Confirmatory Results
Interpreting Deep Neural Networks Beyond Attribution Methods: Quantifying Global Importance of Genomic Features
Peter K. Koo, Matt Ploenzke
doi: https://doi.org/10.1101/2020.02.19.956896
Peter K. Koo
1Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory
Matt Ploenzke
2Department of Biostatistics, Harvard University
3Department of Data Sciences, Dana-Farber Cancer Institute

Article usage
Posted February 20, 2020.
Interpreting Deep Neural Networks Beyond Attribution Methods: Quantifying Global Importance of Genomic Features
Peter K. Koo, Matt Ploenzke
bioRxiv 2020.02.19.956896; doi: https://doi.org/10.1101/2020.02.19.956896
Subject Area
Subject Areas
- Biochemistry (9140)
- Bioengineering (6784)
- Bioinformatics (24009)
- Biophysics (12132)
- Cancer Biology (9537)
- Cell Biology (13782)
- Clinical Trials (138)
- Developmental Biology (7638)
- Ecology (11707)
- Epidemiology (2066)
- Evolutionary Biology (15514)
- Genetics (10648)
- Genomics (14330)
- Immunology (9484)
- Microbiology (22850)
- Molecular Biology (9096)
- Neuroscience (49010)
- Paleontology (355)
- Pathology (1483)
- Pharmacology and Toxicology (2570)
- Physiology (3848)
- Plant Biology (8332)
- Synthetic Biology (2296)
- Systems Biology (6194)
- Zoology (1301)