolved at a concentration of 133	

100ng/µl in 25mM ABC /10% ACN before being deposited on the tissue using the 134	

iMatrixSpray [28]  device equipped with a heating bed (Tardo Gmbh, Subingen, Switzerland) 135	

using the following settings: sprayer height = 70mm, speed = 70mm/s, density = 1µL/cm2,  136	

line distance= 1 mm , gas pressure= 2.5 bar, heat bed temperature= 25°C . After trypsin 137	

deposition the slides were incubated in a humid chamber containing 10mM ABC/ 50% MeOH 138	

at 37°C over night. 139	

For on-tissue digest intended for LC-MS/MS proteome profiling: 140	

Droplets of 2µl Trypsin solution (50ng/µL in 25mM ABC /10%ACN, 0.02%SDS) were 141	

deposited using a gel loading pipet tip. Droplets were placed on 2-6 different tumor areas of 142	

each FFPE tissue section. The extraction positions were chosen randomly within the defined 143	

tumor margins which were defined by HE-stain and MSI clustering. The droplets were quickly 144	

allowed to dry to prevent spreading across the tissue. Slides were transferred to a closed 145	

humidity chamber (10mM ABC /50% MeOH) for overnight digestion at 37°C. The digestion 146	
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spots were extracted twice with 2µL of 0.1% FA and twice with 1.5µL of 30%ACN. Fractions 147	

were combined for each sample and speedvac dried. Samples were reconstituted in 148	

0.05%TFA and shortly spun down prior injection into the LC-MS system.  149	

Matrix application  150	

Matrix solutions were freshly prepared from recrystallized α-cyano-4-hydroxycinnamic acid 151	

(CHCA) matrix (10mg/mL in 50% Acetonitrile 1% TFA). Matrix was sprayed using the 152	

iMatrixSpray (Tardo, Switzerland). Temperature of the heatbed was set at 25°C. The sprayer 153	

distance was set to 70mm. Spray speed was set to 100 mm/s. Matrix was sprayed in 3 154	

rounds: 8 cycles with a flowrate of 0.5µl/cm2 line distance of 1mm, 8 cycles of 1µl/cm2 line 155	

distance of 1mm, 8 cycles of 1µl/cm2   and a line distance of 2mm.  156	

MALDI MS Imaging data acquisition 157	

Optical images of the tissue were obtained before matrix application using a flatbed scanner 158	

(Epson) at resolutions of 2400dpi. The imaging data was acquired via FlexImaging software 159	

(Bruker, Daltonics, Bremen, version 3.1) with 500 shots/ pixel on a Ultraflextreme MALDI-160	

TOF/TOF MS (Bruker Daltonics, Bremen) equipped with a SmartBeam laser (Nd:YAG 355 161	

nm). External mass calibration was performed with a tryptic digest of bovine serum albumin 162	

(Sigma). Spatial resolution was set to 150µm in x- and y-direction. Mass spectra were 163	

acquired in positive ion reflector mode in the range m/z 600-3500. (An average sum spectrum 164	

of each cancer condition can be found in Supplementary material 1: Figure S1) 165	

 166	

LC-MS/MS analysis 167	
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LC-MS/MS data was acquired by an Orbitrap Q-Exactive HF-X (Thermo, Bremen) coupled to 168	

an Ultimate 3000 capillary flow LC-system. Setup was modified from Thermo Scientific 169	

Technical note: 72827. Peptide samples were loaded at 150µl/min (2% ACN, 0.05% TFA) for 170	

30 sec onto a 5µm, 0.3 x 5 mm, Acclaim PepMap trapping cartridge (Thermo Scientific). 171	

Samples were then eluted onto a pulled emitter analytical column (75µm ID, 15cm). The 172	

analytical column was “flash-packed” [29] with C18 Reprosil Pur resin (3µm) and connected by 173	

Nanoviper fittings and a reducing metal union (Valco, Houston, TX). The flowrate of the 15 174	

min gradient was 1.2 µL/min with solvent A: 0.1% formic acid (FA) and solvent B: 0.1% FA in 175	

80% ACN. Gradient conditions for solvent B were as followed: 8% to 25% in 10 min, 25% to 176	

45% in 1.7 min. The trapping cartridge and the analytical column were washed for 1 min at 177	

99%B before returning to initial conditions. The column was equilibrated for 2 min. MS 178	

settings: ESI spray voltage 2kV, cap temp=275°C, Resolution: 60k, micro scans =1, max IT 179	

=100 ms, AGC =3x106, MSMS resolution 15k, n= top 5, max IT =100 ms, AGC = 1x105. 180	

 181	

Data Processing of MALDI MS imaging data 182	

The data was baseline subtracted, TIC normalized and statistically recalibrated and then 183	

exported into imzML format [30] using the export function of FlexImaging software (Bruker). 184	

The exported mass range was m/z 600-3000 with a binning size of 9600 data points. The 185	

imzML files were imported into the R environment (version: 3.4.1) and further processed and 186	

analyzed using the R MSI package: Cardinal (version: 2.0.3 & 2.4) [31]. In order to extract 187	

pixels of tumor tissue each sample was preprocessed as follows: peaklist was generated by 188	
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peak picking in every 10th spectrum and subsequent peak alignment. The whole data was 189	

then resampled using the “height” option and the previous created peaklist as spectrum 190	

reference. PCA scores were plotted using car-package (version 3.0.6). Samples were 191	

clustered using spatial shrunken centroid clustering [32]. Subsequently, clusters were 192	

compared to tumor regions in HE-stained tissue sections (supplementary material 1: Figure 193	

S2). The respective clusters containing tumor areas were extracted, so that result files 194	

predominantly contained data from tumor areas. The obtained coordinates were then used to 195	

extract the corresponding pixel from the unprocessed imzML file. Each tumor type was 196	

assigned with a diagnosis factor (ccRCC, RO or ChRCC), which was later used as y-197	

argument in the cross-validation. All extracted imaging acquisition files were further restricted 198	

to a mass range of m/z 700-2500. Data was resampled with step size 0.25 Da to allow 199	

combining them into one file for further processing. Classification and cross-validation were 200	

performed using partial least square discriminant analysis (PLS-DA) [33]. PLS components 201	

were tested for optimum with 34 components (supplementary material 1: Figure S3). 202	

Classification diagnosis was based on the highest scoring condition. Differences between 2 203	

conditions had to be higher than 10% of the highest score to be considered distinguishable) 204	

 205	

LC-MS/MS data processing 206	

The MaxQuant [34] software package (version 1.5.7.0) was used for protein identification and 207	

label-free protein quantitation. LC-MS/MS data was searched against the Swissprot human 208	

proteome database, using standard settings and “match between runs” enabled. 209	
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Data filtering, processing and statistical analysis of the MaxQuant output files was performed 210	

using the Perseus [35] framework (version 1.6.1.3). Data was filtered excluding the following 211	

hits: only identified by site, contaminants and reversed. The log-transformed data was filtered 212	

for proteins present in at least 70% of all experiments. Significance filtering was based on 213	

ANOVA testing, using FDR threshold of 0.01 with Benjamini Hochberg correction. In order to 214	

perform PCA analysis and classification missing values were imputed by normal distribution 215	

(separately for each column/sample). Data shown in heatmap was Z-score normalized. 216	

Perseus output tables were transferred into ClustVis [36] for visualization of hierarchical 217	

clustering and principle compound analysis (PCA). Gene Ontology and functional analysis 218	

was performed via String DB (version 11.0.0) [37] and Panther DB (version 14.1) [38]. For 219	

Panther DB analysis background genome was the human genome and the total of identified 220	

proteins from all LC-MSMS runs in the experiments (supplementary material 4-8). Feature 221	

optimization cross-validation type was “n-fold” with n = 5. Kernel was either linear or RGF. All 222	

other settings were left on their default value.      223	

224	
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Results: 225	

In this study we investigated the utility of mass spectrometry-based methods for histo-226	

molecular profiling applications in clinical renal cancer pathology. We analyzed thin 227	

tissue/tumor sections from three different renal cancer types (ccRCC, RO, ChRCC) by MALDI 228	

MS imaging and by an optimized rapid LC-MS/MS workflow adjusted to suit the demands for 229	

clinical settings.  230	

 231	

Imaging by MALDI mass spectrometry 232	

All samples were prepared as 5 µm thin FFPE tissue/tumor sections. The entire FFPE tissue 233	

section was analyzed by imaging MALDI MS imaging (MSI). The data was subsequently 234	

processed by unsupervised clustering (spatial shrunken centroid clustering [32]). The 235	

clustering results (Figure 1A and 1B) illustrate the heterogeneity of the tissue sections 236	

coming from various tissue types such as stroma, fibrotic, fatty or healthy tissue and the 237	

capabilities of imaging MSI for the delineation of cancerous and non-cancerous tissue. 238	

Furthermore, when comparing the tumor area of the HE-stain/microscopy with the results 239	

from the mass spectrometry imaging based clustering, spectral differences even within the 240	

tumor tissue itself can be observed (Figure 1A and 1C). 241	

Guided by the unsupervised clustering outcome and the corresponding image obtained by 242	

HE-staining, pixels from non-relevant surrounding tissue were discarded and only pixel 243	

clusters containing actual tumor tissue were used for subsequent comparative analyses 244	

(schematic workflow overview can be found in supplementary material 1 : Figure S4).  245	
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In mass spectrometry imaging, principal component analysis (PCA) is often used for initial 246	

analysis of a given data set. Variance and similarities within the image sample set were 247	

estimated by PCA over the first 3 components. From a pathology viewpoint RO and ChRCC 248	

are more difficult to distinguish than ccRCC and ChRCC. As the sample holder for the 249	

imaging experiments can only hold 2 slides at a time, we first compared two conditions in a 250	

pairwise manner: 9 ccRCC vs. 9 RO (Figure 2A) and 5 RO vs. 5 ChRCC (Figure 2B). Then 251	

the data set was combined to compare all three cancer conditions (9 ccRCC, 9 RO, 5 252	

ChRCC) to each other (Figure 2C). PCA using the first three principle components separate 253	

ccRCC well from RO and ChRCC (Figure 2A, 2C). Data points from ccRCC showed a wide 254	

spread and were splitting into 2 sub-populations. In contrast, the data from RO and ChRCC 255	

samples cluster in a much tighter manner and with some overlap (Figure 2A, 2B, 2C).  This is 256	

particularly the case when considering all three cancer types together (Figure 2C). When 257	

compared in a pairwise manner RO and ChRCC show slight separation (Figure 2B) 258	

suggesting at least some degree of histo-molecular differences between these cancer types. 259	

Some overlapping data points in the different cancer type datasets can be observed indicating 260	

histo-molecular spectral similarity in parts of the patient tumor tissues. The spread of ccRCC 261	

data points in PCA, as compared to the RO and ChRCC subtypes, suggests a greater 262	

heterogeneity among the ccRCC patient samples (also observed by LC-MS/MS, see later 263	

section).  264	

Next, we assessed the ability of the MSI data to distinguish and classify renal cancer 265	

subtypes. We generated a classifier based on partial least squares discriminant analysis 266	

(PLS-DA) that can then be applied to a given MSI sample set. Due to the limited number of 267	
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FFPE kidney tumor samples we chose to use a cross-validation strategy that maximizes the 268	

use of a sample set for model generation and testing. In this approach a classifier is trained 269	

with imaging data from all samples, except for one sample that is set aside. As this sample is 270	

not part of the classifier model it can then be used for testing purposes. This was repeated as 271	

many times as there are samples ultimately allowing for testing the complete dataset (for n 272	

samples we obtain n classifiers and n tested samples).  273	

The optimized PLS-DA model resulted in an accuracy of cancer subtype prediction of 93% for 274	

ccRCC and 88% for RO and for ChRCC (pixel based value). Results of the cross-validation 275	

study using PLS-DA to classify 23 kidney tumor samples are depicted in Figure 3. The PLS-276	

DA prediction scores for each of the three possible tumor type outcomes are shown, i.e. 277	

ccRCC, RO and ChRCC. (Median values and boxplot representation of scores are provided 278	

in supplementary material 1: Figure S5 and table S3). The scores obtained for each pixel 279	

are presented by intensity scaled colors plotted over the respective x-y-coordinate of the 280	

tissue/tumor sections.  281	

Twenty of the 23 patient tumor samples (assignment based on median value) were correctly 282	

assigned by the PLS-DA model showing highest intensity and median score for the respective 283	

cancer condition (Figure 3). Eight out of nine ccRCC samples were correctly assigned 284	

(Figure 3a-i). The PLS-DA classification provided high scores for ccRCC samples and clearly 285	

distinguished the ccRCC samples from the other two kidney tumor types (Figure 3, left 286	

panels). This is in accordance with the PCA results. Likewise, the PLS-DA model provided 287	

low scores for ccRCC in the cases of RO and ChRCC samples (Figure 3, middle and right 288	

panel). One ccRCC sample was incorrectly classified by PLS-DA as RO (Figure 3g).  289	
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All 5 ChRCC samples (Figure 3 j-n) were correctly assigned having the highest score for the 290	

ChRCC condition (right panel).  PCA indicated mass spectral similarities between the RO and 291	

ChRCC samples. Likewise, the PLS-DA model reflects such similarities in the classification 292	

outcome. Two ChRCC patient samples received highest scores for ChRCC but only slightly 293	

lower scores for RO (Figure 3k, 3n). Furthermore, in the case of two RO sample (Figure 3a, 294	

3e) the classification could exclude ccRCC as diagnosis. Although the highest median score 295	

was correctly achieved for RO (Supplementary material 1: table S3) the difference between 296	

RO and ChRCC was considered as too small (<10% of respective max. median score) for a 297	

clear distinction of these two tumor types. Notably one kidney tumor sample (Figure 3l) 298	

exhibited a unusual scoring pattern as compared to the other tumor samples. This particular 299	

sample received high scores for both ccRCC and ChRCC classification (ChRCC being the 300	

highest). As mentioned above, we typically observed clear distinction between ccRCC and 301	

ChRCC in all the other cases. Upon further pathology and microproteomics analysis this 302	

tumor section was re-classified as a sarcomatoid transformation (see below), i.e. a tumor type 303	

not included in the PLS-DA model used for classification.  304	

The relative importance of individual histo-molecular features of the classifier can be 305	

visualized by plotting the PLS coefficients for each condition as a function of m/z values 306	

(supplementary material 1: Figure S6). A positive coefficient indicates presence or higher 307	

abundance of the m/z value in the respective cancer model. A negative coefficient indicates 308	

absence or lower abundance in the respective condition. For ccRCC the two highest-ranking 309	

m/z values were m/z=723.5 and m/z=704.5. The two highest values for RO were m/z=806.5 310	

and m/z=1640.0 whereas the most influential signals for ChRCC comprised m/z= 1169.5 and 311	
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m/z=1039.5 (top 100 list of the features can be found in supplementary material 2). 312	

Unfortunately, we were not able to obtain informative MALDI MS/MS fragment ion spectra in 313	

order to reveal the identity of these peptide ion signals. Nevertheless, for classification 314	

purposes the knowledge of distinct protein/peptide identities (m/z values) is not necessary as 315	

long as the signal is characteristic for the tested condition.  316	

In conclusion mass spectrometry imaging provided histo-molecular tumor profiles that can be 317	

used to distinguish renal cancer subtypes. However, the misclassification of one ccRCC 318	

patient and uncertainty of two additional diagnosis outcomes suggested that additional 319	

independent test methods would be beneficial for confident classification of renal cancer 320	

tumor types. 321	

 322	

LC-MS/MS based rapid proteome profiling of tumor sections. 323	

MALDI MS imaging provides spatial resolution that is helpful to address molecular 324	

heterogeneity in tissue sections. However, MALDI MS imaging lacks analytical depth due to 325	

the limited dynamic range of MALDI TOF MS and the poor performance of MALDI MS/MS for 326	

protein identification by peptide sequencing directly from tissue sections. Deeper insight into 327	

the tissue and tumor histo-molecular profiles and their variance will provide more diagnostic 328	

features. We therefore adapted and optimized a microproteomics approach, combining in situ 329	

protein sample preparation with fast label-free proteome profiling LC-MS/MS. First a 330	

miniaturized in situ sample preparation method was applied where a small droplet of trypsin 331	

solution is placed directly onto the tumor area of interest within a thin tissue section. After 332	
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overnight incubation the digested protein extract from the tumor area is subsequently 333	

recovered and analyzed by mass spectrometry [39]. We reduced the LC-MS/MS analysis time 334	

from 90 minutes to 15 min by using short LC gradients and rapid MS/MS functions, allowing 335	

for a sample throughput of up to 80 samples per day. A total of 125 in situ extracted areas 336	

from renal tumor sections were analyzed. Two to six in situ extracts were taken from each 337	

renal tumor sample (11 RO sections from 11 patients: 47 extraction spots; 12 ccRCC sections 338	

from 12 patients: 49 extraction spots; 7 ChRCC sections from 5 patients: 29 extraction spots). 339	

Fast label-free LC-MS/MS based microproteomics analysis of all 125 in situ digested tumor 340	

areas resulted in a total of 2124 identified human proteins. We filtered the data for proteins 341	

that were present in at least 70 % of all samples thereby reducing the protein number to 412 342	

proteins. Comparative data analysis was performed for proteins that were significantly altered 343	

(FDR=0.01) in any of the renal cancer subtypes resulting in a list of 346 differentially 344	

regulated proteins. We then used unsupervised hierarchical clustering and PCA to identify 345	

similarities and differences between the tumor samples. The x-axis dendrogram of the 346	

heatmap shows that the majority of the renal tumor samples grouped according to cancer 347	

subtype RO, ccRCC or ChRCC (Figure 4A). Several large clusters of “co-regulated” proteins 348	

are evident on the y-axis dendrogram and heatmap for the individual cancer subtypes. This 349	

clearly demonstrates that there are renal cancer subtype specific histo-molecular features and 350	

patterns in the microproteomics dataset.  351	

The protein expression profiles of the three renal cancer subtypes are different based on the 352	

heatmap patterns. ccRCC clearly differs from RO and ChRCC (Figure 4A: Protein group 2 353	
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and 4). RO and ChRCC display some differences but generally exhibit a more similar 354	

expression pattern (Figure 4A: Protein Group 2).  355	

These differences and similarities were also revealed by PCA analysis of the microproteomics 356	

dataset. RO and ChRCC separate clearly from ccRCC (Figure 4B). RO and ChRCC 357	

datapoints are located close together, indicating that differences between the RO and ChRCC 358	

cancer subtypes are less dominant. When considering principal components exhibiting less 359	

variance (PC3 and PC4), separation of RO and ChRCC sample data is observed (Figure 360	

4B).  361	

We observed eight ChRCC proteomics datasets that separated clearly form the other ChRCC 362	

datasets, both in hierarchical clustering analysis (Figure 4A) and PCA (Figure 4B). The 363	

protein expression profile of these 8 samples exhibited some similarities to both ChRCC and 364	

ccRCC. Interestingly, this data originated from a tumor from a single patient. This was the 365	

same patient that also exhibited outlier MSI data with similarities to both ChRCC and ccRCC 366	

tumor types, as discussed above (Figure 3l). Further pathology analysis revealed that these 367	

samples were sarcomatoid renal cancer, originating from ChRCC and, thus, indeed different 368	

from the other ChRCC samples.  369	

 370	

Protein differences in cancer subtypes  371	

Hierarchical clustering of the proteomics datasets revealed major differences in relative 372	

protein abundance between the three renal cancer tumor types. (Figure 4A). We investigated 373	

the nature of these histo-molecular differences by examining the correlation of these proteins 374	
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to cellular structures, functions, or biochemical processes. Protein groups that exhibited 375	

distinctive abundances for the respective cancer type (Figure 4: ccRCC: group 1 & 4, RO: 376	

group 2, ChRCC: group 3) were searched for their involvement in protein interaction networks 377	

(supplementary material 9) as well as for their functional roles by using gene ontology (GO) 378	

enrichment (Figure 5, supplementary material 3-8). We compared GO enrichment relative to 379	

the experimental gene background as well as to the complete human genome (Figure 5, 380	

human genome background: red). The experimental gene background contained all genes 381	

corresponding to all 2124 identified proteins in the LC-MSMS experiments (Figure 5, 382	

experimental background: blue). 383	

RO and ChRCC exhibited a set of upregulated proteins (Figure 4A, protein group 2) that 384	

were enriched for mitochondria associated proteins (GO:0005739), including various ATP 385	

synthase subunits. Enriched protein functions comprised oxidative phosphorylation 386	

(hsa00190), citrate cycle (hsa00020), and fatty acid beta oxidation (GO:0006635).  387	

ChRCC-specific regulated proteins (Figure 4A, protein group 3) included cytoplasmic 388	

proteins (GO:0044444), and proteins associated with cytoplasmic vesicles (GO:0031982) and 389	

ribonucleoprotein complexes (GO:1990904).  390	

Subtype-specific protein groups in ccRCC (Figure 4A, protein group 1, 4) were functionally 391	

enriched for complement activation (GO:0006956), regulation of blood coagulation 392	

(GO:0030193) and platelet degranulation (GO:0002576). Functions of protein group 4 were 393	

linked with extra cellular matrix organization (GO:0043062) and cytoskeletal binding 394	

(GO:0008092) including proteins collagen and laminin. We also found several proteins such 395	
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as glyceraldehyde-3-phosphate dehydrogenase associated with the glycolytic process 396	

(GO:0006096).  397	

These functionally important findings can be correlated to known biochemical and 398	

morphological features of each of the renal cancer subtypes. It is known that the number of 399	

mitochondria is increased in RO and ChRCC tumors (e.g. increased oxidative 400	

phosphorylation) [40]. It is also known that ccRCC contains a highly vascularized stroma 401	

(complement, coagulation, etc.) and exhibits a strong Warburg effect (glycolysis) [41].  Large 402	

intracellular vesicles are found in ChRCC (cytoplasmic proteins, vesicle proteins) [40].  403	

 404	

Classification  405	

Unsupervised data analysis demonstrated the presence of renal cancer subtype specific 406	

differences in the tumor protein profiles. Next, we investigated the feasibility of tumor 407	

classification by using the microproteomics data to train a prediction algorithm. We 408	

implemented the tumor classification model by using a support vector machine (SVM) 409	

approach. The sarcomatoid sample was excluded from the classification. We chose the k-fold 410	

cross validation strategy [42] (“n-fold” in Perseus). Here the data is randomly distributed in k 411	

groups. The model was then trained with data from k-1 groups and the prediction was applied 412	

to the samples in the remaining group. This was repeated k times. Low k-values tend to 413	

overestimate error rates. In our study 2-6 extraction spots (samples) were derived from an 414	

FFPE section from each patient so too high k-values could underestimate the true error rate. 415	

We therefore tested the prediction error rate over several k-values (Figure 6 A) applying 416	
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Radial Basis Function (RBF) and linear kernel functions [43]. As imputation could have an 417	

effect on the classification outcome we compared performance to a classification without 418	

imputation using the proteins that were present in all sample (100% valid values=27 proteins). 419	

For 70% valid values the tested error rates were in the range 0-3.4% for linear  (4 wrong 420	

predictions at k=2, linear kernel) and 0-2.6% (3 wrong predictions at k=2, RBF kernel). 421	

However, k=2 is a very low k-value (excluding half of the samples from the training set) and 422	

the error rate is most likely overestimated in this case. For more commonly used k-values 423	

(k=3-10) the error rate was 1.7% (2 incorrect predictions) at the highest for k=3 and 0% for 424	

any other k-value. Incorrectly predicted outcomes included samples from one RO patient that 425	

was predicted as ccRCC.  Classification with the data set using 100% valid values without 426	

imputation showed error rates of 0-6% (linear kernel) and 0-3.5% (RBF kernel). Over higher 427	

k-values the error rate was 0-3.4% and 0-0.8%, respectively. Error rates were slightly higher 428	

than for 70% valid values. Given the low protein number used for the classification the 429	

outcome was surprisingly positive. In both cases 70% and 100% valid values we observed 430	

RBF performing overall slightly better than linear kernel. As error rates for both valid values 431	

were quite comparable, we concluded that in our case the imputation did not heavily bias the 432	

outcome. 433	

Figure 6B exemplifies the outcome of the cross-validation resulted for RBF and k=5 (around 434	

23 samples per group equivalent to 4-5 patients excluded from the training set). Each sample 435	

was scored for the three tested conditions (ccRCC, RO, ChRCC). The highest scoring 436	

condition was used to classify a given sample. Results are shown in a radar plot (Figure 6B) 437	

and demonstrate 100% accuracy in prediction of renal cancer subtypes. 438	
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We initially used all 346 differentially abundant histo-molecular features (proteins) to classify 439	

the tumor subtypes. Next, we sought to estimate the minimum number of features that suffice 440	

to correctly classify all the renal tumor samples (for k=5 and RBF). We used the feature 441	

optimization function in the Perseus software, which first ranks the features and then tests the 442	

error rate for a decreasing number of features (Figure 6C). The minimal number out of the 443	

346 features was found to be 30 features (list of the ranked proteins can be found in 444	

supplementary material 9). Further reducing the number to 21 features resulted in an error 445	

rate of 0.8% and as little as 4 features lead to an error rate of 7.7%. Conclusively only a 446	

portion of the dataset, would suffice to successfully classify all the kidney tumor samples, 447	

which reflects also in the low error rates of the 100% valid values (Figure 6A) using only 27 448	

proteins (supplementary material 3). However, keeping an excess of quantified protein 449	

features would be beneficial as “safety margin” assuring a high enough number of quantified 450	

protein features for robust classification of tumors. 451	

 452	

Data integration from MSI and rapid proteome profiling 453	

Having both MSI and microproteomics sets of data at hand provides several advantages for 454	

classification of cancer tumor FFPE samples.  Using the MSI approach for tumor classification 455	

we observed a higher error rate than with the rapid micro-proteomics approach. In two cases 456	

MSI could exclude one cancer type but was not providing clear results towards an RO or a 457	

ChRCC diagnosis. Another case where one ccRCC sample was misclassified as RO is 458	

particularly problematic as ccRCC might need surgery whereas RO does not. Therefore, by 459	
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integrating the micro-proteomics classification data the outcome of the MSI classification can 460	

be further confirmed, clarified or rejected (Table 1). This allows more confidence in diagnosis 461	

or could possibly even provide further information on cancer stage or treatment strategies. In 462	

a case where the classification model does not cover the cancer condition such as in the 463	

patient sample with sarcomatoid transformation we have demonstrated how irregularities and 464	

inconsistencies are detected by both MSI and rapid LC-MS/MS based microproteomics 465	

(Figure 3l, 5A, 5B). This provides an opportunity to further investigate, refine and expand the 466	

range of computational and statistical classification models. 467	

An additional application making use of the combined data set includes the investigation of 468	

histo-molecular properties observed in MSI (e.g. intra- tumor heterogeneity) by correlation to 469	

information from the rapid microproteomics approach. Usually a detailed investigation of MSI 470	

feature data is achieved by either microproteomics “in situ protein digestion” or laser 471	

microdissection based approaches [44] using LC-MS/MS based proteomics analysis with long 472	

LC gradient times (1-4 hours). Despite the shorter gradient times and thus lower protein 473	

coverage in the present work the information can nevertheless be used to investigate histo-474	

molecular properties observed in MSI  (e.g. intra- tumor heterogeneity).  We exemplified this 475	

in figure 7, using the RO MSI data set previously shown (Figure 1, top). Unsupervised spatial 476	

shrunken centroid clustering of MSI data [32] revealed two distinct regions within the tumor 477	

area (Figure 7A: cluster 1 and cluster 2). Correlating the LC-MSMS data from the respective 478	

extraction spots within these distinct regions in deed reveals significant differential 479	

abundances in 80 proteins (Figure 7B, the list of proteins can be found in supplementary 480	

material 11). Hierarchical clustering (Figure 7C) of these 80 proteins with regard to their 481	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.02.19.956433doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 	 	
	

	 25	 	
	

extraction position correlates well with the distinct regions depicted by the MSI clustering (MSI 482	

Cluster 2 correlates with extraction spots e-f, MSI Cluster 2 correlates with extraction spots a-483	

d; Figure 7A). The proteomics data suggests a lower abundance of mitochondrial associated 484	

proteins and a higher abundance in some cytoskeletal protein binding proteins in cluster 2 485	

(Figure 7D). The area comprising Cluster 2 located on the edge of the tumor and might 486	

indicate the differences that can be encountered between the inner and outer tumor regions 487	

[45]. 488	

 489	

Discussion  490	

The increasing incidence of renal cancer in western countries calls for improved technologies 491	

for detection, diagnosis, treatment and prognosis. Innovative mass spectrometry-based 492	

applications are beginning to address challenges in clinics and the healthcare sector, such as 493	

the use of targeted proteomics to characterize noninvasive liquid biopsies [46] or the so called 494	

iKnife, enabling surgeons to identify cancerous tissue in real time [47, 48]. Mass spectrometry 495	

is becoming increasingly applicable in a clinical setting [49, 50]. FFPE sections are a valuable 496	

source for mass spectrometry-based diagnosis. As many of the sample preparation steps for 497	

MS analysis overlap with the preparation steps for (immuno)histochemical staining, they can 498	

be seamlessly fit into the high-throughput sample preparation pipeline for FFPE sections 499	

(deparaffination, antigen retrieval) already existing in many hospitals.  500	

Our proof of concept study demonstrates the potential and benefits of mass spectrometry 501	

techniques for detailed characterization of clinical specimen.  Specifically, we demonstrate 502	
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that mass spectrometry provides valuable results in the diagnosis of different renal cancer 503	

subtypes (ccRCC, RO and ChRCC). The imaging mass spectrometry (MSI) approach allows 504	

to collect spatially resolved spectra without a priori knowledge of the tissue, thereby enabling 505	

the differentiation between cancerous and noncancerous tissue, as well as subtyping of 506	

tumors.  507	

Earlier large scale MSI classification studies have demonstrated results with accuracies 508	

ranging from 81% to nearly 100% in subtyping non-small cell lung cancer [51], classifying 509	

primary lung and pancreatic cancer [52] as well as differentiating between 6 common cancer 510	

types (esophagus, breast, colon, liver, stomach, thyroid gland) [53]. In our study MALDI-MSI 511	

could diagnose 87% (20 out of 23) of the tested patients correctly. It has to be pointed out that 512	

when transferring our study into a larger scale (n>100 samples) misclassification rates are 513	

expected to increase. In two of the 3 misclassified cases it was possible to narrow down the 514	

diagnosis to either RO or ChRCC. Despite the promising results the misclassification of one 515	

ccRCC sample as RO might be problematic since RO may not require surgery but ccRCC 516	

does. Both cases stress how using rapid proteome profiling data in parallel provided 517	

additional confidence and can help avoid a false negative prognosis. 518	

Both MSI and LC-MS/MS PCA data showed that the patient-to-patient tumor variability is 519	

significant for ccRCC. Possible reasons might be due to necrotic areas or increased bleeding 520	

observed in some of the tissues. Furthermore we did not consider difference in grades, which 521	

might have an influence on the data spread. For robust MSI performance inclusion of a larger 522	

patient cohort (n>100) will likely provide higher confidence and resolve this issue or even 523	

provide differentiation of tumor grades.  524	
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LC-MS/MS based microproteomics analysis correctly classified all tested renal tumor samples 525	

in cross validation experiments. The efficient peptide separation and sequencing capability of 526	

LC-MS/MS provided deeper insight into the renal cancer proteome than possible by the MSI 527	

approach alone. Remarkably, unsupervised clustering identified data inconsistencies and 528	

irregularities in the patient cohort. An unexpected feature pattern revealed a sarcomatoid 529	

transformation within the ChRCC cohort, without a priori knowledge (Figure 4A, 4B). This 530	

goes to demonstrate that once the “digital” data is acquired then the computational and 531	

statistical applications can uncover relevant and important features of the patient datasets. 532	

This sensitivity, specificity and versatility will have major implications for future clinical 533	

practices, including histo-molecular pathology technologies. 534	

Using short LC runs of only 15 min. we generated a list of 346 significantly altered proteins 535	

(p=0.01). The minimum number of proteins determined to be necessary for 100% accurate 536	

tumor classification was much lower (30 features). This low number of features enables a 537	

targeted proteomics approach aimed at quantifying only a select panel of proteins. Using 538	

fewer features would also allow further reduction of LC run time and increase overall sample 539	

throughput. Using our fast LC-MS/MS setup we analyzed a total of 125 samples in a series 540	

without experiencing blocking of the LC columns, glass capillaries or ESI needles. LC 541	

systems such as the EvoSep system [25] that are specifically dedicated for clinical 542	

applications and tailored to be used also by non LC-MS experts can add additional 543	

robustness to this approach. Furthermore, implementation of image pattern guided pipetting 544	

robots may enhance reproducibility and throughput, e.g. using liquid extraction surface 545	

analysis (LESA) technology [54, 55]. The latter has been successfully applied in the study of 546	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.02.19.956433doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 	 	
	

	 28	 	
	

traumatic brain injuries [56] as well as in mouse brain for the identification of proteins and 547	

peptides from MSI experiments [57]. The missing value problem is still a common problem in 548	

label free quantitative proteomics. Successful implementation of protein identification on MS1 549	

level only has been presented recently [58] and could be interesting in the here presented 550	

context to follow up in future experiments. 551	

Functional protein analysis using bioinformatics tools revealed molecular networks and 552	

biochemical processes consistent with previously known macroscopic, morphological and 553	

histological features of the renal cancer subtypes. RO and ChRCC exhibited upregulation of 554	

mitochondrial associated proteins. Increased numbers of mitochondria are frequently 555	

observed in these cancer types by electron microscopy [59] and have been identified in 556	

previous proteomics studies [60]. As most cancer rely on glycolysis (Warburg effect) this 557	

seems rather unusual. However, those mitochondria are dysfunctional and it has been 558	

speculated that the increase in number might be a cellular compensation response [61].  559	

In addition increased intracytoplasmic associated proteins were detected in ChRCC 560	

distinguishing it from the other cancer types. Microscopically, ChRCC distinguishes from other 561	

renal carcinomas by its pale cytoplasm resulting from large intracytoplasmic vesicles 562	

explaining the relative increase of intracellular cytoplasm-associated proteins and vesicle 563	

proteins.  564	

Clear cell renal cell carcinoma frequently contains zones of hemorrhage that are most likely 565	

responsible for the increased levels of complement and coagulation cascade associated 566	

proteins, as determined by our microproteomics method. ccRCC is also characterized by 567	
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hypervascular stroma [3], which may account for the enrichment of extracellular matrix 568	

proteins. Enhanced glycolysis as a hallmark of many cancer types including ccRCC [41] 569	

correlating well with our detection of upregulated glycolysis associated proteins. 570	

For classification we applied PLS-DA to MSI data and support vector machine to the LC-571	

MSMS data. These common classification methods have previously been applied to MSI for 572	

the differentiation of papillary and renal cell carcinoma based on lipidomics analysis [62] as 573	

well as for the classification of epithelial ovarian cancer subtypes [16] There are, however, . 574	

numerous other classification methods available. Mascini et al. used principal component 575	

linear discriminant analysis in order to predict treatment response in xenograft models of 576	

triple-negative breast cancer [63].  Recently, deep convolutional networks have been 577	

proposed [64]. 578	

Both MSI and short gradient LC-MS/MS microproteomics methods come with their individual 579	

advantages. Applying both approaches in parallel for routine analysis is most beneficial to 580	

improve confidence in diagnosis and identify irregularities. In order to create very robust 581	

classifiers for use in clinical settings the promising results of this study need to be further 582	

supported in the future by analysis of larger patient cohorts.  583	

With the enormous progress in sample handling and instrument technology, machine learning 584	

[65] and the availability of new databases [66] mass spectrometry is on its way to become a 585	

versatile tool in the hospital clinics of the future.  586	
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Figure 3 804	
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Figure 5 809	
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Figure 7 814	
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Table 1: integrated testing strategy for classification of renal cancer types. Initial pathologist 817	

diagnosis and patient number are indicated in the first 2 columns. *Patient sample showed 818	

irregularities and after reassessment could be diagnosed as sarcomatoid transformation. 819	

Concluding contradictory results would either necessitate further validation or the outcome of 820	

the more reliable method (LC-MSMS) could be favored  821	

 822	

Figure 1 Tumor sample heterogeneity is revealed by mass spectrometry imaging and 823	

unsupervised clustering. A) Spatial Shrunken centroid clustering of ccRCC and RO data 824	

obtained by imaging mass spectrometry of ccRCC and RO tissue sections. Based on 825	

differences and similarities in the spectra each pixel was automatically assigned a certain 826	

cluster (indicated by a different color). B) Average MALDI mass spectra of the respective 827	

tumor areas (histo-molecular clusters) reveal distinct features and individual variations in the 828	

m/z signals.  C) HE-stain of tumor tissue section from same FFPE block. Tumor area is 829	

indicated in red. 830	

 831	

Figure 2: 3D PCA score plot from imaging MALDI MS experiments of kidney tumor tissues. 832	

Each plot contains the extracted pixel data from all patients of a given cancer type. Data from 833	

ccRCC (A) (magenta) and ChRCC (B) (blue) are compared to RO (yellow). (C) Data from all 834	

three cancer types are compared to each other. The graph displays the first 3 principle 835	

components (PC1, PC2, PC3) plotted against each other. Clear separation of data points 836	

between ccRCC and RO can be observed by pairwise comparison but also in the combined 837	
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comparison to both RO and ChRCC. In pairwise comparison (B) RO and ChRCC show slight 838	

separation but exhibit a great number of overlapping features. ccRCC exhibits the largest 839	

differences to RO and ChRCC.  RO and ChRCC appear to share more spectral similarities.  840	

 841	

Figure 3: Tumor classification by MALDI MS imaging and cross-validation using PLS-DA 842	

classification. Unit of x- and y-axis equals step size (150µm). Classification was performed on 843	

extracted pixels/spectra from tumor areas only. Classification of 9 ccRCC and 9 RO (a-i) 844	

sample as well as 5 RO sample and 5 ChRCC sample (j-n). Pathology diagnosis of the 845	

respective patient samples are indicated to the left and right of the images (RO, ccRCC or 846	

ChRCC). Each spectrum-containing pixel is predicted individually. The prediction scores are 847	

represented by a color scale. Each patient sample was scored for the 3 cancer conditions 848	

resulting in 3 panels for each condition.  Each of the panels displays scores for ccRCC (first 849	

panel) RO (second panel) and ChRCC (third panel). The respective testing condition is 850	

indicated on top above the panels. Median score for the respective condition is indicated in 851	

each panel next to the tissue. Classification is based on the condition achieving the highest 852	

score within the 3 predictions. Differences below 10% of the respective highest score were 853	

considered too close to be distinguishable. A overview table with median values as well as a 854	

boxplot representation of scores is provided in supplementary material 1 Figure S5 and table 855	

S3. (Cardinal´s smooth.image-function was used for better visibility. Unprocessed image can 856	

be found in supplementary material: 1 Figure S7) 857	
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Each sample is predominantly predicted in the correct diagnosis, achieving accuracies (pixel-858	

based value) of 93% (ccRCC), 88% (RO), 88% (ChRCC). Winner of the classification is 859	

marked with a green bar for correct classification and a red bar for incorrect classification.  860	

 861	

Figure 4: Unsupervised renal cancer subtype classification by microproteomics using rapid 862	

LC-MS/MS protein profiling. A) Heatmap and hierarchical clustering of differential relative 863	

protein abundances. Columns indicate samples and rows indicate proteins. The renal cancer 864	

subtype of the patient sample is indicated in colored bars on top. The graph shows the large 865	

similarities in protein expression profiles among patient samples with the same cancer 866	

subtype causing them to cluster together. Furthermore, hierarchical clustering of the protein 867	

abundances reveals protein cluster that are detected in a cancer subtype specific manner. 868	

Protein groups selected for subsequent network analysis are indicated by color blocks on the 869	

y-axis dendrogram (groups 1-4).The asterisk * marks outlier patient from sample figure 3l. 870	

B) Principal component analysis of the sample set. Dotted ellipses are such that with a 871	

probability of 95% a new observation from the same group will fall inside the area. The first 872	

(PC1) and second (PC2) component explain 17.6 % of the total variance whereas the other 873	

components lie at 7.7% and 4.4% respectively. There is a clear separation of ccRCC and RO 874	

samples already in the first two principal components. Differences between RO and ChRCC 875	

are subtle and are only evident when considering components that display lower variance 876	

(PC2:PC3 and PC3:PC4). The small group of the eight ChRCC-derived sarcomatoid renal 877	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.02.19.956433doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 	 	
	

	 47	 	
	

cancers samples cluster relatively far from the other ChRCC samples, thereby identifying 878	

these as clear “outliers” that require further attention.  879	

Figure 5: Bioinformatics analysis (PantherDB) identified enriched biochemical functions in 880	

renal tumors. Protein groups were compared against a background of all the 2124 proteins 881	

identified in the experiment (blue) and against the background of the human genome (red). 882	

Fold enrichment (increase over expected value) as well as -log of the false discovery rate 883	

(FDR) are shown.  884	

 885	

Figure 6: Microproteomics and SVM model correctly classifies all renal tumor subtypes. A) 886	

Development of cross validation classification error rate in relation to increasing k-value 887	

(division of sample set in k groups. k-1 groups will be used for training and 1 group for 888	

testing). Results of 70%valid values using imputation of missing values (right) as well as 889	

100%valid values without imputation (left) are shown. Two classes of algorithms were 890	

compared: RBF and linear kernel. RBF performs slightly better than the linear kernel function 891	

with lower error rates. Values chosen for k>=3, error rates vary between 0% and 1.6% (2 892	

wrong prediction out of 117) for both tested kernel.  893	

B) Radar plot of the cross-validated classification (k=5, kernel=RBF) of proteome profiles 894	

obtained from each extraction spot sample. Each sample is plotted equi-angular around the 895	

center. The pathological diagnosis (ground truth) for each sample at its angular position is 896	

indicated on the outside of the radar plot (all ccRCC samples: right, all ChRCC 897	

samples:bottom, all RO samples:right). A given sample is represented by 3 datapoints (dots) 898	
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plotted on a straight axis originating from the center. Each of the 3 datapoints  represents the 899	

classification score for one of the 3 cancer types (scores for ccRCC: magenta, ChRCC: 900	

yellow, RO: blue). Scores range from lowest (center) to highest (outer circle).The highest 901	

score indicates highest likelihood for the respective cancertype. The plot shows that for all 902	

samples the cancer type with the highest score correlates with the respective pathological 903	

diagnosis, indicating the high accuracy of the classification. C) Feature optimization. The error 904	

rate for linear kernel and RBF are plotted over the number of ranked features (proteins).  905	

Decreasing feature number results in increase of false predictions. Minimum number of 906	

features for 0% error rate is at 30 for both RBF and linear kernel (list of ranked proteins can 907	

be found in supplementary material 10).  908	

	909	

Figure 7: Combined use of MS imaging and rapid LC-MSMS microproteomics provides histo-910	

molecular details of tumor heterogeneity. A) MSI based unsupervised clustering analysis of a 911	

RO patient sample. Two clusters (cluster 1 and cluster 2) are detected within the tumor area. 912	

Positions used for extraction of LC-MSMS samples are indicated by red circles extractions a-f 913	

(2 extractions for cluster 1, 4 extractions in cluster 2).  914	

B) Volcano plot of LC-MSMS data derived ratio of protein abundance (Cluster 2 / Cluster1). 915	

The –log p values of protein abundances are plotted over the difference of the protein 916	

abundance. The black line depicts the chosen significance threshold (p=0.01, 2-fold 917	

difference). Proteins above the thresholds are colored in blue and mark significant differences 918	

in protein abundance among the 2 compared regions. Proteins with increased abundance are 919	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.02.19.956433doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956433
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 	 	
	

	 49	 	
	

found on the right side of the plot, proteins with decreased abundance are found on the left 920	

side of the plot. 921	

C) Heatmap display of the significantly different proteins from extraction spots a-f. On the x-922	

axis extraction spots a-d and e-f group together by hierarchical clustering. The grouping is in 923	

correlation to the MSI clustering data. On the y axis two protein groups can be observed 924	

distinguishing the two x-axis-cluster. One group is upregulated in Cluster 1 the other group is 925	

upregulated in Cluster 2. 926	

D) StringDB network analysis of upregulated proteins in MSI-Cluster-2 (top, sample: a-d) and 927	

upregulated proteins in MSI-Cluster 1 (bottom, sample: e-f). For a given set of proteins the 928	

string data base (www.string-db.org) provides  information on a dataset in terms of protein 929	

attributes such as  interaction, function or cellular occurrence. Proteins with higher abundance 930	

in Cluster 2 are mainly mitochondrial associated proteins whereas cluster 1 shows increase 931	

abundance of cytoskeletal protein binding proteins. 932	

 933	
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