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Key findings 

• Sox17 regulates germ layer segregation by promoting endoderm differentiation while 

simultaneously repressing mesectoderm fates.  

• Functional interactions between Sox17 and canonical Wnt-signaling is a major feature of 

the GRN controlling endoderm specification and patterning. 

• Sox17 and b-catenin co-occupy a subset of enhancers to synergistically stimulate 

transcription in the absence of Tcfs.  

• Sox17 regulates the spatial expression domains of Wnt/b-catenin-responsive transcription 

in the gastrula. 
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ABSTRACT 
 
Lineage specification is governed by gene regulatory networks (GRNs) that integrate the activity 

of signaling effectors and transcription factors (TFs) on enhancers. Sox17 is a key transcriptional 

regulator of definitive endoderm development, and yet, its genomic targets remain largely 

uncharacterized. Here, using genomic approaches and epistasis experiments, we define the 

Sox17-governed endoderm GRN in Xenopus gastrulae. We show that Sox17 functionally 

interacts with the canonical Wnt pathway to specify and pattern the endoderm while repressing 

alternative mesectoderm fates. Sox17 and b-catenin co-occupy hundreds of key enhancers. In 

some cases, Sox17 and b-catenin synergistically activate transcription independent of Tcfs, 

whereas on other enhancers, Sox17 represses ß-catenin/Tcf-mediated transcription to spatially 

restrict gene expression domains. Our findings establish Sox17 as a tissue-specific modifier of 

Wnt responses and point to a novel paradigm where genomic specificity of Wnt/ß-catenin 

transcription is determined through functional interactions between lineage-specific Sox TFs and 

ß-catenin/Tcf transcriptional complexes. Given the ubiquitous nature of Sox TFs and Wnt 

signaling, this mechanism has important implications across a diverse range of developmental 

and disease contexts. 
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INTRODUCTION 
 

During embryogenesis, the pluripotent zygote progressively gives rise to specialized cell types 

expressing distinct sets of genes that, in turn, define the cell’s identity and encode proteins 

necessary for its function. Lineage specific gene expression is controlled by the genomic 

integration of signaling pathways and transcription factors (TFs) on DNA cis-regulatory modules 

(CRMs), such as enhancers, that control transcription (Heinz et al., 2015; Stevens et al., 2017). 

An important goal of developmental biology is to elucidate how signaling effectors and TFs 

interact on distinct sets of CRMs within the chromatin landscape to form gene regulatory networks 

(GRNs) that activate lineage-specific transcriptional programs whilst repressing expression of 

alternative fates (Charney et al., 2017b). This will provide a deeper understanding of how 

transcriptional networks are established, dysregulated in disease, and how GRNs might be 

manipulated for therapeutic purposes.  

 

We have addressed this in the context of endoderm germ layer specification: one of the 

earliest cell fate decisions in vertebrate development that provides a relatively simple model to 

elucidate how GRNs control lineage-specific transcriptional programs (Charney et al., 2017b).  In 

embryos and pluripotent stem cells (PSCs), Nodal/Smad2 and Wnt/ß-catenin (Ctnnb1; hereafter 

Bcat) signaling cooperate to initiate the mesendoderm program and subsequent development of 

definitive endoderm progenitors, which gives rise to the epithelia of the digestive and respiratory 

systems (Sumi et al., 2008; Zorn and Wells, 2009). Downstream of Nodal and Wnt, a core set of 

endoderm TFs: Sox17, Gata4-6, Eomes, Foxa1/2 and Mix family of homeodomain TFs execute 

the endoderm GRN (Arnold et al., 2008; Charney et al., 2017b; Engert et al., 2013; Sinner et al., 

2006).  In Xenopus where endoderm specification is well studied, the Nodal and Wnt pathways 

interact at several levels. First, maternal (m) Wnt/Bcat, active on the dorsal side of the blastula, 

is required for high levels of nodal expression at the onset of zygotic transcription (Hyde and Old, 

2000). Then Nodal and mWnt cooperate to promote the expression of endoderm TFs Sox17, 

Foxa2 and many dorsal mesendoderm organizer genes (Xanthos et al., 2002). A few hours later 

zygotic (z) wnt8 (a Nodal target) is expressed on the ventral side of the gastrula where, together 

with Nodal signaling, it promotes ventral and posterior mesendoderm identities (Charney et al., 

2017b; Stevens et al., 2017). In mammals early Wnt/Bcat similarly activates expression of Nodal 

and core endoderm TFs, with prolonged Wnt promoting posterior hindgut fate (Engert et al., 2013; 

Zorn and Wells, 2009). 
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Functional interactions between the core endoderm TFs and the Wnt pathway are thought 

to 1) segregate the transient mesendoderm into endoderm and mesoderm, 2) pattern the nascent 

endoderm into spatially distinct subtypes and 3) execute the downstream differentiation program 

to give rise to endoderm-derived lineages.  But mechanistically, how the Wnt signaling machinery 

interacts with core endoderm TFs to execute this differentiation cascade is unresolved. The 

transcriptional targets of the endoderm TFs are largely unknown, and it is unclear exactly how 

Wnt/Bcat regulates distinct spatiotemporal transcription programs in the embryo. Indeed, how the 

canonical Wnt pathway elicits context-specific transcriptional responses in its multitude of different 

biological roles from development, homeostasis and cancer is still poorly understood.  According 

to the dogma of canonical Wnt signaling, Wnt-activated Fzd-Lrp5/6 receptor complexes sequester 

the Bcat degradation complex, resulting in the stabilization and translocation of Bcat to the 

nucleus. There, it interacts with one of four Tcf HMG-box TFs (Tcf7, Tcf7L1, Tcf7L2 and Lef1) at 

Wnt-responsive CRMs (Cadigan and Waterman, 2012; Schuijers et al., 2014), ultimately 

activating a multiprotein “Wnt-enhanceosome” with the scaffold proteins Bcl9, Pygopus and the 

ChiLS complex (Gammons and Bienz, 2018). In the absence of Bcat, Tcfs are coupled with co-

repressor proteins Tle/Groucho and histone deacetylase Hdac to inhibit transcription of Wnt target 

genes. Bcat displaces Tle and recruits a co-activator complex including histone acetyltransferases 

Ep300 or Cbp to stimulate transcription (Cadigan and Waterman, 2012). How distinct context-

specific Wnt target genes are selected is unclear since all Tcfs have nearly identical DNA-binding 

specificities (Badis et al., 2009; Ramakrishnan and Cadigan, 2017) and for the most part they are 

ubiquitously expressed. An emerging idea is that the Wnt-enhanceosome also interacts with other 

lineage-specific TFs to integrate lineage-specific inputs (Gammons and Bienz, 2018; Trompouki 

et al., 2011); yet, how these impact genomic specificity in vivo  is largely untested and the idea of 

Tcf-independent Wnt-mediated transcription remains controversial.  

 

In this study we investigated the possibility that Sox17 functionally interacts with Wnt/Bcat 

to regulate transcription in the Xenopus endodermal GRN. In all vertebrate embryos, Sox17 is 

specifically expressed in the gastrula endoderm where it is required for early gut development 

(Clements et al., 2003; Hudson et al., 1997; Kanai-Azuma et al., 2002; Viotti et al., 2014). Despite 

the critical role of Sox17 in endoderm development, only few of its direct transcriptional target 

genes have been identified (e.g.: hnf1b, foxa1 and dhh) (Ahmed et al., 2004; Sinner et al., 2004; 

Yagi et al., 2008). In Xenopus, ectopic Sox17 is sufficient to initiate endoderm development in 

pluripotent blastula animal cap cells (Clements et al., 2003; Hudson et al., 1997), and co-injection 

of stabilized Bcat can enhance this activity (Sinner et al., 2004). Sox17 can physically interact 
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with Bcat  in vitro and suppress the transcriptional activity of generic Tcf/Bcat reporter constructs 

(TOPflash) in tissue culture experiments (Sinner et al., 2007; Zorn et al., 1999). However, the 

biological relevance of these interactions and whether Sox17 and Bcat functionally interact on 

chromatin to regulate the endoderm GRN remains unknown.  

 

Here, we defined the genomic targets of Sox17 in the Xenopus gastrula. In addition to 

promoting expression of endoderm genes, Sox17 also represses ectoderm and mesoderm gene 

transcription, and acts in a negative feedback loop to restrain Nodal signaling. We demonstrate 

that functional interaction with canonical Wnt signaling is a key feature of the Sox17-regulated 

GRN. Over a third of all Bcat and Sox17 genomic binding in the gastrula occur at the same CRMs. 

In some instances, Sox17 suppressed Bcat-Tcf mediated transcription, while in other cases, 

Sox17 and Bcat synergistically activated enhancers apparently independently of Tcfs, indicating 

a novel mode of regulation. These results provide new insight into the GRN controlling endoderm 

development and have implications for how Sox TFs and Bcat might interact in diverse biological 

contexts from development to cancer.  

 

RESULTS 
 
Sox17 regulates a genomic program controlling germ layer segregation and endoderm 
development 
To identify the transcriptional program regulated by Sox17, we performed RNA-sequencing (RNA-

seq) on control and Sox17-depleted Xenopus tropicalis embryos at multiple time points during 

blastula and gastrula stages (NF9-12) when the endoderm germ layer is being specified. In 

Xenopus tropicalis there are three redundant genes: sox17a, sox17b.1 and sox17b.2 (collectively 

sox17) with indistinguishable activities and identical expression in presumptive vegetal endoderm 

cells of gastrula embryos (Fig. 1A and Fig. S1A) (D'Souza et al., 2003; Hellsten et al., 2010). 

Microinjection of a combination of antisense morpholino oligos (sox17aMO and sox17bMO) 

targeting all 3 paralogs (Fig. S1B) resulted in a robust knockdown of Sox17 protein as confirmed 

by immunostaining (Fig. 1C,B). The Sox17-MO phenotype was consistent with previous reports  

(Clements et al., 2003; Sinner et al., 2006) and phenocopied mouse mutants with defective gut 

development (Kanai-Azuma et al., 2002). Injection of mRNA encoding mouse Sox17 rescued both 

the anatomical and gene expression phenotypes confirming the efficacy and specificity of the 

MOs (Fig. S1C,D). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.02.19.956565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956565


 6 

Differential expression analysis of control-MO and Sox17-MO embryos identified 1023 

Sox17-regulated genes (> 2-fold change, FDR< 5%) (Fig. 1D and Table S1). Gene Ontology (GO) 

enrichment was consistent with the Sox17-regulated transcriptome being involved in “endoderm 

formation”, “epithelial differentiation” and “digestive track morphogenesis” (Fig. S1E). In total 493 

genes were downregulated in Sox17-depleted embryos and 530 genes were upregulated. The 

time course data revealed that >75% of the differentially expressed genes were Sox17-dependent 

during the mid-late gastrula (NF10.5-12), consistent with a role in maintaining the endoderm fate 

after initial induction by Nodal signaling in the blastula (NF9) (Fig.1D and Fig. S1A). Sox17-

regulated genes include 73 TFs, including known targets foxa2 and hnf1b (Sinner et al 2004; 

Sinner et al 2006), and paracrine signaling components (Table S1) such as the Hedgehog 

pathway (dhh, hhip, gli1); a key epithelial signal in gut organogenesis. This confirms that Sox17 

sits atop of the regulatory hierarchy regulating endoderm differentiation. 

 

We next investigated how Sox17-regulated genes were spatially expressed, leveraging a 

previously published RNA-seq of different tissues dissected from gastrula embryos (Blitz et al., 

2017). As predicted, a majority of Sox17-dependent genes were enriched in the vegetal endoderm 

and dorsal mesendoderm (organizer) (Fig. 1E) including osr1, hnf1b, dhh and slc5a8 (Fig. 1F and 

Fig. S1D). Interestingly, over 30% of the genes upregulated early (NF9-10) in the Sox17-depleted 

embryos were normally enriched in the ectoderm or mesoderm tissue; examples include 

ectoderm-promoting TFs tfap2a and lhx5 (Houston and Wylie, 2003) (Fig. 1D-F) as well as the 

mesoderm TFs foxf1, tbx20 and hlx. This suggests that Sox17 plays an important role in 

repressing ectoderm and mesoderm fate in vegetal endoderm cells. Unexpectedly Sox17 also 

negatively regulated ~150 genes that are normally enriched in the vegetal endoderm and dorsal 

mesendoderm. Some of these vegetally enriched genes encoded components of the endoderm-

promoting Nodal pathway including nodal1, nodal6, gdf3, gdf6, foxh1, mix1 and bix1.1, all of which 

were upregulated in Sox17-depleted embryos (Fig. 1D-F and Fig. S1A,D). Indeed, even sox17 

transcripts were modestly increased in Sox17-MO embryos even though previous work has 

demonstrated that Sox17 directly maintains its own transcription (Howard et al., 2007) after initial 

induction by  Nodal/Smad2. These data indicate that Sox17 acts as a negative feedback inhibitor 

that restricts excessive endoderm development by restraining Nodal activity after initial induction.  

 

The observation that over 10% of Sox17-regulated genes are enriched in the organizer 

mesendoderm while Sox17 is present throughout the endoderm, suggests that Sox17 might also 

functionally interact with the Wnt and/or Bmp dorso-ventral patterning pathways to control spatial 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.02.19.956565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956565


 7 

expression. Intriguingly, we found that Sox17 regulates the expression of several Wnt/Bcat 

pathway components and targets including: dkk1, dkk2, fzd5, nodal3.1, pygo1, sia1, ror1, rsop2 

and wnt11 (Fig. 1D,F and Table S1). Together these data suggest that Sox17 regulates both 

endoderm specification and patterning while suppressing mesectoderm fate and that Sox17 

participates in feedback loops with the Wnt and Nodal pathways.  

 

Sox17 ChIP-Seq reveals direct endodermal targets and a Nodal and Wnt feedback 
To identify direct Sox17-targets we generated and validated anti-Sox17 antibodies (Fig. S2) and 

performed ChIP-seq of gastrula (NF10.5) embryos, identifying 8436 statistically significant Sox17-

bound CRMs (IDR; p<0.05). These were associated with 4801 genes (Fig. 2A), based on 

annotation to the nearest transcription start-site (TSS) by HOMER. 88% of Sox17-bound loci were 

in introns or intergenic regions more than 1kb away from the TSS, consistent with distal CRMs 

(Fig. S3A). A comparison to published ChIP-seq data of Xenopus embryos at the same stage 

(Hontelez et al., 2015) showed that most of the Sox17-bound genomic loci were also bound by 

Ep300, (Fig. 2B, E) indicative of active enhancers. Motif analysis of the ChIP-seq peaks confirmed 

that Sox17 motifs were the most enriched, as expected (Fig. 2C and Fig. S3B).  

 

A comparison to published human ChIP-Seq data revealed that 20% of the Xenopus 

Sox17-bound genes were also SOX17-bound in PSC-induced definitive endoderm (Fig. S3) 

(Tsankov et al., 2015). GO analysis of the conserved SOX17-bound genes show an enrichment 

for ‘Tgfb receptor activity’ and ‘Bcat binding’ (Fig. S3) reinforcing the notion that functional 

interaction with the Nodal and Wnt pathways is a conserved feature of the Sox17-regulated 

endoderm GRN.  

 

Intersecting the RNA-seq and ChIP-seq data identified 315 genes associated with 609 

Sox17-bound enhancers, which are likely to be direct transcriptional targets (Fig. 2A). These 

putative direct targets had significantly enriched (44%, 139/315 transcripts) expression in the 

endoderm or dorsal mesendoderm (Fig. 2D). Of the Sox17-bound and regulated genes, 197 

genes (383 peaks) were positively regulated by Sox17 (down in Sox17MOs) including slc5a8,  

hnf1b, foxa1 and dhh (Fig. 2E), all of which were previously suggested to be direct Sox17-targets. 

Sox17 negatively regulated 118 putative direct targets (up in Sox17MOs) including ectodermal 

genes (lhx5, foxi2 and tfap2a), endoderm-enriched Nodal pathway genes (nodal1, gdf3, gdf6 and 

mix1) and Wnt-regulated organizer genes (dkk and fst), suggesting direct transcriptional 

repression (Fig. 2E). Interestingly ~45% of peaks associated with Sox17-activated genes were 
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also enriched for LIM-homeodomain binding sites, in contrast to peaks from Sox17-repressed 

genes which were enriched for Tbx or Pou motifs (Fig. S3B). This suggests that Sox17 may 

coordinately engage enhancers with other core endoderm GRN TFs and mediate activation or 

repression of target genes depending on the interacting TFs. 

 

These analyses provide new insight into the endoderm GRN and reveal previously 

unappreciated roles for Sox17 in germ layer segregation and endoderm patterning involving 

functional interactions with the Nodal and Wnt pathways. These findings, together with our 

previous work demonstrating that Sox17-Bcat can physically interact in vitro (Sinner et al., 2007; 

Zorn et al., 1999) prompted us to investigate their genomic interactions. 

 

b-catenin directly regulates the endodermal transcriptome   
To test the hypothesis that Sox17 and Bcat functionally interact in vivo, we set out to identify Bcat-

regulated genes and compare these to the Sox17-regulated transcriptome. Injection of a well-

characterized Bcat-MO (Heasman et al., 2000) resulted in depletion of nuclear Bcat, reduced 

expression of a transgenic Wnt-responsive reporter (Tran et al., 2010) and the expected 

ventralized phenotype, which was rescued by co-injection of stabilized human Bcat mRNA (Fig. 

S4), thus confirming the efficacy and specificity of the Bcat knockdown. RNA-seq of control-MO 

and Bcat-MO depleted embryos at eight time points from blastula and gastrula stages (NF7-12) 

identified a total of 2568 Bcat-regulated genes (> 2-fold change, FDR < 5%), 1321 of which were 

downregulated and 1247 upregulated in the Bcat-MO embryos (Fig. 3A and Table S2). 

Remarkably the Bcat-dependent genes encoded 251 TFs, (~20% of all the TFs in the genome), 

reinforcing the notion that Wnt/Bcat initiates a transcriptional cascade in the early embryo.  

 

Intersecting the Bcat-MO RNA-seq data with previously published Bcat ChIP-seq data 

from Xenopus tropicalis gastrula (Nakamura et al., 2016) identified 898 putative direct target 

genes associated with 2616 Bcat bound CRMs. 546 genes were downregulated in the Bcat-MO 

and 352 genes had increased expression in Bcat-MO embryos (Fig. 2B). These included almost 

all of the previously known Bcat targets in early Xenopus embryos and had extensive overlap with 

other recent genomic analysis of Wnt targets in the Xenopus gastrula (Ding et al., 2017; Kjolby 

and Harland, 2017; Nakamura et al., 2016) (Fig. S5B). 

 

As expected, many of the positively regulated Bcat targets had enriched expression in the 

dorsal mesoderm (Fig. 3D) including most known organizer genes such as cer1, chrd, dkk1, frzb, 
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fst and gsc. In contrast ~30% of Bcat-bound genes with increased expression in the early Bcat-

MO embryos (NF7-9) were enriched for ectoderm specific transcripts, consistent with the 

expansion of ectoderm and loss of neural tissue in ventralized embryos (Fig. 3D). We also identify 

many direct Bcat targets that are likely to be regulated by zygotic Wnt8, (Kjolby and Harland, 

2017; Nakamura et al., 2016) including sp5, axin2, cdx1/2, fzd10, msgrn1 and eight hox genes, 

all of which were downregulated in Bcat-MOs (Fig. 3A, E). A number of zygotic Wnt-targets with 

enriched expression in the ventral mesoderm were components of BMP pathway including; 

bambi, bmp7, id2, msx1, smad7, szl, ventx1, and ventx3 (collectively known as the BMP-

synexpression group) (von Bubnoff et al., 2005). Most of these genes are known to be directly 

activated by both Bmp4/Smad1 and zWnt8/Bcat (Itasaki and Hoppler, 2010; Stevens et al., 2017) 

but were upregulated, rather than downregulated, in Bcat-depleted embryos, likely due to the 

increase in BMP/zWnt8 signaling in ventralized embryos.  

 

Most importantly, almost 200 Bcat-bound and regulated genes had endoderm enriched 

expression including most of the core endoderm TFs; sox17, foxa, eomes, gata4, mix1 and mixer 

(Fig. 3D and Table S2). Thus, contrary to the prevailing view that Bcat promotes endoderm fate 

primarily by activating Nodal ligand expression (Blythe et al., 2010; Hyde and Old, 2000), we find 

that Wnt/Bcat also directly regulates the transcription of many endodermal genes. Surprisingly, 

de novo motif analysis showed that the Bcat bound peaks were more enriched for Sox than 

canonical Tcf motifs (Fig. 3C and Fig. S5A), supporting the hypothesis that Sox17 and Bcat co-

regulate endodermal transcription. 

 

Sox17 and b-catenin co-occupy endoderm enhancers 
Intersection of the ChIP-seq datasets identified 3956 genomic loci co-occupied by both Sox17 

and Bcat, and these had epigenetic signatures of active enhancers  (Fig. 4A,B). This represents 

a third of all Sox17 genomic binding in the gastrula genome. Comparison of the Sox17-MO and 

Bcat-MO RNA-seq datasets identified 415 transcripts that were regulated by both Sox17 and 

Bcat; comprising of ~40% of the Sox17-regulated and ~15% of the Bcat-regulated transcriptome 

(Fig. 4A). These data suggest that co-regulation with Wnt/Bcat is a major feature of the endoderm 

GRN. 

 

In total, 84 genes (191 Peaks) were bound and regulated by both Sox17 and Bcat (Fig. 

4A,E). This is likely to be an underestimation of the number of direct coregulated genes, as these 

had to pass a stringent thresholding of four independent statistical tests to be included in this list.  
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A comprehensive motif analysis of the 191 co-bound and coregulated peaks using the CIS-BP 

database (Lambert et al., 2019) revealed that 78% (149/191) of the peaks contained both Sox17 

and Tcf DNA-binding motifs, often > 5 sites in each peak (e.g., dkk1, lhx5 and osr1) (Fig. S6 B,D, 

Table S5). In contrast 21% (40/191) of the peaks had Sox motifs but no obvious Tcf consensus 

sites (e.g., six1), suggesting that Bcat might be recruited to these loci independent of Tcfs. Only 

1/191 peaks had Tcf but no Sox motifs. In most cases individual genes were associated with 

multiple Sox17 and Bcat co-occupied peaks, suggesting that combinatorial binding and 

integration of several CRMs is crucial to control transcription (Fig. 4E). 

 

Since the ChIP-seq experiments were performed on whole embryos, it was possible that 

Sox17 and Bcat chromatin binding might occur in different cell populations. To test whether Sox17 

and Bcat bound the same enhancers in the same cells we performed ChIP-reChIP experiments.  

First anti-Bcat ChIP was performed on 500 gastrulae. DNA eluted from the first ChIP was then 

re-precipitated with either anti-Sox17 or a negative control IgG antibody. All 4 loci tested by ChIP-

reChIP QPCR (six1, dkk1, lhx5 and gli1) showed enrichment compared to IgG demonstrating that 

these genomic loci (~150 bp in length) were simultaneously bound by Sox17 and Bcat in 

endodermal cells. In contrast a negative control locus gtse1 which is bound by Bcat but not Sox17 

was not recovered in the ChIP-reChIP experiment (Fig. 4D). 

 

The 84 co-bound and coregulated genes fell into 4 regulatory categories (Fig. 4C, E);  

32/84 were activated by both Sox17 and Bcat (e.g., six1 and osr1) and tended to have endoderm 

enriched expression, 27/84 were activated by Bcat but repressed by Sox17 (e.g., dkk1) and these 

tended to be enriched in the organizer mesendoderm, 19/84 were positively regulated by Sox17 

and negatively regulated by Bcat (up in the Bcat MO) and finally 6/84 appeared to be negatively 

regulated by both Sox17 and Bcat. The observation that Bcat positively regulated most of these 

genes (59/84, 70%) was consistent with its known role in transcriptional activation. Sox17 

positively regulated 60% of targets and repressed 40% of targets, suggesting context-dependent 

activity. For further analysis we focused on the two major regulatory groups; genes/enhancers 

activated by both Sox17-Bcat and activated by Bcat but repressed by Sox17 (Fig. 4E).  

 

Sox17 and b-catenin coordinate spatial expression domains in the embryo 
It was possible that the overlap in Sox17- and Bcat-regulated genes was largely due to the Sox17-

Wnt feedback loop where Bcat is required for robust sox17 expression and Sox17, in turn, 

regulates the expression of Wnt-pathway components. While this is likely to be part of the 
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mechanism, we directly tested the functional necessity for both Sox17 and Bcat in epistasis 

experiments, asking whether injection of sox17 RNA could rescue coregulated genes in Bcat 

depleted embryos and vice versa. Co-injection of mSox17 mRNA could not rescue the normal 

expression patterns of six1, osr1, lhx5 or dkk1 in Bcat-MO embryos, but it did rescue foxa1 

expression (Fig. 5). This demonstrates that reduced Sox17 in Bcat depleted embryos cannot 

account for the disrupted six1, osr1, lhx5 or dkk1 expression, but it can account for the reduced 

foxa1 expression. Similarly, co-injection of stabilized (ca)Bcat mRNA rescued the normal 

expression of foxa1 but not six1, osr1, lhx5 or dkk1 in Sox17-morphants indicating that the defects 

in their expression were not simply due to reduced Wnt signaling (Fig. 5).   

 

These experiments also show that Sox17 and Bcat coordinate spatial gene expression in 

the embryo in a complex gene-specific manner. Wnt/Bcat stimulates expression of lhx5 in the 

ectoderm, but Sox17 represses this activity in the presumptive endoderm. Sox17 and Bcat are 

both required for robust expression of osr1 and six1 in the endoderm and dorsal mesendoderm 

respectively. In contrast Sox17 normally suppresses Bcat-activated expression of dkk1 in the 

deep endoderm. Together, with their co-occupancy at CRMs, these data show that Sox17 and 

Bcat are both required to directly regulate transcription in discrete spatial domains. 

 

Sox17 and Bcat synergistically regulate transcription of endodermal enhancers. 

To examine how Sox17 and Bcat directly regulate endodermal transcription, we selected four 

exemplar co-occupied enhancers: a) a proximal six1 enhancer located  -1kb from the TSS, b) a 

proximal dkk1 enhancer located -1.6kb from its TSS  (Fig. 6B), c) a distal  -7.5kb  dkk1 enhancer 

and d) a -1kb lhx5 enhancer (Fig. S7C, E). We focused most of our analysis on six1 and dkk1 

which are both expressed in the dorsal mesendoderm but have opposite regulation. Sox17-Bcat 

promotes six1, whilst Sox17 represses Bcat activation of dkk1 (Fig. 5).  

 

The -1kb six1 enhancer is evolutionarily conserved from Xenopus to human containing 

three Sox-binding sites but no predicted Tcf binding sites (Fig. 6B). In mouse, this enhancer can 

drive transgenic expression in the embryonic gut tube, although the TFs that modulate it were 

previously unknown (Sato et al., 2012). Analysis of published ChIP-seq data indicate that, like in 

Xenopus, the human SIX1 CRM is also bound by SOX17 in human PSC-derived endoderm (Fig. 

S7A) (Tsankov et al., 2015).  Mammalian Dkk1 is also known to be a direct Bcat-Tcf target (Niida 

et al., 2004), but the enhancers that regulate its expression in the gastrula had been previously 
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uncharacterized. Unlike the -1kb six1 enhancer, the -1.6kb and -7.5 dkk1 enhancers as well as 

the -1kb lhx5 enhancer harbors both Tcf and Sox DNA-binding sites (Fig. 6B, S7 and  file S1).  

 

We cloned each of these CRMs into luciferase (luc) reporter constructs and tested whether 

they require Sox17 and Bcat for enhancer activity in Xenopus embryos (Fig. 6A). Targeted 

microinjection into different cells of 32-cell-stage Xenopus embryos showed that all the reporters 

recapitulated the endogenous spatial expression indicating that they are bona fide enhancers. 

The six1 and dkk1 reporters were both active in the dorsal-anterior endoderm, but not the ventral 

endoderm or ectoderm (Fig. 6C,E, S7F), whereas the lhx5 reporter was only active in the dorsal 

ectoderm (Fig. S7D). Depletion of endogenous Sox17 or Bcat abolished expression of the -

1six1:luc (Fig.6C), and this was rescued by adding back mSox17 to Sox17-MO or by adding back 

caBcat mRNA to Bcat-MO embryos. However, co-injection of mSox17 could not rescue 

expression in Bcat-MO embryos and nor could caBcat RNA rescue expression in Sox17-MOs 

(Fig. 5, 6C). These epistasis experiments indicate that both Sox17 and Bcat are required for 

activation of the -1kb six1 enhancer. The human SIX1:luc construct exhibited identical activity to 

the Xenopus six1:luc enhancer (Fig. S7B). In contrast, in the case of the -1.6kb dkk1, -7.5kb dkk1 

and the -1kb lhx5:luc constructs, depletion of Bcat abrogated reporter activity, whereas Sox17 

depletion resulted in significantly elevated reporter activity, indicating that Sox17 restricts Bcat-

mediated transactivation of the dkk1 and lhx5 enhancers (Fig. 6E, S7D,F).  

 

To test whether Sox17 and Bcat were sufficient to regulate the enhancers, we assayed 

their activity in ventral ectoderm tissue which does not express endogenous Sox17 and has low 

Wnt/Bcat activity. Injection of mSox17 but not caBcat mRNA was sufficient to stimulate the -1kb 

six1:luc and human SIX1:luc reporters in the ectoderm, but co-injection of caBcat along with 

mSox17 synergistically activate the reporters (Fig. 6C, S7B). On the other hand, caBcat but not 

mSox17 was able to activate the dkk1 and lhx5 reporters in ventral ectoderm, and co-injection of 

mSox17 suppressed the ability of caBcat to stimulate these reporters (Fig. 6E, S7D,F), consistent 

with the endogenous  regulation (Fig. 5). The ability of Sox17 to activate the six1 reporters or 

suppress Bcat-induced activation of the dkk1 and lhx5 reporters required the DNA-binding 

function of Sox17. A M76A point mutation in mSox17, known to disrupt the DNA-binding HMG 

domain (Sinner et al., 2007) significantly reduced Sox17’s ability to  (Fig. 6C, E, S7B,D,F).  

 

The six1 enhancer is predicted to have only Sox17 sites with no evidence of Tcf-binding 

sites, whereas the dkk1 and lhx5 enhancers have both Sox17 and Tcf sites. To test whether or 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.02.19.956565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956565


 13 

not Tcfs regulate these enhancers, we injected a Tcf7l1-VP16 fusion construct which 

constitutively activates Tcf-target gene transcription (Darken and Wilson, 2001). As predicted, this 

had little to no impact on the six1 reporter, but robustly activated the dkk1 and lhx5 reporters in 

ventral ectoderm (Fig. 6D,F, S7B,D,G). We next mutated the Sox17 and Tcf binding sites in the 

six1 and dkk1 enhancers and examined the impact on Sox17, Bcat and Tcf regulation. Loss of 

the Sox17 sites abolished normal and Sox17/Bcat-induced expression of the six1:luc reporter 

(Fig. 6D). In contrast mutation of the Sox sites in the enhancers resulted in elevated reporter 

activity consistent with Sox17-mediated repression (Fig. 6F and S7G). Deletion of the Tcf sites in 

the dkk1 enhancers abolished expression in the dorsal mesendoderm as well as Bcat or Tcf7l1-

VP16 induced activation in the ventral ectoderm, consistent with Bcat-Tcf complexes activating 

these enhancers (Fig. 6F and S7G). 

 

From these collective data, we conclude that Sox17 and Bcat synergistically activate the  

six1 enhancer, likely in a Tcf-independent manner. In contrast, the dkk1 and lhx5 enhancers are 

activated through a Bcat/Tcf transcription mechanism, with Sox17 spatially restricting Bcat/Tcf 

activity to maintain cell-type specific gene expression (Fig. 7).  

 
DISCUSSION 
 
Overview of findings  
Sox17 is a key regulator of vertebrate endoderm development and morphogenesis, yet 

surprisingly, the transcriptional program that it regulates has been poorly characterized until now. 

Here we defined the Sox17-regulated GRN in Xenopus gastrulae, which includes many 

conserved SOX17 genomic targets in PSC-derived human definitive endoderm. We show that in 

addition to acting atop a transcriptional hierarchy promoting endoderm differentiation, Sox17 has 

previously unappreciated roles in endoderm patterning and germ layer segregation. We 

demonstrate that functional interaction with the canonical Wnt signaling pathway is a major 

feature of the Sox17-regulated GRN. Over a third of all Bcat and Sox17 genomic binding events 

in the gastrula occur at the same enhancers, where they coordinately regulate spatial gene 

expression in the embryo. Our data suggest that Sox17 and Bcat synergistically activate a subset 

of endodermal enhancers in the absence of Tcfs, whereas at other enhancers, Sox17 modulates 

Bcat-Tcf mediated transcriptional activation. Together these results provide novel insights into the 

establishment of the endoderm GRN and suggest a new paradigm where Sox17 acts as a tissue 

specific modifier of Wnt-signaling responses. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.02.19.956565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956565


 14 

The Sox17-Bcat regulated endodermal GRN  
Our genomic study revealed an extensive overlap between Sox17- and Bcat-regulated genes. 

Together with previous work (Charney et al., 2017b; Zorn and Wells, 2009), this suggests that 

Sox17 and the other core endoderm TFs interact with Wnt and Nodal in a series of positive and 

negative feedback loops to control germ layer segregation and modulate spatial gene expression. 

We showed that in addition to its known role in activating transcription of endoderm-inducing nodal 

ligands (Blythe et al., 2010; Hyde and Old, 2000), Bcat directly promoted the expression of many 

endodermal genes including most of the core endoderm TFs; sox17, eomes, foxa, gata4/5, mix1 

and mixer. Sox17 also regulated the expression of other endoderm GRN components; promoting 

expression of foxa1 and gata4, whilst negatively regulating the expression of some nodal and 

mix/bix genes. Thus on one hand, Sox17 promotes endodermal fate,  while it restrains excessive 

Nodal signaling on the other. There is precedence for Sox factors influencing nodal ligand 

transcription. Maternal Sox3, localized in the blastula ectoderm, directly binds the nodal5/6 

enhancers to repress Bcat-stimulated transcription, whereas vegetally localized maternal Sox7 

enhances nodal5/6 expression in the vegetal cells (Zhang and Klymkowsky, 2007). This suggests 

a potential handoff model where different Sox TFs might co-occupy the same enhancers with 

Bcat in different cells to activate or repress transcription in a context-dependent manner.  

 

Our data demonstrate that Sox17-Bcat interactions regulate spatial gene expression in 

the embryo (Fig. 7). Sox17-Bcat interact at some enhancers like six1 and osr1 to promote 

transcription in the endoderm and dorsal mesendoderm. In addition, Sox17 also has a key role in 

repressing alternative lineages in the vegetal cells, similar to the maternal TFs Foxh1, Vegt and 

Otx1 (Chiu et al., 2014; Paraiso et al., 2019). For example, Sox17 represses Bcat/Tcf-stimulated 

expression of the ectoderm specifying TFs lhx5 (Houston and Wylie, 2003). Sox17-Bcat 

interactions also impact spatial expression within the endoderm. Sox17 inhibits the Bcat-Tcf 

stimulation of the dkk1 enhancer in the deep endoderm, but in the dorsal mesendoderm where 

Bcat activity is higher, Sox17 appears insufficient to suppress dkk1. The finding that six1 and dkk1 

are under opposite regulation by Sox17 and Bcat despite having very similar expression patterns 

warrants future analysis of the temporal-spatial dynamics in Bcat, Tcf and Sox17 genomic 

occupancy in dorsal vs ventral cells over time.  
 

DNA Binding Specificity of SOX TFs 

An important consideration is how Sox17 selects specific target enhancers. In DNA-binding 

experiments, all Sox TFs bind to variants of the DNA sequence 5’-(A/T)(A/T)CAA(A/T)3’, which is 
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similar but distinct from Tcf DNA-binding sites 5’-T(A/T)(A/T)CAAG 3’  (Hou et al., 2017; She and 

Yang, 2015). SOX TFs can act either as monomers or heterodimers with different cell-type 

specific cofactors, which in turn impact their DNA-binding affinity and ability to activate or repress 

transcription (Bernard and Harley, 2010; Hou et al., 2017). For example, in PSCs, Oct4-Sox2 

heterodimers promote pluripotency and bind to distinct sites than those bound by Oct4-Sox17 

complexes that initiate mesendoderm development (Aksoy et al., 2013). It is, therefore, likely, that 

Sox17 and Bcat cooperate with other TFs to provide lineage specificity to Wnt-responsive 

transcription during germ layer segregation. 

 

Motif analysis revealed that Sox17 bound loci were also enriched for Tbx and Gata motifs 

indicating that in addition to regulating each other’s expression, the core endoderm TFs act 

together in combinatorial manner, perhaps to establish endodermal super enhancers crucial for 

downstream lineage specification (Paraiso et al., 2019). Interestingly, enhancers that were 

negatively regulated by Sox17 were enriched for Tbx and Oct motifs whereas enhancers activated 

by Sox17 were enriched for homeodomain motifs. This suggests that Sox17 interactions with 

distinct lineage-specific TFs could elicit a context-specific transcriptional response. In the future, 

it will be important to identify and integrate the genomic targets of all the core endoderm-specifying 

TFs and examine how combinatorial enhancer binding is integrated into a unified endodermal 

GRN.  

 
Sox-Bcat-Tcf Interactions on chromatin 
Many SOX proteins, including Sox17, can bind to recombinant Bcat and Tcfs in vitro and modulate 

Wnt/Bcat-stimulated transcription of synthetic reporters assays with multimerized Tcf-sites 

(pTOPFlash) (Sinner et al., 2007; Zorn et al., 1999). While a number of models have been 

proposed to explain how Sox factors might impact Bcat activity, (Kormish et al., 2010; She and 

Yang, 2015; Tan et al., 2019), in most cases the in vivo biological relevance of these interactions 

was unclear. Although the resolution of ChIP-reChIP assays only allow us to demonstrate that 

Sox17 and Bcat bind chromatin within 150bp of each other, taken together with published in vitro 

data, our results suggest that Sox-Bcat or Sox-Bcat-Tcf transcriptional complexes can be 

assembled on enhancers in vivo.  

 

At enhancers like six1 where Sox17 and Bcat synergistically stimulate transcription, we 

postulate that Sox17 and Bcat recruit Ep300/Cbp to chromatin, analogous to Tcf-Bcat in canonical 

Wnt-signaling. Consistent with this, structure-function studies have found that a conserved 10 
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amino-acid domain (VDXXEFEQYL) in the Sox17 C-terminus is required for both Bcat-binding 

and transcriptional transactivation (Sinner et al., 2004). On the other hand, most Bcat and Sox17 

co-occupied enhancers contain multiple Sox and Tcf sites clustered within 50 bp, suggesting that 

Sox17 and Tcf, together with Bcat and scaffolding proteins like Bcl9, (Gammons and Bienz, 2018; 

Masuda and Ishitani, 2017) might assemble higher-order multiprotein complexes facilitating Wnt-

mediated transcription. Both Soxs and Tcfs are HMG-domain containing TFs, capable of binding 

to the minor groove of DNA and inducing DNA bending. This could further indicate that they are 

brought into close spatial proximity to establish the assembly of functional enhanceosomes, 

despite the distance between their binding sites on linear DNA (Bernard and Harley, 2010; Hou 

et al., 2017).  

 

The possibility of Sox-Bcat-Tcf ternary complexes raises the question of competitive vs 

cooperative DNA binding that, in turn, could influence transcriptional repression versus activation. 

For example, Sox17 might stabilize the formation of Bcat-Tcf-Ep300 complexes or destabilize the 

binding of co-repressors such as Tle and Hdac to promote transcription (e.g., osr1).  To negatively 

regulate Bcat-Tcf activity (e.g.,dkk1) Sox17 might destabilize Bcat-Tcf-Ep300-DNA or stabilize 

Tcf-Tle complexes. This idea is supported by work in mouse cortical neuron progenitors where 

Sox2 binds within 4-10bp of Tcf/Lef sites and recruits Tle/Gro corepressors to repress Tcf/Bcat-

mediated Ccnd1 expression (Hagey and Muhr, 2014). Future biochemical studies will need to 

determine if and how Sox-Bcat-Tcf complexes assemble on DNA. 
              
Broader Implications  
Although a growing number of non-Tcf Bcat-binding TFs have been reported, (Gammons and 

Bienz, 2018; Notani et al., 2010; Trompouki et al., 2011), how these impact the genomic specificity 

of Wnt-responsive transcription has not been well characterized and the idea of functional Tcf-

independent Wnt transcription remains controversial (Doumpas et al., 2019; Schuijers et al., 

2014). Our data suggest that in the gastrula endoderm, Sox17 might influence Bcat recruitment 

to chromatin to control cell-type specific Wnt-responsive transcription, and in some cases, this 

might could occur independent of Tcfs. Given that there are 20 Sox TFs encoded in the vertebrate 

genome with most cell types expressing at least one, it is possible that  SOX factors are 

widespread and previously unappreciated accessory effectors of Bcat that finetune Wnt-regulated 

transcription across many biological contexts. 
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METHODS 
 
Xenopus embryo manipulations 
Xenopus laevis and Xenopus tropicalis were purchased from Nasco or the National Xenopus 

Resource and experiments were performed according to CCHMC IACUC approved protocols. 

Embryos were staged according to Nieuwkoop and Faber (NF) (Nieuwkoop and Faber, 1967). 

Microinjection and embryo culture were preformed as previously described (Stevens et al., 2017)  

Antisense morpholino oligos (MO; GeneTools, LLC) were as follows: 

Standard control MO: 5’CCTCTTACCTCAGTTACAATTTATA-3’; 

X.tropicalis ß-catenin MO: 5’ TTTCAACAGTTTCCAAAGAACCAGG 3’;  

X. tropicalis sox17a MO: 5’-AGCCACCATCAGGGCTGCTCATGGT-3’   

X. tropicalis sox17b.1/2 MO: 5’-AGCCACCATCTGGGCTGCTCATGGT-3’  

X.laevis ß-catenin MO: 5’TTTCAACCGTTTCCAAAGAACCAGG-3’ (Heasman et al., 2000);  

X.laevis sox17a MO: 5’-ATGATGAGGAGGGTTGGACAGGAGA-3’ (Clements et al., 2003); 

X.laevis sox17b1/2 MO: 5’-TGATTCGGAGTGCTGTGGTGATTAG-3’ (Clements et al., 2003); 

Total amounts of MO injected into X.tropicalis embryos were as follows: 2ng Bcat MO, 8ng sox17 

MO (4ng each a+b1/2 MO), 8ng standard control MO.   
 

Synthetic mRNA for injections was generated using the Message Machine SP6 

transcription kit (Thermo Fisher AM1340) using the following plasmids:  pCS2+ human B-catenin 

S37A caBCAT) (Zorn et al., 1999); pcDNA6-V5-mouse Sox17 (mSox17) and  pcDNA6-V5-Sox17 

M76A (Sinner et al., 2007); pCS2+ Tcf7l1:VP16 (formerly XTcf3:VP16) (Darken and Wilson, 

2001). 

 
In situ hybridization 
 In situ hybridization of Xenopus tropicalis embryos was performed as described (Sive et al., 2000) 

with the following minor modifications.  After overnight fixation at 4°C in MEMFA, embryos were 

washed (2x10 minutes) in MEMFA buffer without the formaldehyde and stored in 100% ethanol 

at -20°C.  Embryos were serially rehydrated to PBS+0.01% Tween-20 and bisected through the 

dorsal-ventral axis in on 2% agarose coated dishes using a fine razor blade (Electron Microscopy 

Services 72003-01), followed by Proteinase K (ThermoFisher AM2548) treatment at 1ug/mL for 

10 minutes. TEA/Acetic Anhydride steps were skipped on day1. The RNAse A step was 

0.25ug/mL for 5 minutes on day 2; and finally the anti-DIG-alkaline phosphatase antibody (Sigma 

11093274910) was used at a 1:6,000 dilution in MAB buffer + 20% heat-inactivated lamb serum 
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+ 2% blocking reagent (Sigma 11096176001) on day2/3. Anti-sense DIG labeled in situ probes 

were generated using linearized cDNA templates with the 10X DIG RNA labeling mix (Sigma 

11277073910) according to manufacturer’s instructions. Details on plasmids used for probe 

synthesis are listed in supplementary table S7.    

 

Antibodies and Immunostaining 
 Affinity purified anti-Xenopus Sox17 rabbit polyclonal antibodies were generated by Bethyl labs 

to the Sox17a/b N-terminal, Sox17b C-terminal and Sox17a C-terminal with the peptides 

illustrated in Fig. S2.  Antibodies were validated by immunostaining, Western blot, 

immunoprecipitation and ChIP. Immunoreactivity was not detected in Sox17 deficient tissue and 

specifically competed by addition of the target peptide to reactions. In preliminary ChIP-qPCR 

experiments, the pan-Sox17 and  Sox17bC-terminal antibodies bound to the same loci, but the 

Sox17bC-terminal was more efficient and was used for ChIP-seq.  

 

For Xenopus immunofluorescence, embryos were fixed in ice-cold 100mM NaCl, 100mM 

HEPES (pH7.5), 3.7% methanol-free paraformaldehyde for 1.5 hours at 4°C and then dehydrated 

directly into ice-cold Dent’s post-fixative (80%Methanol/20% DMSO) and stored at −20°C. 

Embryos were serially rehydrated on ice into PBS+0.1% TritonX-100 (PBSTr) and bisected 

through the dorsal-ventral axis with a fine razor blade.  Embryo halves were subjected to antigen 

retrieval in 1x R-Universal epitope recovery buffer (Electron Microscopy Services #62719-10) for 

30 min at 55-60°C, washed 2 x 10 minutes in PBSTr, blocked for 2 hours in PBSTr + 10% normal 

donkey serum (Jackson Immunoresearch 017-000-001) + 0.2% DMSO at room temperature, and 

then incubated overnight at 4°C in this blocking solution + the following primary antibodies: 

chicken anti-GFP (Aves GPF-1020; diluted 1:1,000), rabbit anti-Sox17a/b N-terminal (1:350), 

rabbit anti-B-catenin (Santa Cruz Biotechnology sc-7199; 1:500). After extensive washing in 

PBSTr, samples were incubated overnight at 4°C in PBSTr + secondary antibodies: donkey anti-

Chicken 488, donkey anti-rabbit Cy3 (Jackson ImmunoResearch # 703-546-155, #711-166-152, 

both used at 1:1,000 dilution).TO-PRO3 nuclear stain (ThermoFisher #T3605) was included in 

one 30min PBSTr wash after secondary antibody incubation.  Samples were  extensively 

washed in PBSTr, dehydrated into 100% methanol, cleared and imaged in Murray’s Clear (2 parts 

benzyl benzoate, 1 part benzyl alcohol). 
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Luciferase Assays 
Putative enhancers (wildtype as Sox and Tcf-site mutants) were synthesized (supplementary 

sequence file S1) and cloned into the pGL4.23 luc2/miniP vector. (Promega E8411). Xenopus 

laevis embryos were used for luciferase assays because of the larger size embryos and slower 

developmental rate. Enhancer activity was assayed by co-injecting embryos with  5pg of pRL-TK-

renilla luciferase vector (Promega E2241), 50pg of the pGL4.23 luc2/miniPenhancer:luciferase 

and combinations of the following MOS or mRNAs:  5pg ca-Bcat, 25pg mSox17, 25pg mSox17 

M76A, 10pg Tcf3-VP16, 20ng Xl sox17a+b1/2 MO (10ngeach), 10ng Xl bcat MO. For each 

condition three tubes of 5 NF10.5 embryos were collected. Embryos were lysed in 100uL of 

100mM TRIS-Cl pH7.5, centrifuged for 10 minutes at ~13,000 x g and then 25uL of the clear 

supernatant lysate was used separately in Firefly (Biotium #30085-1) and Renilla (Biotium 30082-

1) luciferase assays according to the manufacturer’s instructions. The average relative Luciferase 

activity was normalized Renilla levels for each sample and statistical significance was determined 

by pairwise Student T-test.  

 
RNA-Sequencing  
RNA isolation and library preparation: Approximately 200 X. tropicalis embryos were injected 

with 8 ng of either control-MO or Sox17-MO, or  2 ng of control-MO and Bcat-MO and 10 sibling 

embryos were collected at every time point from blastula to late gastrula in biological duplicate. 

Total RNA was extracted with the Nucleo-spin RNA kit (Machery-Nagel). RNA-seq libraries were 

generated using Smart-seq2 cDNA synthesis followed by tagmentation, quality-tested using an 

Agilent Bioanalyzer 2100, quantified using KAPA qPCR and sequenced using Illumina 

sequencers at the UC Irvine Genomics High Throughput Facility.  

 

RNA-Seq Analysis: Raw reads were quality checked using FastQC and adapters/low quality 

reads were removed with Trimmomatic (Bolger et al., 2014). Reads were mapped to the Xenopus 

tropicalis genome version 9.0 (Hellsten et al., 2010) with bowtie2, quantified using RSEM (Li and 

Dewey, 2011) and reported in transcripts per million (TPM). X. tropicalis v9.0 gene name 

annotations were obtained from Xenbase.org (Karimi et al., 2018). Differentially expressed genes 

(>2 fold change and FDR < 5%) were identified by a pairwise comparison between control-MO 

versus Sox17-MO and control-MO versus Bcat-MO sibling embryos at each stage using RUVSeq 

(R package) (Risso et al., 2014). Gene ontology enrichment analysis was performed using the 

Gene Ontology Consortium Online Resource (http://geneontology.org).  
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To assess the spatial expression of transcripts we examined the TPM expression values 

in dissected stage 10.5 embryos from published data in GEO GSE81458 (Blitz et al., 2017).  

Enriched expression in a specific tissue was defined as the normalized expression being >1.5x  

of the mean expression across dissected tissues. Statistical significance of enriched expression 

pattern in groups of genes was  determined by chi-square test p<0.05 performed in R package 

MASS. 

 
Chromatin Immunoprecipitation  
ChIP-Seq: Large scale Sox17 ChIP was carried out as previously described (Charney et al., 

2017a) using 2000 NF10.5 X. tropicalis embryos and 30 µg rabbit anti-Sox17b-Cterminal 

antibody. ChIP-seq libraries were generated using Nextflex ChIP-seq kit (Bio Scientific), analyzed 

using an Agilent Bioanalyzer 2100, quantified using KAPA qPCR and sequenced using Illumina 

instruments at the UC Irvine Genomics High Throughput Facility.  

 

ChIP-qPCR: was carried out largely as described in (Charney et al., 2017a; Hontelez et al., 2015) 

with minor modifications. Briefly, 50-200 NF 10.5 Xenopus tropicalis embryos were fixed in 1% 

formaldehyde in 0.1x MBS at room temperature for 30 minutes. Sonication was carried out in a 

Diagenode Bioruptor Pico for 30 cycles of 30 seconds ON, 30 seconds OFF. Chromatin extracts 

were incubated with 10 µg rabbit anti-Sox17-Cterminal antibody (affinity purified by Bethyl labs, 

FigS2) or 2.5 µg rabbit anti-b-catenin (Life Technologies, 712700) overnight at 4°C. After washes 

and elution, DNA was then purified using a MinElute PCR Purification kit and QIAQuick 

purification columns and eluted in 20µl TE.  

 

ChIP-reChIP: Before the first ChIP, the anti-b-catenin antibody was crosslinked to Protein G 

Dynabeads. ChIP assay was then carried out on extracts from 500 embryos as described above. 

At the end of the first ChIP, DNA was eluted with elution buffer supplemented with 10mM DTT. 

The eluate was then diluted in 10 volumes of wash buffer (50mM Tris-HCl pH 8.0, 100mM NaCl, 

2mM EDTA, 1% NP-40) supplemented with 1x Protease Inhibitor Cocktail and 1mM DTT. The 2nd 

ChIP was then carried out as a normal ChIP as described above.  

 

ChIP-Seq Analysis: Raw reads were assessed by FastQC and trimmed with Trimmomatic and 

aligned to Xenopus tropicalis genome (Hellsten et al., 2010) version 9.0 using bowtie2 v2.3.4.7 
(Langmead and Salzberg, 2012). Duplicate and multi-mapped reads were removed by Picard 

(http://broadinstitute.github.io/picard/) and samtools (Li et al., 2009). Peaks were called with 
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MACS2 (Zhang et al., 2008) against NF10.5 input DNA with default options.  Peaks were 

associated with genes using the HOMER nearest TSS function. To identify statistically significant 

ChIP-seq peaks we performed Irreproducible discovery rate (IDR) analysis per ENCODE Best 

Practices guidelines (Landt et al., 2012) on pseudoreplicate from pooled Sox17 ChIP-seq 

biological replicates and pseudoreplicate of the single Bcat ChIP-seq dataset from GEO 

GSE72657 (Nakamura et al., 2016) with an IDR threshold of 0.01. The location of peaks (intron, 

intergenic, exon and promoter) were annotated using HOMER v4.1.0 (Heinz et al., 2010). To 

visualize the data, aligned bam files generated as above were converted to bigwig format using 

deeptools v3.4.1 and visualized on IGV v2.4.1.3 (Thorvaldsdottir et al., 2013). Significance of 

intersected ChIP-seq and RNA-seq datasets was assessed using hyper geometric test (HGT). 

 

Motif analysis: De-novo motif analysis was performed with HOMER v4.1.0 (Heinz et al., 2010). 

For a comprehensive Sox and Tcf motif analysis, we divided our datasets into 3 groups: a) Peaks 

bound and regulated by Sox17 only, b) Peaks bound and regulated by Bcat Only and c) Peaks 

that were cobound and coregulated by Sox17 and Bcat. DNA sequences of 150 bp centered on 

the peaks summits were extracted and motif analysis was carried out as follows: 1) To find which 

peaks have instances of Sox17 and Tcf motifs, HOMER function annotatePeaks.pl was used with 

the parameters: -size 150 -m motif sox17.motif tcf7.motif lef1.motif tcf3.motif tcf7l2.motif. 2) To 

perform a more exhaustive motif search the enhancers were also scanned for presence of 

position weight matrices (PWMs) of experimentally defined Sox17, Tcf7, Tcf7l1 and Lef1 motifs  

> 70% threshold from the CIS-BP database (Lambert et al., 2019). The HOMER and CIS-BP 

results were merged to generate BED files and Bedtools v2.27.1 (Quinlan and Hall, 2010) 

intersect function was then used to extract coordinates of ‘Sox only’ ‘Tcf only’ and ‘Sox and Tcf 

overlapping’ categories.  

 

Peak density heatmaps: From the Sox17 and Bcat peaks called by MACS2, Bedtools intersect 

function was used to stratify the peaks into ‘Sox bound only’, ‘Bcat bound only’ and ‘Sox and Bcat 

overlapping peaks’. For each category of peaks, the peak summit was extracted from the TF 

summit file generated by MACS2 and 2000 bp were added to both sides of the summit using awk. 

Bedtools computematrix was used to generate per genome regions. The generated matrix was 

then used with bedtools plotHeatmap to generate heatmaps and signal density plots.     
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Analysis of public datasets:  
The following datasets were downloaded from GEO: Embryo dissection RNA-seq; GSE81458 

(Blitz et al., 2017), embryonic stage series RNA-seq; GSE65785; (Owens et al., 2016),  Bcat 

ChIP-seq; GSE72657 (Nakamura et al., 2016), RNA pol II ChIP-seq; GSE85273 (Charney et al., 

2017a), H3K27Ac ChIP-seq; GSE56000 (Gupta et al., 2014), H3K4me1 and Ep300 ChIP-seq; 

GSE67974 (Hontelez et al., 2015). Wherever necessary, raw data was downloaded from GEO 

and aligned to Xenopus genome version 9.0, and processing to generate bigwig files and 

heatmaps was carried out as described above.  
 

Data and software availability: 
The RNA-seq and ChIP-seq data generated by this study have been deposited in the NCBI 

Gene Expression Omnibus (GEO) and can be accessed under GSE148726 (reviewer 

password: choluuuefpkprsb).  
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Fig. 1. Sox17-regulated endoderm transcriptome.  
(A) Endoderm expression of sox17a and sox17b in NF10.5 Xenopus tropicalis gastrula. (B-C) Sox17 

immunostaining in control-MO (B) and sox17a/b-MO (C) injected gastrula with an antibody that recognizes 

both Sox17a and Sox17b shows MO effective knockdown. (D) Time course heatmap of Sox17-regulated 

transcripts. Differential expressed genes from a pairwise comparison of control-MO and sox17-MO (> 2 fold 

change, FDR<5%) at each stage showing transcripts that are down regulated or up regulated early (NF9-

10) or late (NF10.5-12). Key genes are color coded based on regional expression from fate map in (E). (E) 
Enriched expression of Sox17-regulated transcripts. Gastrula fate map (dorsal right) colored by different 

tissues. Histogram showing enriched expression in differnet regions of the embryos based on RNA-seq of 
dissected gastrula tissues (Blitz et al., 2017). *p<0.05 Chi squared test relative to all genes in the genome. 

(F) In situ validation of Sox17-regulated transcripts. Disrupted expression in sox17-MOs is rescued by co-

injeciton of mouse (m) Sox17 RNA. 
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Fig. S1 Characterization of Sox17-MO embryos and Sox17-regulated transctiptome  
(A) Temporal expression of key endoderm GRN transcripts (GSE65785; (Owens et al., 2016). 

(B) Sequence alignment of antisense sox17a-MO and sox17b-MO (red) with 5’ end of Xenopus tropicalis 

sox17a, sox17b.1 and sox17b.2 mRNAs (black) spanning the ATG translation start (green). (C) In situ 
hybridization of markers for liver (nr1h5), stomach, lung, intestine and pharynx (osr1 and islet1) snowing 

that co-injection of mouse Sox17 RNA rescues gut development in sox17-MO embryos at the tailbud stage. 

(D) Additional validation of gastrula stage trasncripts downregulated (otx2, admp, dhh and gata4) or 

upregulated (wnt8 and nodal1) in sox17-MO embryos and resuce by co-injection of mSox17. (E) GO term 

enrichment analysis of Sox17-regulated genes. 
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Fig. 2 ChIP-seq identifies Sox17-bound enhancers and direct transcriptional targets. 
Sox17 ChIP-seq of gasturla embryos. Venn diagram of Sox17-bound genes (and associated peaks) from 

ChIP-seq intersected with Sox17-regulated genes. *p<0.001, hypergeometric test. (B) Peak density plots 
showing that the Sox17-bound loci are cobound by the histone acetyletransferase Ep300, a marker of active 

enhancers . Average density of all peaks in top panel. (C) Motif analysis of TF DNA-binding sites enriched 

in Sox17 peaks.  (D) Sox17-bound genes are enriched in the endoderm. The Histogram shows the regional 

expression pattern of Sox17-bound and regulated genes based on RNA-seq of dissected gastrula tissues 

(Blitz et al., 2017). p<0.05 Chi squared test relative to all genes in the genome.  (D) Genome browser views 

of representative genes showing RNA-seq expression in control-MO and sox17-MO embryos and the ChIP-

seq tracks of Sox17 and Ep300 bound genomic loci. 
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Fig. S2 Validation of anti-Sox17 antibodies. 
(A) Schematic and amino acid sequences of the Xenopus tropicalis Sox17 peptides uses to immunize 

rabbits and generate polyclonal antibodies to; pan-Sox17 N-terminal, Sox17b C-terminal and Sox17a C-

terminal.  (B) Immunoprecipitation of Xenopus laevis embryos expressing V5 epitope tagged versions of 

Sox17a-V5 and Sox17b1-V5. Anti-V5 western blot showed that all antibodies specifically 

immunoprecipitated the target antigen but that the Sox17b C-terminal antibody was the most efficient. (C) 
ChIP-PCR validation of anti-Sox17 antibodies. In preliminary ChIP-PCR experiments the pan-Sox17 N-

terminal and Sox17b C-terminal antibodies bound to all the same positive control loci, but the Sox17b C-
terminal antibody was more efficient (data not shown) and was used for further optimization and the  ChIP-

seq analysis. The histogram shows the relative fold change of Sox17b binding versus IgG control in ChIP-

PCR of positive control loci and the negative control loci odc all normalized to a second negative control 

loci eef1a1. Addition of the Sox17b C-terminal peptide reduced the ChIP signal in a dose-dependent 

manner indicating specific binding.  
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Fig. S3 Analysis of Sox17-bound chromatin loci 
(A) Genomic distriputions of 8436 Sox17 bound chromatin loci. ChIP-seq peaks were associated to cognate 

promoters using Homer nearest gene transcription start site (TSS). 88% of the Sox17 peaks were located 

in either introns or elements more than 1 kb from the TSS, indicative of distal CRMs. (B) De novo motif 

analysis (Homer) of Sox17 peaks associated with Sox17-regulated genes . (C) GO analysis of 4810 genes 

associated with Sox17 ChIP-seq peaks showed enrichment for endoderm development and Wnt signaling. 

(D) Comparison of the Xenopus genes associated with Sox17 ChIP-seq peaks to published human SOX17 

ChIP-seq from human embryonic stem cell (hESC)-derived definitive endoderm (GSE61475; (Tsankov et 

al., 2015). The extensive overlap indicates that Sox17 regulates an evolutionarily conserved GRN. The 
venn only includes Xenopus genes that have human orthologs, unannotated Xenopus genes were excluded 

from the analysis. (E) GO term enrichment analysis of the 1004 Sox17-bound genes conserved between 

Xenopus and human. 
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Fig. 3 The Bcat regulated genomic program 
(A) Time course heatmap of Bcat-regulated transcripts. Differential expressed genes from a pairwise 

comparison of control-MO and Bcat-MO embryos (>2 FC, FDR<5%) at each stage identified 2568 Bcat-

regulated transcripts; 1321 downregulated and 1247 upregulated in early (NF7-9.5) or late (NF10-12) Bcat-

MO embryos. Key genes are indicated color coded based on regional expression from (D). (B) Venn 

diagram of Bcat-bound genes associated with Bcat peaks from published ChIP-seq (Nakamura et al., 2016) 

intersected with Bcat-regulated genes identified 898 putative direct targets associated with 2616 peaks. 
*p<0.001, hypergeometric test. (C) Motif enrichment analysis of Bcat peaks. (D) Histogram showing the 

expression pattern of Bcat-bound and regulated genes based on RNA-seq of dissected gastrula tissues 

(Blitz et al., 2017). (E) Genome browser views of representative genes showing the RNA-seq expression 

in control-MO and Bcat-MO embryos and the ChIP-seq tracks of Bcat and Ep300 bound genomic loci. 
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Fig. S4 Validation of Bcat-MO embryos 
(A) Immunostaining of Tg(WntREs:dEGFP)Vlem Xenopus tropicalis gastrula shows the loss of nuclear Bcat 

and GFP expression from the Wnt-reproter transgene in Bcat-MO embryos demonstrating effective 

knockdown. (B-C) Co-injection of RNA encoding a human S37A stabilized Bcat recues the Bcat-MO 

ventralized phenotype.  In situ hybridization of gastrula (B) and tailbud embryos (C). In Bcat-MO gastrula 

fst and admp are downregulated in the dorsal organizer,whereas wnt8a and ventx3.1 are upregulated 

consistent with a ventralized phenotype. (C) In situ hybridization of markers for liver (nr1h5), stomach, lung, 
intestine and pharynx (osr1 and islet1) snowing that co-injection of human S37A stabilized Bcat RNA 

rescues the ventralized phenotype and disrupted gut development in bcat-MO tailbud embryos. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.02.19.956565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956565


 35 

  
 
Fig. S5 Additional analysis of Bcat ChIP-Seq  
(A) de-novo motif analysis of all Bcat bound, Bcat bound and regulated, Bcat bound and activated or 

repressed peaks. (B)  Comparison of differentially expressed genes with other recent genomic analysis of 

gastrula-stage Wnt targets (Ding et al, 2017; Nakamura et al, 2016; Kjolby and Harland, 2017)  (C) GO 

enrichment analysis of peaks corresponding to Bcat Bound and either activated or repressed genes.  
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Fig. 4 Sox17 and Bcat co-bind enhancers to regulated the endoderm GRN 

 
(A) 84 genes (191 Peaks) are cobound and coregulated by Sox17 and Bcat. Venn diagram shows that 416 

genes are regulated by both Sox17 and Bcat (left), whereas 2411 genes (3956 peaks) are bound by both 

Sox17 and Bcat. (B)  Density plots showing that Sox17 and Bcat cobound peaks are enriched for active 

enhancers marker; Ep300, H3K4me1 and H3K27Ac and RNA pol II.   (C) Regional enrichment of all subsets 

of enhancers cobound and coregulated by Sox17 and Bcat. (D) ChIP-reChIP experiments show that Sox17 

and Bcat coocupy all the test CRMs (six1, dkk1, gli1 and lhx5) in the same cells, in contrast to  the gtse1 
loci, which is bound only by Bcat. (E) Genome browser views of representative genes and the ChIP-seq 

tracks showing the genomic loci bound by Bcat and Ep300. 
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Fig. S6 Additional analysis of cobound and coregulated peaks  
de-novo motif analysis of exclusively bound, cobound and cobound/coregulated Sox17 and Bcat peaks (B)  
Frequency of Sox or Tcf sites per peak in three data subsets: peaks exclusively bound and regulated by 
Bcat, Sox17 or those that are cobound and coregulated  (C) Distribution of Sox and Tcf binding sites in 

three groups of enhancers: those bound and regulated exclusively by Sox17 or Bcat, and those 

cobound/coregulated by both. (D) GO enrichment analysis of cobound and cobound/coregulated Sox17 

and Bcat peaks.   
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Fig. 5 Sox17 and Bcat epistatsis 
In situ hybridization of gastrula embryos (dorsal right) injected with sox17-MO or bcat-MO some of which 

were co-injected with RNA encoding either mSox17 or a human S37A stabilized Bcat. The genes osr1, six1 

and foxa1 are activated by both Sox17 and Bcat, whereas dkk1 and lhx5 are activated by Bcat but 

repressed by Sox17. Co-injection of mSox17 cannot resuce normal expression in Bcat-MOs, nor can hBcat 

S37A RNA rescue Sox17-MOs indicating that both Sox17 and Bcat required for normal expression. 
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Fig. 6 Sox17 and Bcat coordinately regulate enhancers  
 (A) Experimental design. (B) IGV genome browser tracks showing Sox17 and Bcat binding and the 

predicted Sox17 and Tcf binding sites at the -1kb six1 and-1.6kb dkk1 enhancers (C-F) Luciferase assay 

of (C) wildtype (wt) -1kb six1:luc, (D) wt versus DSox-site mutant 1kb six1:luc,  (E) wt -1.6kb dkk1:luc  and 

(F) wt versus DSox-site and DTcf-site mutant -1.6kb dkk1:luc  reporters injected in different tissue with the 

indicated MOs and/or mRNAs. Standard Deivation, *p<0.05 in pairwise Student T-tests. 
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Fig. S7 Reporter assays showing Sox17 and Bcat regualted SIX1, -7.5kb dkk1 and -1kb lhx5 
enhancers. (A) Browser shot showing evolutionarily conserved SIX1 peak in human DE (Tsankov et al, 

2015). (B) Luciferase assay of -1kb SIX1 enhancer. (C) IGV track showing predicted Sox17 and Tcf binding 
sites at the co-bound -1kb lhx5 enhancer and (D) luciferase assay using the reporter constructed shown in 

C. (E) IGV track showing predicted Sox17 and Tcf binding sites in the -7.5kb dkk1 enhancer and (F-G) 
luciferase reporter assays of (F) the wt -7.5kb dkk1:luc  and (G) wt versus DSox-site and DTcf-site mutant 

-7.5kb dkk1:luc reporters injected in different tissue with the indicated MOs and/or mRNAs. Standard 

Deivation, *p<0.05 in pairwise Student T-tests. 
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Fig 7: Proposed Model  

 
  
 
Fig 7: Model of Sox17 and Bcat coregulation spatial trasncription: Differential engagement of Sox17, 

Bcat and Tcfs on enhancers in different cells modulates spatial expression domains. (A) In ectoderm cells 

lacking Sox17 (and Nodal signaling), ectoderm-specific gene lhx5 is activated through a Bcat/Tcf dependent 

mechanism while six1 and dkk1 are not transcribed. (B-C) Sox17 is expressed throughout the endoderm 

and dorsal mesendoderm, while Bcat activity is the higher in dorsal mesendoderm than deep endoderm. 
(B) In the dorsal region Sox17 and Bcat synergistically coactivate six1 in the absence of Tcf, whereas 

Sox17 exerts a repressive indluence on Bcat/Tcf-activation of lhx5 and dkk1. We postulate however that in 

the dorsal region Sox17-mediated repression is insufficient to overcome Bcat/Tcf activation of dkk1.  (C) In 

deep endoderm cells where Bcat activity is lower, Sox17 mediated repression of Bcat/Tcf is sufficient to 

repress dkk1 and lhx5 transcription, but Bcat activity is not high enough to activate six1. 
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List of Supplementary Data: 
1. Supplementary Table S1: Differentially expressed genes in RNA-Sequencing of Control and 

and Sox17MO embryos across NF 9-12. 
2. Supplementary Table S2: Coordinates of Sox17 bound peaks at NF10.5 with their gene 

annotations. 
3. Supplementary Table S3: Differentially expressed genes in RNA-Sequencing of Control and 

BcatMO embryos across NF 9 -12.  
4. Supplementary Table S4: Coordinates of Bcat bound peaks at NF10.5 with their gene 

annotations. 
5. Supplementary Table S5: Coordinates of 191 Sox17 and Bcat cobound/coregulated 

enhancers and the frequency of Sox and Tcf sites per peak.  
6. Supplementary Table S6: a. Plasmid and probe synthesis information b. ChIP-qPCR primer 

table 

7. Supplementary File S1: List of wild-type and Sox/Tcf mutated sequences used for luciferase 

assays   
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