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Abstract

Metabolic pathway reconstruction from genomic sequence information is a key step in predicting regu-
latory and functional potential of cells at the individual, population and community levels of organization.
Although the most common methods for metabolic pathway reconstruction are gene-centric e.g. mapping
annotated proteins onto known pathways using a reference database, pathway-centric methods based on
heuristics or machine learning to infer pathway presence provide a powerful engine for hypothesis generation
in biological systems. Such methods rely on rule sets or rich feature information that may not be known
or readily accessible. Here, we present pathway2vec, a software package consisting of six representational
learning based modules used to automatically generate features for pathway inference. Specifically, we build
a three layered network composed of compounds, enzymes, and pathways, where nodes within a layer mani-
fest inter-interactions and nodes between layers manifest betweenness interactions. This layered architecture
captures relevant relationships used to learn a neural embedding-based low-dimensional space of metabolic
features. We benchmark pathway2vec performance based on node-clustering, embedding visualization and
pathway prediction using MetaCyc as a trusted source. Remarkably, in the pathway prediction task, all
the modules indicate that it is possible to leverage embeddings to improve pathway prediction than the
alternative approaches.

1 Introduction

Metabolic pathway reconstruction from genomic sequence information is a key step in predicting regula-
tory and functional potential of cells at the individual, population and community levels of organization.
([1]). Exponential advances in sequencing throughput continue to lower the cost of data generation with
concomitant increases in data volume and complexity ([2]). Resulting data sets create new opportunities
for metabolic reconstruction within biological systems that require the development of new computational
tools and approaches that scale with data volume and complexity. Although the most common methods for
metabolic pathway reconstruction are gene-centric e.g. mapping annotated proteins onto known pathways
using a reference database based on sequence homology, heuristic or rule-based methods for pathway-centric
inference including PathoLogic ([18]) and MinPath ([32]) have become increasingly used to generate hy-
potheses and build quantitative models. Pathologic generates pathway genome databases (PGDBs) that
can be refined based on experimental validation e.g. EcoCyc ([19]) and stored in repositories e.g. BioCyc
([7]).

The development of accurate and flexible rule sets for pathway prediction remains a challenging enterprise
informed by expert curators incorporating thermodynamic, kinetic, and structural information for validation
([30]). Updating these rule sets as new orgaisms or pathways are discovered and validated can be cumbersome
and out of phase with current user needs. This has led to the consideration of machine learning (ML)
approaches for pathway prediction based on rich feature information. Dale and colleagues conducted a
seminal study comparing the performance of Pathologic to different types of supervised ML algorithms (naive
Bayes, k nearest neighbors, decision trees and logistic regression), converting rules into features, defining
new features, and evaluating on experimentally validated pathways from six highly curated organisms in
the BioCyc collection randomly divided into training and test sets ([8]). Resulting performance metrics
indicated that generic ML methods equaled the performance of Pathologic with the benefit of probability
estimation for pathway presence and increased flexibility and transparency of use.

Despite the potential benefits of adopting ML methods for pathway prediction from genomic sequence in-
formation, Pathologic remains the primary inference engine of Pathway Tools ([18]), and alternative methods
for pathway-centric inference expanding on the generic methods described above remain nascent. Several of
these methods incorporate metabolite information to improve pathway inference and reaction rules to infer
metabolic pathways ([5, 30, 29]). Other methods including BiomeNet ([26]) and MetaNetSim ([16]) dispense
with pathways all together and model reaction networks based on enzyme abundance information. We re-
cently implemented a multi-label classification approach to metabolic pathway inference using rich pathway
feature information called mlLGPR ([4]). mlLGPR uses logistic regression and feature vectors based in part
on the work of Dale and colleagues to predict metabolic pathways for individual genomes as well as more
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complex cellular communities e.g. microbiomes. One of the primary challenges encountered in developing
mlLGPR relates to engineering reliable features representing heterogeneous and degenerate functions within
cellular communities ([20]).

Advances in representational learning have led to the development of scalable methods for engineering
features from graphical networks e.g. networks composed of multiple nodes including information systems
or social networks ([13, 9, 25])). These approaches learn feature vectors for nodes in a network by solving
an optimization problem in an unsupervised manner, using random walks followed by Skip-Gram extraction
of low dimensional latent continuous features, known as embeddings ([23]). Here we present pathway2vec,
a software package incorporating multiple algorithms for representational learning used to automatically
generate feature representations of metabolic pathways, which are decomposed into three interacting layers:
compounds, enzymes and pathways, where each layer consists of associated nodes. A Skip-Gram model
is applied to extract embeddings for each node, encoding smooth decision boundaries between groups of
nodes in that graph. Nodes within a layer manifest inter-interactions and nodes between layers manifest
betweenness interactions resulting in a multi-layer heterogeneous information network ([27]). This layered
architecture captures relevant relationships used to learn a neural embedding-based low-dimensional space
of metabolic features (Fig 1).

(a)

(b)

Figure 1: Three interacting metabolic pathways (a), depicted as a cloud glyph, where each pathway is com-
prised of compounds (green) and enzymes (red). Interacting compound, enzyme and pathway components are
transformed into a multi-layer heterogeneous information network (b).

In addition to implementing several published methods, we develop a novel random walk algorithm, RUST
(unit-circle based jump and stay random walk), adopting a unit-circle equation to sample node pairs that
generalize previous random walk methods ([13, 9, 15]). The modules in pathway2vec were benchmarked based
on node-clustering, embedding visualization, and pathway prediction. In the case of pathway prediction,
leveraging embedding, generated using modules from pathway2vec, provide a viable solution to overcome
with hand-crafted features for the use of ML based metabolic pathway reconstruction from genomic sequence
information. To the best of our knowledge, this is the first study that employs a heterogeneous graph to
automatically recover latent structure and semantic features of metabolic pathways, and to incorporate the
learned embeddings for metabolic pathway inference.

2 Definitions and Problem Statement

In this section, we formulate the problem of metabolic feature engineering using a heterogeneous information
network. Throughout the paper, all vectors are column vectors denoted by boldface lowercase letters (e.g.,
x) while matrices are represented by boldface uppercase letters (e.g., X). The Xi matrix denotes the i-th
row of X and Xi,j denotes the (i, j)-th element of X. A subscript character to a vector, xi, denotes an i-th
cell of x. Occasional superscript, X(i), suggests an index to a sample, position, or current epoch during
learning period. We use calligraphic letters to represent sets (e.g., E) while we use the notation |.| to denote
the cardinality of a given set. With these notations, we define a multi-label pathway dataset.

Definition 2.1. Multi-label Pathway Dataset ([4]). A pathway dataset is characterized by S =
{(x(i),y(i)) : 1 < i 6 n} consisting of n examples, where x(i) is a vector indicating abundance informa-
tion for each enzymatic reaction denoted by z, which is an element of a set Z = {z1, z2, ..., zr}, having r

possible reactions. The abundance of an enzymatic reaction for a given example i, say z
(i)
l , is defined as
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a
(i)
l (∈ R≥0). The class label y(i) = [y

(i)
1 , ..., y

(i)
t ] ⊆ {−1,+1}t is a pathway label vector of size t representing

the total number of pathways derived from a trusted source of experimentally validated metabolic pathways
Y. The matrix form of x(i) and y(i) are symbolized as X and Y, respectively.

Both E and Y are derived from trusted sources, such as KEGG ([17]) or MetaCyc ([6]). We assume
that there is a numerical representation behind every instance and label. We use X = Rr to denote the
r-dimensional feature vector (input space), encoding various information about an instance, and U = Rd
for the d-dimensional numerical label vector. Furthermore, each example in S is considered to be drawn
independent, identically distributed (i.i.d) from an unknown distribution D over X × 2|Y|.

The pathway inference task can be formulated as retrieving a set of pathway labels for an example i
given features learned according to a heterogeneous information network defined as:

Definition 2.2. Heterogeneous Information Network A heterogeneous information network is defined
as a graph G = (V, E), where V and E denote to the set of nodes and edges (either directed or undirected),
respectively ([28]). Each v ∈ V is associated with an object type mapping function φ(v) : V → O, where O
represents a set of object types. Each edge e ∈ E ⊆ V ×V includes multiple types of links, and is associated
with a link type mapping function φ(e) : E → R, where R represents a set of relation types. In particular,
when |O|+ |R| > 2, the graph is referred to as a heterogeneous information network.

In heterogeneous information networks, both object types and relationship types are explicitly segregated.
For the undirected edges, notice that if a relation exists from a type Oi(∈ O) to a type Oj(∈ O), denoted as
OiROj and R ∈ R, the inverse relation R−1 holds naturally for OjR

−1Oi. However, in many circumstances,
R and its inverse R−1 are not equal, unless the two objects are in the same domain, and R is symmetric.
In addition, the network may be weighted where each edge ei,j , of nodes i and j, is associated with a
weight of type R. The linkage type of an edge automatically defines the node types of it’s end points. The
graph articulated in this paper is considered directed and weighted (in some cases), but for simplification is
converted to a undirected network by simply treating edges as symmetric links. Note that if |O| = |R| = 1,
the network is homogeneous; otherwise, it is heterogeneous.

Example 2.2.1. MetaCyc can be abstracted as a heterogeneous information network, in Fig 1(b), which
contains 3 types of objects, namely compounds (C), enzymes (Z), and pathways (T). There exist different
types of links between objects representing semantic relationships e.g. “composed of” and “involved in”,
relationships between pathways and compounds or relations between enzymes and compounds e.g. “trans-
form” and “transformed by”. An enzyme may be mapped to a numerical category, known as an enzyme
commission number (EC) based on the chemical reaction it catalyzes.

Two objects within heterogeneous information networks describe meta-level relationships refereed to as
meta-paths.

Definition 2.3. Meta-Path A meta-path P ∈ P is a path over G in the form of O1
R1−−→ O2

R2−−→ Oi
Rk−−→

. . .
Rj−−→ Oj+1, which defines an aggregation of relationships R = R1 ◦ R2 ◦ . . . ◦ Rj between type O1 and

Oj+1, where ◦ denotes the composition operator on relationships and Oi ∈ O and Rk ∈ R are object and
relation type, respectively ([28]).

Example 2.3.1. MetaCyc contains multiple meta-paths conveying different semantics. For example, a meta-
path “ZCZ” represents the co-catalyst relationships on a compound (C) between two enzymatic reactions
(Z), and “ZCTCZ” may indicate a meta-path that requires two enzymatic reactions (Z) transforming two
compounds (C) within a pathway (T). Another important meta-path to consider is “CZC”, which implies
“C + Z ⇒ C” transformation relationship.

Problem Statement 1. Metabolic Pathway Prediction Given three inputs: i)-a heterogeneous infor-
mation network G, ii)- a dataset S, and iii)- an optional set of meta-paths P, the goal is to automatically
resolve node embeddings such that leveraging the features will effectively improve pathway prediction for a
hitherto unseeen instance x∗.

3 The pathway2vec Framework

The pathway2vec framework is a package composed of five modules: i)- node2vec ([13]), ii)- metapath2vec
([9]), iii)- metapath2vec++ ([9]), iv)- JUST ([15]), and v)- RUST (this work), where each module contains
a random walk modeling and node representation step. A graphical representation of the pathway2vec
framework is depicted in Fig 2.

C1. Random Walks. In this step, a sequence of random walks over an input graph (whether heterogeneous
or homogeneous) is generated based on the selected model. (see Section 3.1).

C2. Learning Node Representation. Resulting walks are fed into the Skip-Gram model to learn node
embeddings ([23, 12, 13, 9]). An embedding is a low dimensional latent continuous feature for each
node in G, which encodes smooth decision boundaries between groups or communities within a graph.
Details are provided in Section 3.2.
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Figure 2: Graphical representation of pathway2vec framework. Main components: (a) a multi-layer
heterogeneous information network of MetaCyc, showing meta-level interaction among compounds, enzymes,
and pathways; (b) four random walks, and (c) two representational learning models: traditional Skip-Gram
(top) and Skip-Gram by normalizing domain types (bottom). Highlighted network neighbors of T1 (nitrifier
denitrification) indicate this pathway interacts directly with T2 (nitrogen fixation I (ferredoxin)) and indirectly
to T3 (nitrate reduction I (denitrification)) by second-order with relationships to several compounds, including
nitric oxide (C3) and nitrite (C4) converted by enzymes represented by the EC numbers (Z2: EC 1.7.2.6, Z3:
EC 1.7.2.1, and Z4: EC 1.7.2.5).

3.1 Random Walks

To capture meaningful graph relationships, existing techniques such as DeepWalk ([25]), design simple but
effective algorithms based on random walks for representational learning of features. The following is the
definition of a first-order random walk as implemented in DeepWalk, extending a nodes immediate neighbors
to include nodes that are locally connected.

Definition 3.1. Random Walk([25]). A random walk W of length l, rooted at node v, is a stochastic
process with random variables vi+1, vi+2, ..., vl, vl+1 such that vj+1 is a vertex sampled at random from the
neighbors of vertex vj for all 1 ≤ j ≤ l according to the following distribution:

p(vj+1|vj) =

{απj,j+1

Q
if (vj , vj+1) ∈ E

0 otherwise
(3.1)

where πj,j+1 ∈ R|V|×|V| is an unnormalized transition probability, indicating the probability of a random
walker visiting a node vj+1 conditioned on the current node being vj , Q is a normalizing term, and α ∈ [0, 1]
is a prior probability.

The above definition does not address in-depth and in-breadth graph exploration. node2vec ([13]) was
developed to traverse local and global graph structures based on the principles of: i)- homophily ([24, 11])
where interconnected nodes form a community of correlated attributes and ii)- structural equivalence ([14])
where nodes having similar structural roles in a graph should be close to one another. node2vec simulates
a second-order random walk, where the next node is sampled conditioned on the previous and the current
node in a walk. For this, two hyper-parameters are adjusted, s ∈ R>0 that extracts local information of a
graph, and h ∈ R>0 that enables local and global traversals by moving deep in a graph or walking within the
vicinity of the current node. This method is illustrated in Fig 2 (b) top. The process of node2vec random
walks can be defined by manipulating α in Definition 3.1 according to:

αs,h(j − 1, j + 1) =


1
s

if βj−1,j+1 = 0
1 if βj−1,j+1 = 1
1
h

if βj−1,j+1 = 2
(3.2)

where βj−1,j+1 ∈ {0, 1, 2} denotes the distance between the previously visited node vj−1 and the next
neighbor node vj+1.

First-order and second-order random walks were initially proposed for homogeneous graphs, but can be
readily extended to heterogeneous information networks. Sun and colleagues have observed that random
walks can suffer from implicit bias due to initial node selection or the presence of a small set of dominant
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node types skewing results toward a subset of interconnected nodes [28]. metapath2vec was developed [9], to
resolve implicit bias in graph traversal to characterize the semantical associations embodied between different
types of nodes according to a certain path definition. This method is illustrated in Fig 2 (b) bottom.

Definition 3.2. Meta-Path based Random Walk ([9]). Given a meta-path P ∈ P and G, a meta-path
based random walk W of length l, rooted at node vk ∈ Ok as dictated by P , is a stochastic process with
random variables vi+1

1 , vi+2
2 , ..., vlk, v

l+1
k+1 such that vj+1

k+1 is a vertex of type Ok+1, as suggested by P , sampled

randomly from the neighbors of vertex vjk ∈ Ok for all 1 ≤ j ≤ l according to the following distribution:

p(vj+1|vjk, P ) =


1

|Nk+1(v
j
k
)|

if (vjk, v
j+1) ∈ E , φ(vj+1) = k + 1

0 if (vjk, v
j+1) ∈ E , φ(vj+1) 6= k + 1

0 if (vjk, v
j+1) /∈ E

(3.3)

where vjk ∈ Ok and Nk+1(vjk) denotes the neighbors of vjk that are of type Ok+1 as pre-specified by the
meta-path scheme P .

The use of meta-paths requires either prior domain-specific knowledge to recover the semantical knowl-
edge of HIN according to a certain path definition. As a result, groups of vertices with the heterogeneous
information network may not be visited or revisited multiple times. This limitation was partially addressed
by leveraging multiple path schemes ([12]) to guide random walks based on a meta-path length parameter.
Hussein and colleagues developed the Jump and Stay (JUST) heterogeneous graph embedding method using
random walks [15] as an alternative to meta-paths. JUST randomly selects the next node in a walk from
either the same node type or from different node types using an exponential decay function and a tuning
parameter. This method is illustrated in Fig 2 (b) second from top.

Definition 3.3. Jump and Stay based Random Walk (JUST)([15]). Given a set of domain types O,
a graph G, a queue T of size m, and an initial stay probability α ∈ [0, 1], a JUST based random walk W of
length l, rooted at node vk ∈ Ok, is a stochastic process with random variables vi+1, vi+2, ..., vl, vl+1 such
that vj+1 is selected according to the two following consecutive steps:

1. Predict the stay probability pstay as:

pst(vj) =


0 if S(vj) = ∅
1 if J(vj) = ∅
αc if otherwise

(3.4)

where c is the number of nodes consecutively visited in the same domain as vj and the remaining terms
S(vj) and J(vj) are:

S(vj) = {vj+1|(vj , vj+1) ∈ E ∧ φ(vj) = φ(vj+1)}

J(vj) = {vj+1|(vj , vj+1) ∈ E ∧ φ(vj) 6= φ(vj+1)}

2. Sample vj+1 either: i)- from the same domain as vj or ii)- apply the equation below, iff pst(vj) = 0 or
pst(vj) = 1− αc:

H(vj) =

{
{k|k ∈ O ∧ k /∈ T, J(vj) 6= ∅} if not empty
{k|k ∈ O, k 6= φ(vj), J(vj) 6= ∅} if otherwise

(3.5)

where T is a queue of size m that stores m previously visited types.

If the set S(vj) is empty, meaning no edges exist between vj and any nodes in V that share the same
domain type as vj , then a node is sampled from different types based on Eq. 3.5, which suggests to select
randomly any domains not included in T . If, however, the latter condition is not satisfied then simply
choose one domain that is different than the current node type. If J(vj) is empty, i.e., no heterogeneous
edges connected to vj , then the random walker is forced to stay in the same domain. Finally, if both
homogeneous and heterogeneous edges are connected to vj then the walker may choose to either stay with
αc or jump with 1−αc, where α value decays exponentially by c that stores the number of nodes sequentially
visited in the same type of vj .

To balance the node distribution over multiple node types, the number of memorized domains m to
store in T must be set within the range of [1, |O| − 1] ∈ Z>1. This can misrepresent graph structure in
two ways: i)- explorations within domain because the last visited consecutive c nodes may enforce sampling
from another domain, or ii) jumping deep towards nodes from other domains because T is constrained. To
alleviate these problems we develop a novel random walk algorithm, RUST, adopting a unit-circle equation
to sample node pairs that generalize previous representational learning methods

Definition 3.4. Unit-Circle based Jump and Stay Random Walk (RUST). Given a set of domain
types O, a graph G, a queue T of size m, and two hyper-parameters s and h, a RUST based random walk
W of length l, rooted at node vk ∈ Ok, is a stochastic process with random variables vi+1, vi+2, ..., vl, vl+1

such that vj+1 is chosen in two steps:
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Database #EC #Compound #Pathway |V| |E|
MetaCyc 6378 13689 2526 22593 37631
MetaCyc (r) 3606 6469 2467 12542 37631
MetaCyc (uec) 6378 13689 2526 22593 33353
MetaCyc (uec + r) 3229 6469 2467 12165 33353

Table 1: Different configurations of compound, enzyme and (EC) and pathway objects extracted from the
MetaCyc database: i)- full content (MetaCyc), ii)- reduced content based in trimming nodes below 2 links
(MetaCycy r), iii)- links among enzymatic reactions removed (MetaCyc uec)), and iv)- combination of uncon-
nected enzymatic reactions and trimmed nodes (MetaCyc uec + r).

1. Estimate domain types transition probabilities given vj :

πdom
j,j+1 =

{
h.βjπj−1,j

Q
if S(vj) = ∅

s.βjπj−1,j

Q
if J(vj) = ∅

(3.6)

where Q is a normalizing term, βj ∈ (0, 1] is a domain weight hyperparameter of vj added to give
more weights, if necessary, to some domains, and πj−1,j is an unnormalized transition probability from
previous node vj−1 to the current node vj . The remaining terms:

S(vj) = {vj+1|(vj , vj+1) ∈ E ∧ φ(vj) = φ(vj+1)}

J(vj) = {vj+1|(vj , vj+1) ∈ E ∧ φ(vj) 6= φ(vj+1)}

2. Sample a domain type k at random from πdom
j,j+1 according to:

H(vj) = {k|k ∈ O, αk.πkj,j+1} (3.7)

where αk = 1/eck and ck is the number of nodes with type k that is stored in T . Finally, select
randomly a node vj+1 based on H(vj).

The two hyper-parameters s and h constitute a unit circle, i.e., h2 + s2 = 1, where h ∈ [0, 1] indicates
how much exploration is needed within a domain while s ∈ [0, 1] defines the in-depth search towards other
domains such that s > h encourages the walk to explore more domains and vice versa. Consequently, RUST
blends both semantical knowledge and local/global structural information for generating walks. Note that
the above definition does not place boundaries on the number of memorized domains m while the αk serves
as a function of node size having the type k as stored in T . Full details of RUST process to generate a set
of walks W is illustrated in Algorithm 1. The method is illustrated in Fig 2 (b) second from bottom.

1. Estimate domain types transition probabilities given vj :

πdom
j,j+1 =

{
h.βjπj−1,j

Q
if S(vj) = ∅

s.βjπj−1,j

Q
if J(vj) = ∅

(3.8)

where Q is a normalizing term, βj ∈ (0, 1] is a domain weight hyperparameter of vj added to give more
weights, if necessary, to some domains, and πj−1,j is unnormalized transition probability from previous
node vj−1 to the current node vj . The remaining terms:

S(vj) = {vj+1|(vj , vj+1) ∈ E ∧ φ(vj) = φ(vj+1)}

J(vj) = {vj+1|(vj , vj+1) ∈ E ∧ φ(vj) 6= φ(vj+1)}

2. Sample a domain type k at random from πdom
j,j+1 according to:

H(vj) = {k|k ∈ O, αk.πkj,j+1} (3.9)

where αk = 1/eck and ck is the number of nodes with type k that is stored in T . Finally, select
randomly a node vj+1 based on H(vj).
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Inputs : A graph G = (V, E), a prior probability α, number of memorized domains m, explore hyperparameter
h, in-out hyperparameter s, walk length l, number of random walks per node K

Outputs: A set of walks W
Process :

1 Initialize a type transition probability πp over all nodes;
2 for v ∈ V do
3 for i← 1 to K do
4 walk=[v];
5 T ← ∅;
6 for j ← 1 to l − 1 do

7 πdom
j,j+1 ← by applying Eq. 3.8;

8 H(vj)← by applying Eq. 3.9;
9 if |T | = m then

10 Update αk = 1/eck ;

11 Sample a vj from H(vj);

12 walk.append(vj)

13 Add walk to W;

14 Return W;

Algorithm 1: RUST based Random Walk

3.2 Learning Latent Embedding in Graph

Random walks W generated using node2vec, metapath2vec, JUST and RUST are fed into the Skip-Gram
model to learn node embeddings ([23]). The Skip-Gram model exploits context information defined as a fixed
number of nodes surrounding a target node. The model attempts to maximize co-occurrence probability
among a pair of nodes identified within a given window of size q in W based on log-likelihood:∑

l∈W

∑
j∈l

∑
−q≤k≤q,j 6=0

log p(vj+k|vj) (3.10)

where vj−c, ..., vj+c are the context neighbor nodes of node vj and p(vj+i|vj) defines the conditional prob-
ability of having context nodes given the node vj . The p(vj+k|vj) is the commonly used softmax function,

i.e, = e
D

vj+k .D
vj∑

i∈V e
D

vi .Dvj
, where D ∈ R|V |×d stores the embeddings of all nodes and Dv is the v-th row corre-

sponding to the embedding vector for node v. In practice, the vocabulary of nodes may be very large, which
intensifies the computation of p(vj+k|vj). The Skip-Gram model uses negative sampling, which randomly
selects a small set of nodes N that are not in the context to reduce computational complexity. This idea,
represented in updated Eq. 3.10 is implemented in node2vec, metapath2vec, JUST, and RUST according
to: ∑

l∈W

∑
j∈l

∑
−q≤k≤q,j 6=0

(
log σ(Dvj+k .Dvj )

+
∑

u∈N∧u/∈N (j)

Evu [log p(vu|vj)]
) (3.11)

where σ(v) = 1
1+e−v is the sigmoid function.

In addition to the equation above, Dong and colleagues proposed a normalized version of metapath2vec,
called metapath2vec++, where the domain type of the context node is considered in calculating the proba-
bility p(vj+k|vj), resulting in the following objective formula:∑

l∈W

∑
j∈l

∑
−q≤k≤q,j 6=0

(
log σ(Dvj+k .Dvj )

+
∑

u∈N∧u/∈N (j)∧φ(vu)=φ(vj+k)

Evu [log p(vu|vj)]
) (3.12)

where φ(vu) = φ(vj+k) suggests that the negative nodes are of the same type as the context node φ(vj+k).
The above formula is also applied for RUST, and we refer it to RUST-norm. Through iterative update over
all the context nodes, whether using Eq. 3.11 or Eq. 3.12, for each walk in W, the learned features are
expected to capture semantic and structural contents of a graph, thereby, can be made useful for pathway
inference.

4 Predicting Pathways

For pathway inference, the learned EC embedding vectors are concatenated into each example i according
to:

x̃(i) = x(i) ⊕ 1

r
x(i)Dv:v∈Z (4.1)
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Figure 3: Parameter sensitivity of RUST based on NMI metric.

where ⊕ denotes the vector concatenation operation, D ∈ R|V |×d stores the embeddings of all nodes and
Dv:v∈Z indicates feature vectors for r enzymatic reactions. By incorporating enzymatic reaction features
into x(i), the dimension size is extended to r+ d, where r is the enzyme vector size while d corresponds the
embeddings size. This modified version of x(i) is denoted by x̃(i), which then can be used by an appropriate
machine learning algorithm, such as mlLGPR ([4]), to train and infer a set of metabolic pathways from
genomic sequence information.

5 Experimental Setup and Results

In this section, we first investigate the impact of hyperparameters involved in RUST (Section 5.1), then we
benchmark the four random walk algorithms, jointly with the two learning methods, based on node-clustering
(Section 5.1), embedding visualization (Section 5.3) and pathway prediction (Section 5.4) using MetaCyc
version 21 ([6]). With regard to the sensitivity analysis for the other random walk methods, we refer the
readers to the previously established works in ([13, 9, 15]). We apply different configurations of MetaCyc,
as summarized in Table 1, to examine the effects of various graph type in the quality of generated walks
and embeddings. The package pathway2vec is entirely implemented in Python and trained using tensorflow
version 1.10. For training, we randomly initialize model parameters with a truncated Gaussian distribution,
and set the learning rate to 0.01, the batch size to 100, and the number of epochs to 10. Unless otherwise
indicated, for each module, the number of sampled path instances is K = 100, the walk length is l = 100, the
embedding dimension size is d = 128, the neighborhood size is 5, the size of negative samples is 5, and the
number of memorized domain m for JUST and RUST are 2 and 3, respectively. The explore and the in-out
hyperparameters for node2vec and RUST are h = 0.7 (or h = 0.55) and s = 0.7 (or s = 0.84), respectively,
using the uec configuration. For metapath2vec and metapath2vec++, we applied the meta-path scheme
“ZCTCZ” to guide random walks. All the experiments are conducted on a Linux server using 10 Intel Xeon
CPU E5-2650 cores. For brevity, we denote node2vec, metapath2vec, metapath2vec++, JUST, RUST, and
RUST-norm as n2v, m2v, cm2v, jt, and rt, crt, respectively.

5.1 Parameter Sensitivity of RUST

Experimental setup. In this section, we study the effect of different hyperparameter settings in RUST
on the quality of learned nodes embeddings. Since the hyperparameter space, involved in RUST, is infinite,
exhaustive searching for the best settings is intractable. Hence, we follow the procedures that are previously
reported and sub-select the settings under which we examine RUST’s performances. Specifically, we select
the influences of the dimensions d ∈ {30, 50, 80, 100, 128, 150}, the neighborhood size q ∈ {3, 5, 7, 9}, the
memorized domains m ∈ {3, 5, 7}, and the two hyperparameters s and h (∈ {0.55, 0.71, 0.84}) according
to the Normalized Mutual Information (NMI) scores, after 10 trials. The NMI produces scores between 0,
indicating no mutual information exists for grouping (or clustering) nodes, and 1, suggesting the features are
well characterized into groups that are based on the class information: enzyme, compound, and pathway.
The clustering is performed using the k-means algorithm ([3]), similar to works in ([9, 15]), to group data
based on the learned representations from RUST. Using the aforementioned variation in RUST settings,
random walks W are generated using MetaCyc with uec option.
Experimental results. From Fig 3a, we observe that performance tends to saturate when the memorized
domains are concentrated around m = 5 and h = 0.55, indicating the preference of RUST to explore more
domain types, as reported by ([15]). By fixing m = 3 and h = 0.55, we observe that the optimal results of
NMI score w.r.t. the number of embedding dimensionality is achieved at d = 128, as depicted in Fig 3b. The
performance of RUST, in general, improves with the increase of dimensions until 128, suggesting that RUST
is able to capture the complex network structure/semantics when d = 128, after which the performance
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starts to degrade. A similar trend is also observed in Fig 3c, when the context neighborhood size increases
beyond q > 5. Taking together, we suggest that the following settings m = 3, h = 0.55, d = 128, and
q = 5 provide the RUST’s promising clustering outcome on MetaCyc with uec option while not degrading
the overall sampling budget.

5.2 Node Clustering

Experimental setup. The objective of this experiment is to evaluate the performance of random walk
methods based on the clustering quality using NMI, as a performance indicator, on all MetaCyc graph types
in Table 1. For clustering, we apply the k-means algorithm, as before, to group homogeneous nodes based
on the embeddings learned by each methods. The NMI scores are reported based on 10 repeated trials using
hyperparameters introduced in the beginning of Section 5.
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Figure 4: Node clustering results based on NMI metric using MetaCyc data.

Experimental results. Fig 4 indicates clustering results using the configurations described in Table 1.
Overall, node2vec, JUST, and RUST exhibit robust performances across all configurations, indicating these
methods are less likely to extract semantic knowledge, characterizing node domains, from MetaCyc. However,
the RUST method performing optimally better than node2vec and JUST in learning representations.

For metapath2vec, the random walk follows a predefined meta-path scheme, hence, capturing the nec-
essary relational knowledge for defining node types. For example, nitrogenase (EC-1.18.6.1), which reduces
nitrogen gas into ammonium, is exclusively linked to the nitrogen fixation I (ferredoxin) pathway ([10]). And
without a predefined relation, a walker may explore more local/global structure of G, hence, become less
efficient in exploiting relations between those two nodes. Among the four walks, only metapath2vec is able to
accurately group those nodes, according to their classes. However, despite the advantages of metapath2vec
in those cases, it is biased to a scheme, as elucidated in [15], which is explicitly observed for the case of
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“uec+r” (Fig 4d). In such circumstances, both isolated nodes and links among ECs are discarded, resulting
in a reduced number of nodes. Consequently, it is easier for meta-bath based walker to traverse and exploit
specific relations.

cm2v crt
0.0

0.1

0.2

0.3

0.4
N

M
I

full
r
uec
uec+r

Figure 5: Node clustering results based on NMI metric using MetaCyc data.

With regard to metapath2vec++ method, it exhibits similar trends as metapath2vec because they share
the same walks, however, the former method is trained using normalized Skip-Gram, thereby, it is expected
to achieve good NMI scores, yielding over 0.41 on uec+full content in Fig. 5, which is also similar to
RUST-norm NMI score (∼ 0.38). This is interesting because RUST-norm employs RUST based walks but
the embeddings are learned using normalized Skip-Gram, as metapath2vec++, suggesting that RUST is
capable to exploit the structural and semantics (with a lesser extent as discussed previously). In fact, the
NMI score is observed to be similar to metapath2vec, ∼ 0.039 (for uec), for clustering embeddings obtained
from RUST using m = 2 and h < 0.1.

To summarize, these tests indicate that node2vec, JUST, and RUST based walks are good for analyzing
graph structure while metapath2vec can learn good embeddings. However, RUST strike a balance between
the two proprieties through proper adjustments of m and the two unit-circle hyperparameters. Regarding
the MetaCyc type, we recommend “uec” because the associations among ECs are captured at the pathway
level. Also, the trimmed graph is not suggested, as it will eliminate many isolated, and important, pathways
and ECs.

5.3 Manifold Visualization

Experimental setup. In this section, we visualize the learned high dimensional embeddings by projecting
them onto a two-dimensional space under two case studies. The first case examines the quality of learned
nodes embeddings according to the generated random walks, where we speculate that a good representation
learning method creates clear distinct boundaries for nodes of the same type. This approach is commonly
sought in most graph learning embedding techniques ([13, 31]). While any group of nodes can be employed in
such case study, but for illustration purposes, we pick nodes corresponding the nitrogen metabolism. In the
second case study, we investigate the impact of meta-path based random walks, extending our discussions
in Section 5.2. For this, we solely focus at the pathway layer in Fig 2a and analysis the representation
of pathways having no enzymatic reactions. For visualization, we use UMAP, a.k.a. uniform manifold
approximation and projection ([21]) that is implemented in python ([22]) using 1000 epochs while the
remaining setting are fixed to their default values.
Experimental results. Fig 6 illustrates the visualization outputs of 185 nodes, corresponding the nitrogen
metabolism extracted from MetaCyc. Each point denotes a node in HIN and each color indicates the
type of the node. Clearly, the methods node2vec (Fig 6a), JUST (Fig. 6c), and RUST (Fig. 6d) are
not appealing in extracting walks that preserve three layers relational knowledge, where we see that nodes
belonging to different types forming unclear boundaries and diffuse clusters. For the metapath2vec (Fig.
6b), metapath2vec++ (Fig. 6f), and RUST-norm (Fig. 6f), we observe the nodes of the same color are
decently portrayed. Although this suggests that the meta-path based walks is suitable to exploit semantics,
nonetheless, it does not highlight some limitations associated with the generated walks.

To address the above concern, we conducted the second case study, where we identified 80 pathways,
having no enzymatic reactions, with their 109 pathway neighbors, as shown in Fig. 7a. From Fig. 7,
we observe that, in contrast to node2vec, JUST, RUST, and RUST-norm, pathway nodes are skewed in
both metapath2vec++ and metapath2vec (with lesser degree), which are incorrect as 80 pathway nodes are
immediate neighbors to 109 pathways. This demonstrates the rigidness of meta-path based methods where
they strictly follow a certain schemes, thereby, unable to adsorb local structure in learning embeddings.
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(a) n2v (b) m2v (c) jt

(d) rt (e) cm2v (f) crt

Figure 6: 2D UMAP projections of the 128 dimension embeddings, trained under uec+full setting, of selected
185 nodes, corresponding nitrogen compound metabolism. Color of a node indicates the category of the node
type, where the red indicates the enzymatic reactions, the green indicates the compounds, and the blue is
reserved for the metabolic pathways.

Interestingly, RUST-norm, based on RUST walks, is the only method that combines the structural
knowledge, as demonstrated in Fig. 7g, with the semantic information, in Fig. 6f. Therefore, we suggest
RUST based walks with training using Eq. 3.12 for obtaining efficient embeddings, which is ironically, the
same conclusion in Section 5.2.

5.4 Metabolic Pathway Prediction

Experimental setup. The objective of this test is to examine the effectiveness of the learned embeddings
from pathway2vec modules for the pathway inference task. Diverting from the previous approaches in multi-
label classification ([25, 13, 15]), where the goal is to predict the most probable label set for nodes, we leverage
the learned vectors to the multi-label dataset, according to Eq. 4.1. We use mlLGPR (elastic net) ([4]),
using the default hyperparameter settings, after concatenating features from each learning method, to train
on BioCyc (v20.5 tier 2 & 3) ([7]) that consists of 9255 PGDBs (Pathway/Genome Databases) with 1463
distinct pathway labels (see Supplementary Material). Then, we report results on tier 1 benchmark datasets,
comprising of EcoCyc, HumanCyc, AraCyc, YeastCyc, LeishCyc, and TrypanoCyc. Four evaluation metrics
are used to report the final scores after 3 repeated trials: Hamming loss, micro precision, micro recall, and
micro F1 score. We contrast the performance of each learning method against three pathway prediction
algorithms, namely PathoLogic v21 ([18]), MinPath v1.2 ([32]), and mlLGPR (elastic net with enzymatic
reaction and pathway evidence features) ([4]).
Experimental results. Table 2 shows micro F1 scores of the prediction algorithms. Numbers in boldface
represent the best performance score in each column while the underlined text indicates the best performance
among the embedding methods. From the results, it is obvious that all variation of embedding methods
performs consistently better than MinPath on four datasets. In fact, on EcoCyc, the mlLGPR+crt achieved
a considerable improvement over all predictors (a micro F1-score of 0.7682. In other cases, the performances
of embeddings are less competitive to PathoLogic and mlLGPR. This is because the mlLGPR with embed-
dings are trained on less than 1470 pathways, hence, obscuring the actual benefits of the learned features.
With regard to the modules of pathway2vec, they perform on par to one another, albeit mlLGPR+rt and
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Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561
mlLGPR 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590
mlLGPR+n2v 0.0558 0.1021 0.1706 0.0768 0.0424 0.0883
mlLGPR+m2v 0.0558 0.0998 0.1742 0.0740 0.0412 0.0926
mlLGPR+cm2v 0.0586 0.1041 0.1742 0.0744 0.0420 0.0867
mlLGPR+jt 0.0550 0.1041 0.1738 0.0724 0.0459 0.0895
mlLGPR+rt 0.0554 0.0990 0.1746 0.0752 0.0428 0.0855
mlLGPR+crt 0.0542 0.1017 0.1615 0.0760 0.0439 0.0855

Methods
Micro Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129
mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455
mlLGPR+n2v 0.7923 0.5745 0.6965 0.6446 0.4153 0.3974
mlLGPR+m2v 0.7862 0.6015 0.6786 0.6750 0.4261 0.3745
mlLGPR+cm2v 0.7770 0.5556 0.6620 0.6723 0.4159 0.4076
mlLGPR+jt 0.7979 0.5556 0.6732 0.6949 0.3840 0.3924
mlLGPR+rt 0.7889 0.6014 0.6635 0.6560 0.4146 0.4113
mlLGPR+crt 0.7993 0.5873 0.7898 0.6581 0.3983 0.4105

Methods
Micro Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000
mlLGPR 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914
mlLGPR+n2v 0.7329 0.2903 0.2745 0.3406 0.5632 0.5314
mlLGPR+m2v 0.7427 0.2867 0.2608 0.3537 0.5632 0.5029
mlLGPR+cm2v 0.7264 0.2867 0.2804 0.3493 0.5402 0.5543
mlLGPR+jt 0.7329 0.2867 0.2706 0.3581 0.5517 0.5314
mlLGPR+rt 0.7427 0.3082 0.2745 0.3581 0.5862 0.5429
mlLGPR+crt 0.7394 0.2652 0.2725 0.3362 0.5402 0.5371

Methods
Micro F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
mlLGPR+n2v 0.7614 0.3857 0.3938 0.4457 0.4780 0.4548
mlLGPR+m2v 0.7638 0.3883 0.3768 0.4642 0.4851 0.4293
mlLGPR+cm2v 0.7508 0.3783 0.3939 0.4598 0.4700 0.4697
mlLGPR+jt 0.7640 0.3783 0.3860 0.4726 0.4528 0.4515
mlLGPR+rt 0.7651 0.4076 0.3883 0.4633 0.4857 0.4680
mlLGPR+crt 0.7682 0.3654 0.4052 0.4451 0.4585 0.4653

Table 2: Predictive performance of each comparing algorithm on 6 benchmark datasets. For each
performance metric, ‘↓’ indicates the smaller score is better while ‘↑’ indicates the higher score is better.
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(a) True Path-
ways
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Figure 7: 2D UMAP projections of 80 pathways that have no enzymatic reactions, indicated by the blue color,
with their 109 pathway neighbors, represented by the grey color.

mlLGPR+crt have slight edges in the performance gain. Regardless, this experiment showcases that the
embeddings are a strong contender to the pathway and reaction evidence features, as employed in ([4]).

6 Conclusion

Automatically generating features (i.e., non hand-crafted) enables us to discover insightful latent patterns
from the sheer volume of data, without requiring any prior knowledge. In this paper, we presented the
pathway2vec package for learning features, for the first time, after manipulating the metabolic pathway,
obtained from MetaCyc, as a multi-layer heterogeneous network. The package contains four modules with two
learning strategy, each of which serves different purposes and applications. Three extensive empirical studies
were conducted, which shown that the learned representations has potential to be a better replacement for
hand-engineered rules and well suited for many tasks, especially, the pathway prediction task, thereby,
allowing us to consider this approach in the future work. We also presented our novel method RUST
that comes with unit-circle and domain size hyperparameters, making it flexible in capturing local/global
structure while absorbing semantics from a given homogeneous/heterogeneous graph, as demonstrated by
empirical studies.

There are several directions for the future study. We are currently in the process to build a more robust
model, taking into the consideration graph techniques while leveraging embeddings learned from any modules
in pathway2vec, in particular RUST-norm (or metapath2vec++), to enhance pathway prediction. Another
important application is to extend the pathway prediction using embeddings to the community level of
organization, akin to the procedure followed in ([4]), to make it useful for a wide range of dataset types.
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