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Abstract 

In diploid cells, maternal and paternal copies of genes usually have similar transcriptional activity. Mammalian 
allele-specific epigenetic mechanisms such as X-chromosome inactivation (XCI) and imprinting were historically 
viewed as rare exceptions to this rule. The discovery of mitotically stable monoallelic autosomal expression 
(MAE) a decade ago revealed an additional allele-specific mode regulating thousands of mammalian genes. 
However, despite its prevalence, the mechanistic basis of MAE remains unknown. To uncover the mechanism of 
MAE maintenance, we devised a small-molecule screen for reactivation of silenced alleles across multiple loci 
using targeted RNA sequencing. Contrary to previous reports, we identified DNA methylation as a key 
mechanism of MAE mitotic maintenance. In contrast with the binary choice of the active allele in XCI, stringent 
transcriptome-wide analysis revealed MAE as a regulatory mode with tunable control of allele-specific 
expression, dependent on the extent of DNA methylation. In a subset of MAE genes, allelic imbalance was 
insensitive to changes in DNA methylation, implicating additional mechanisms in MAE maintenance in these loci. 
Our findings identify a key mechanism of MAE maintenance, reveal tunability of this mode of gene regulation, 
and provide the essential platform for probing the biological role of MAE in development and disease. 

 

 
INTRODUCTION 

In mammalian cells, the maternal and paternal gene 
copies tend to make an equal contribution to transcription 
(1). However, several allele-specific modes of gene 
regulation provide important exceptions. One such mode 
is genomic imprinting, where the allelic choice is 
determined by the parent of origin in about 200 
mammalian genes (2). Another is X-chromosome 
inactivation (XCI), which randomly silences one of the two 
copies of the X chromosome in females (3), affecting over 
800 X-linked genes. Additionally, olfactory sensory 
neurons express one allele of one out of ~1000 olfactory 
receptor genes (4). 

The discovery of widespread monoallelic autosomal 
expression (MAE) greatly expanded our view of allele-
specific gene regulation (5). Like XCI, MAE involves a 
random choice of the active allele during development, 
resulting in an epigenetic mosaic (6). Also like XCI, the 
allelic choice in MAE genes is mitotically stable; however, 

MAE genes can be expressed from both alleles in a 
subset of clonal lineages (Fig.1A). MAE had been 
observed in clonal populations of every cell type assessed 
(5, 7-13) and most MAE genes are highly cell-type 
specific (14). Cumulatively across cell types, an estimated 
4000 human genes are subject to MAE (15), including 
genes implicated in cancer, neurodevelopmental 
disorders, and other diseases. 

The biological role of widespread MAE is presently 
unclear, though multiple lines of evidence imply it has a 
significant impact on organismal function. MAE has been 
shown to result in dramatic functional differences between 
otherwise similar cells; for example, the function of B cells 
in mice heterozygous for Tlr4 depends on which allele is 
active in a given cell (16). Evolutionary and population-
genetic analyses indicate conservation of the MAE status 
between human and mouse (13, 17), and selective 
advantage for individuals heterozygous for MAE genes 
(18, 19). The prevalence of cell surface molecules among 
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proteins encoded by MAE genes prompted the hypothesis 
that MAE leads to increased variation in responses to 
extrinsic signals between otherwise similar cells (18). 

Lack of knowledge about the underlying mechanism of 
MAE has severely limited research on MAE function. At 
present, no perturbation is known to affect the 
maintenance of allele-specific silencing in any MAE locus 
(20). MAE status correlates with histone modifications 
and DNA methylation in the gene body and putative 
regulatory sequences (8, 9, 12, 17, 21). However, 
inhibiting the DNA methyltransferases was reported to not 
affect the allelic imbalance in any of the tested MAE 
genes (8, 9), arguing against a mechanistic role of DNA 
methylation in MAE (20). 

To understand the mechanistic basis of MAE, we 
devised a novel strategy for screening by targeted RNA 
sequencing and performed a small molecule screen for 
perturbations that affect allelic imbalance in expression in 
any of the 23 targeted genes across the mouse genome. 
We found that inhibition of methyltransferase Dnmt1-

dependent DNA methylation reactivated silenced alleles 
in many MAE loci, showing that DNA methylation plays a 
major role in the MAE mitotic maintenance. At the same 
time, many MAE loci showed no significant changes in 
allele-specific expression upon DNA demethylation, 
suggesting that MAE is mechanistically heterogeneous. 
Application of a highly stringent statistical approach to 
transcriptome-wide differential analysis of allele-specific 
expression (22) revealed the existence of multiple 
mitotically stable states of allelic imbalance, which 
correlated with the extent of DNA methylation. We 
conclude that DNA methylation acts as a fine-tuning 
mechanism for MAE loci, controlling allele-specific 
transcription as a rheostat, as opposed to an on-off 
switch. 

RESULTS 
Screening-by-sequencing approach for sensitive 
detection of allele-specific expression 

To screen for reactivation of a silenced allele, we 
looked for shifts in allelic imbalance (AI, the fraction of one 

 

 

Figure 1. Perturbations that reactivate silenced alleles of 
genes with monoallelic expression identified using 
screening-by-sequencing.  
(A) Left: Different epigenetic modes of monoallelic 
expression. Note that while imprinting is uniform across cells, 
X chromosome inactivation and autosomal MAE result in 
epigenetic clonal mosaicism. Right: logic of the screen 
illustrated with a single locus in a clone with a completely 
silenced maternal allele. (B) Outline of Screen-seq 
methodology. Top to bottom: Cells are lysed in-plate, and in 
each well, RNA is isolated using SPRI beads. Two types of 
SNPs between parental genomes for the readout genes are 
targeted: those close to the poly-A tail enabling use of the 
UMI (left) and the rest that were targeted with two gene-
specific primers with universal tails (right). Well-encoding is 
performed using primers targeting common adapters coupled 
with barcodes (BC1 and BC2). Then, all wells are pooled, 
Illumina sequencing adapters are added, and the pooled 
library is sequenced. See also Suppl. Fig.S1 and S2. (C) 23 
genes assayed in Screen-seq and their distribution in the 
mouse genome. Allelic imbalance (AI) of target genes in 
Abl.1 clone is reflected by the marker color. Centromeres 
(brown) on the left. (D) Drug treatment setup. Each of the 
tested 48 drugs were used in three concentrations: 1 µM, 10 
µM and 20 µM in 1% DMSO. Fresh media and drugs were 
replaced every 2 days. Cells were collected on day 7, 14 and 
21 and processed for Screen-seq. (E, F) Screen-seq results 
for a representative set of readout genes. All time and 
concentration points for a single drug shown in the same 
column. Each point shows allelic imbalance in one condition 
(AI=[129 counts]/[129 + Cast counts]). Blue line: mean AI for 
a gene across all conditions; black dashed lines: [Q1-3×IQR] 
and [Q1+3×IQR] (inter-quartile range); red points: outlier AI 
values (hits). (E) – genes showing no AI change in any 
condition. (F) – genes with significant changes in some 
conditions. Screen-seq results for all readout genes are in 
Suppl. Fig.S3. 
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allele over the total allelic counts; Fig.1A, right) upon drug 
treatment. In order to increase the likelihood of detecting 
AI shifts among genes with potentially different regulation, 
our screening approach would ideally combine the ability 
to assess multiple readout genes, sensitivity to AI 
changes, and the throughput to process multiple samples 
after exposure to an array of perturbations. 

We designed a screening-by-sequencing strategy, 
Screen-seq, to satisfy all of these requirements. In cells 
with heterozygous genomes, allele-specific expression 
can be assessed without the need for any engineered 
reporters and by relying on the detection of single 
nucleotide polymorphisms (SNPs). Precision and 
sensitivity of the AI measurement in RNA sequencing 
critically depend on the depth of SNP coverage (22). 
Sequencing of SNP-containing amplicons from 
multiplexed RT-PCR as the readout allows for very deep 
coverage and thus a highly precise AI measurement. 

The experimental flow of Screen-seq is outlined in 
Fig.1B. Cells were grown and lysed in 96-well plates; 
RNA isolated using magnetic beads, and cDNA 
synthesized with a mix of random primers and oligo-dT 
primers with Unique Molecular Identifiers [UMIs, (23, 24)]. 
This mix allowed targeting of two types of SNPs in the 
next step, multiplex PCR: SNPs close to the 3’-end enable 
the use of oligo-dT-UMIs followed with a gene-specific 
primer, while other SNPs were targeted with two gene-
specific primers in random-primed cDNA. Next, plate- and 
well-encoding barcodes were added using PCR. The 
reactions from all the wells were pooled, Illumina adaptors 
added, and the pooled library was sequenced. Finally, 
SNP counts were assigned to specific genes, and 
barcodes to specific plates and wells with a specific 
perturbation.  

To allow analysis of MAE genes, which show different 
AI in different clones, we performed our screen in a 
monoclonal line of pro-B cells (Abl.1). We have previously 
characterized allele-specific expression in several such 
clones, including Abl.1 and other clones used in this study 
(13, 14). These cells were derived from a female 
129S1/SvImJ × Cast/EiJ F1 mouse, then immortalized 
using the Abelson murine leukemia virus (25) and cloned 
through single-cell sorting. In this mouse cross, the 
median distance between SNPs in the non-repetitive 
genome is ~80 bp and almost all cDNAs have at least one 
informative SNP. 

For readout, we selected 27 SNPs in 23 target genes 
across the genome, including 15 clone-specific MAE 

genes as well as three biallelic, one imprinted and four X-
inactivated loci (Fig.1C, Suppl. Table S1). The selected 
MAE genes showed AI>0.9 or AI<0.1 in the Abl.1 clone 
(AI=[129 counts]/[129 + Cast counts]), while showing 
opposite bias or biallelic expression in another clone, 
Abl.2 (13, 14). Targeted MAE genes spanned a range of 
expression levels and extent of allelic bias in the 
screening clone, Abl.1; some showed complete silencing 
of one allele (such as Afap1, AI = 1.0), while others 
showed strong but incomplete bias (such as Dlc1, AI = 
0.1). 

We first tested that these assays were able to detect 
changes in AI. Since no perturbations are known that can 
change AI in any locus, much less in all targeted loci, for 
the control experiments we titrated known mixes of 
genomic DNA from liver tissue of the parental mouse 
strains, 129S1/SvImJ and Cast/EiJ. Expected and 
measured AI were highly concordant (R2 ≥ 0.99) at >1000 
reads/SNP (Suppl. Fig.S1). We also compared AI 
sensitivity for UMI and non-UMI assays, by designing both 
types of assays for a subset of genes where the position 
of SNPs allowed that. For this, we used mixes prepared 
from total RNA from the spleens of the mice of the 
parental mouse strains. AI measurements were highly 
concordant between the UMI and non-UMI assays (R2 ≥ 
0.97, Suppl. Fig.S2). 

Based on these pilot experiments, we concluded that 
Screen-seq can be used for sensitive detection of AI 
changes in the targeted loci. 

Identification of perturbations that affect allele-
specific gene expression 

Clone-specific MAE has been associated with specific 
chromatin signatures, i.e., combinations of histone 
modifications in human and mouse cells (8, 12, 14), 
suggesting that chromatin modifying mechanisms might 
be involved in MAE maintenance. We thus assessed the 
impact on AI in the targeted loci of treatment with a set of 
43 small molecules with known effects on the activity of 
the enzymes involved in the deposition and removal of 
methylation and acetylation marks on histones and DNA 
(Suppl. Table S3). Abl.1 cells in 96-well plates were 
exposed for 21 days to individual drugs in regular growth 
conditions (Fig.1D). Each drug was applied in three final 
concentrations (1 µM, 10 µM and 20 µM in 1% DMSO). 
Controls were untreated cells and cells with only solvent 
(1% DMSO) added. Fresh media (with or without drugs, 
as appropriate) was replaced every two days. On days 7, 
14, and 21, aliquots of cells were removed for analysis. 
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For 19 of the 43 drugs, no live cells were evident after 
six days, at any drug concentration. Each cell collection 
thus involved only 72 wells with treated cells (24 
remaining drugs at three concentrations) and 24 wells 
with controls (12 untreated and 12 vehicle-treated cells). 
Taken together, in this Screen-seq experiment we 
assessed 7,776 experimental points (allele-specific 
measurements of 27 SNPs in 23 genes × 96 wells × 3 
time points). 

With a targeted RNA-seq library, only a very moderate 
amount of sequencing was needed to reach the coverage 
depth required for sensitive allele-specific analysis. At 
1,000 reads per experimental point, fewer than 10×106 
sequenced fragments were needed for the entire screen. 

As potential hits, we identified conditions resulting in 
outlier AI values (Fig.1E,F; see Methods for details). AI 
measurements were highly uniform for some genes (e.g. 
Fam27b or Mecp2) across drug concentrations and time 
points, while there was more variation in other genes 
(e.g., Pea15a or Col6a5). To allow for variation in assay 
sensitivity, each readout gene was analyzed 
independently of the rest. Outliers were identified using 
highly stringent criteria (see Methods). 

As expected for stably maintained allele-specific 
expression, in the untreated cells there were no outliers 
for any of the readout genes. The most pronounced 
outliers (red in Fig.1F) were observed for 3 MAE readout 
genes in the presence of 5-aza-2’-deoxycytidine (5-aza-
dC). There were also significant AI shifts in single reporter 
genes after exposure to histone deacetylase modulators 
Salermide and BML-278 (complete Screen-seq results 
are in Suppl. Fig.S3 and Suppl. Table S4). The 
magnitude of the observed shifts varied between genes 
and conditions, including drug concentration and 
exposure times. The most striking example is a shift in 
Col6a5 gene from baseline AI≈0.1 baseline in the control 
to AI≈0.8 after 7 days in the presence of 1 µM 5-aza-dC 
(Fig.1F). More subtle, significant shifts were observed for 
the MAE genes Adnp2 (from AI=1.0 to AI=0.8) and 
Dnajc12 (AI≈0.1 to AI≈0.2). Notably, in other tested 
genes, no AI shift was observed in 5-aza-dC (Suppl. 
Fig.S3). We focused on characterizing the strongest 
primary hit, 5-aza-dC. 

5-aza-dC affects allele-specific expression of 
autosomal MAE genes via DNA demethylation 

To validate the candidate hit 5-aza-dC, a classic DNA 
demethylation agent (26), we performed several sets of 
experiments. First, we took advantage of the fact that the 

Screen-seq protocol leaves enough RNA and cDNA for 
re-testing. We measured AI in the same samples using an 
orthogonal method, droplet digital PCR (ddPCR, a highly 
sensitive approach to measuring allelic frequencies (27)). 
In addition to using a different readout method, we 
assessed different SNPs than those used for Screen-seq 
for the same genes. Using cDNA from cells treated with 
1, 10 and 20 µM of 5-aza-dC for 7 days, we performed 
ddPCR to assess reactivation of the silenced maternal 
allele of the Col6a5 and Dnajc12 genes. Confirming the 
results from Screen-seq, ddPCR measurements showed 
a similarly striking shift in Col6a5 AI from a paternal bias 
to maternal bias (AI=0.1 to 0.8) after 7 days in 1 µM 5-
aza-dC (Fig.2A,B). Also confirming the Screen-seq 
results, AI for Dnajc12 gene showed relaxation towards a 
more biallelic expression, with AI shifting from 0 to 0.1 in 
1 µM 5-aza-dC and to 0.3 in 20 µM 5-aza-dC in 7 days 
(Fig.2B). 

In biological replicate experiments, the Abl.1 clonal 
cells were exposed to a range of concentrations of 5-aza-
dC for varying times. Using ddPCR, we observed that the 
maternal allele of Col6a5 was reactivated in a dose- and 
time-dependent manner (Fig.2C,D). AI shifts for Dnajc12 
and Adnp2 were also concordant with those observed in 
Screen-seq (Fig.2D and Suppl. Fig.S4). Taken together, 
these observations show that 5-aza-dC causes a shift in 
allelic imbalance in a subset of MAE genes. 

A closely related compound, 5-aza-cytidine (5-aza-C), 
is also a well-known demethylating agent, although less 
potent and toxic than 5-aza-dC (28). Since 5-aza-C was 
not one of the perturbagens tested in our screening, we 
assessed whether it had a similar effect as 5-aza-dC on 
AI changes. Within 2 days of treatment with 10 µM 5-aza-
C, the AI of Col6a5 shifted from 0 to 0.2, and to 0.6 after 
5 days in 2 µM 5-aza-C (Suppl. Fig.S5). Another MAE 
readout gene, Dnajc12, showed a shift in AI from 0 to 0.1 
within 2 days in 2 µM 5-aza-C. This further supports the 
role of DNA methylation in MAE maintenance. 

5-aza compounds at high concentrations are cytotoxic 
and cause cell cycle arrest (29). We asked whether shifts 
in AI in the target genes might be due to nonspecific 
cytotoxicity. In the presence of 2% DMSO, higher than the 
1% concentration used as a drug solvent, the Abl.1 clonal 
cells viability was reduced to 34% after 2 days, similar to 
their viability after 5 days in 2.5 µM 5-aza-dC (Suppl. 
Fig.S6). In contrast to the AI shifts in the presence of 5-
aza-dC and 5-aza-C (Fig.2D and Suppl. Fig.S5), no 
changes in AI were observed for the MAE readout genes, 
Col6a5 and Dnajc12, in 2% DMSO (Suppl. Fig.S7), 
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indicating that AI shifts are not a generalized feature of 
cells under stress. 

To test if the effect of 5-aza-dC on allele-specific 
expression was specific to inhibition of methyltransferase 
activity, we assessed changes in AI in response to the 
knock-down of Dnmt1, the main maintenance 
methyltransferase in mammals (30). Abl.1 cells 
transduced with Dnmt1 shRNA constructs showed 2-fold 
and 4-fold decrease in Dnmt1 RNA abundance (Fig.2E), 
and the corresponding partial reactivation of silenced 
alleles of Col6a5 and Dnajc12 (Fig.2F,G). 

Taken together, these observations indicate that 
Dnmt1-dependent DNA methylation is a molecular 

mechanism involved in AI maintenance for at least some 
MAE genes. 

Changes in allelic imbalance are long-term and 
rheostatic  

The shifts in AI we observe could be consistent with 
two different mechanisms. The shift could result from the 
long-term change in the mitotically stable state of allele-
specific gene regulation. Alternatively, it could be due to 
short-term changes, e.g., because of stress caused by 
drug exposure. We thus asked if the changes in AI were 
mitotically stable and enabling long-term maintenance, 
the hallmark of autosomal MAE. 

 
Figure 2. Hit validation for 5-aza-2’-deoxycytidine. 
(A, B) Confirmation of Screen-seq results for 5-aza-2’-deoxycytidine (5-aza-dC) treated cells, using an orthogonal method to measure 
AI. cDNA samples from day 7 of screening were assessed using droplet digital PCR (ddPCR) with allele-specific fluorescent probes. 
(A) Scatterplots for 20,000 droplets targeting the readout gene, Col6a5. 5-aza-dC concentration is shown in the plots. Black: empty 
droplets; blue: droplets with the Cast paternal allele amplified (labeled by FAM fluorophore); red: droplets with the 129 maternal allele 
amplified (labeled by HEX fluorophore). Ratio of red:blue droplets shown. Red value is AI as used throughout the manuscript. (B) 
Left: Summary of AI measurements shown in (A) for Col6a5; right: summary of AI measurements for Dnajc12. 
(C, D) Biological replicate of Abl.1 cells were treated with 5-aza-dC and AI was measured using ddPCR. (C) – Scatterplots as shown 
in (A) after 2 days of exposure. (D) – summary of AI measurement for Col6a5 (left) and Dnajc12 (right) after 2, 5, and 7 days of 
exposure. Grey vertical dashed lines for Col6a5 dose-response were used to determine “low”, “medium” and “high” 5-aza-dC 
concentrations for the genome-wide experiments. Results for readout gene Adnp2 are in Suppl. Fig.S4. See also Suppl. Fig.S5-7. 
(E, F, G) Analysis of Dnmt1 knock-down (KD) in Abl.1 cells. (E) Real-time quantitative PCR (RT-qPCR) analysis of Dnmt1 relative 
expression (expression in the empty vector control, normalized to Nono, taken as 1.0). Abl.1 cells were transduced with an empty 
plKO vector (control) or with 2 separate Dnmt1 shRNA knockdown constructs (Dnmt1 KD construct 1 or 2) and grown for 2 days. 
Transduced cells were then selected by growing in the presence of a selection antibiotic for an additional 17 days. RT-qPCR 
quantification was performed on cells collected 19 days after transduction. Mean and S.E.M for 3 technical replicates are shown. (F) 
Representative scatterplots show AI measurement for Col6a5 in the transduced Abl.1 cells. AI was measured using ddPCR. (G) 
Summary of the AI measurement for Col6a5 (left) and Dnajc12 (right) after Dnmt1 KD. 
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To address this question, we performed a treatment-
and-recovery experiment (Fig.3 and Suppl. Fig.S8A). 
First, Abl.1 cells (with doubling time of ~12 hrs) were 
exposed to 5-aza-dC; after two days, cells were washed 
and incubated further in the regular growth medium. 
Fig.3A and 3B show the AI readout for Col6a5 gene 
(similar results were seen with Dnajc12 gene, Suppl. 
Fig.S8B). After two days of treatment and three days of 
recovery, AI reached levels that remained stable through 
days 9 and 12. This shows that AI shifts resulting from 5-
aza-dC treatment were maintained over multiple 
subsequent cell divisions. Such stability is consistent with 
DNA methylation as the molecular mechanism that 
maintains the long-term memory of AI state of MAE genes 
in clonal cells. A continuing AI shift over the first three 
days of recovery is consistent with the cell population right 
after treatment being heterogeneous and containing 
some remaining fraction of cells with the readout gene in 
the initial state of AI≈0. By day 5, that fraction would be 
replaced by cells in the new stable state of DNA 
methylation, and the new state would then be maintained 
through days 9 and 12. 

We observed in other experiments (see Fig.2) that the 
extent of allelic shift was dose dependent. Notably, after 
recovery, the eventual stable AI states were also 
dependent on the 5-aza-dC concentration during cell 
exposure (Fig.3). This shows that 5-aza-dC-dependent 
allele-specific regulation acts not as an on-off switch, but 

rather as a rheostat, with multiple stable intermediate 
states. 

Similarly, the extent of the AI shift correlated with the 
length of drug exposure. After two days of exposure, half 
the cells were moved into the regular growth medium, 
while the other half were exposed to the same drug 
concentration for an additional 3 days. Additional 
exposure led to further AI shifts (Suppl. Fig.S8A). Note 
that longer exposure to 5-aza-dC decreased cell viability 
to the point where insufficient number of viable cells were 
present after day 5 for reliable analysis (Suppl. Fig.S8C). 
The same eventual AI shifts were reached by cells after 5 
days of treatment as after treatment and recovery: AI≈0.9 
was reached after (i) two days of treatment with 1 µM 5-
aza-dC with three days recovery; (ii) five days treatment 
with 0.5 µM; and (iii) five days treatment with 1 µM (Suppl. 
Fig.S8B). This is consistent with a regulatory locus 
reaching complete demethylation in all conditions. 

Genome-wide allele-specific impact of DNA 
demethylation 

We assessed the global impact of 5-aza-dC on allele-
specific DNA methylome and transcription by exposing  
Abl.1 cells for 2 days to low (0.2 µM), medium (2 µM) or 
high (10 µM) concentrations of 5-aza-dC, compared with 
solvent only (1% DMSO) as the control, and performing 
RNA and reduced-representation bisulfite (RRBS (31)) 
sequencing. When not resolving allele-specific signal, 

 
Figure 3. Long-term changes in the mitotic memory of allelic imbalance after exposure to 5-aza-dC and recovery. 
(A) 5-aza-dC exposure/recovery experiment in Abl.1 cells. Drug treatment setup is shown next to the line-plots (small box- 2 days, 
long box - 3days). Media changes are shown as breaks in the boxes in the drug treatment setup. Cells were exposed to 0.2, 0.5 or 
1 µM 5-aza-dC (denoted by colors) in growth medium. Cells were moved to the medium without any drug after 2 or 5 days, and 
collected for analysis at days 2, 5, 9, and 12. AI measurements for Col6a5 across time points using ddPCR are summarized in the 
line-plot. Results shows here are for cells that were exposed to 5-aza-dC for 2 days. See Suppl. Fig. S8 for the complete results.  
(B) ddPCR scatterplots for Col6a5 on day 12 (shown by arrows on the drug treatment setup) after recovery [as summarized in (A)]. 
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both RNA abundance and the extent of DNA methylation 
behaved as expected. DNA methylation levels 
substantially decreased in the presence of 5-aza-dC 
(Suppl. Fig.S9). Consistent with the overall 
transcriptional derepression due to DNA demethylation, 
RNA abundance generally increased (Suppl. Fig.S10). 

To resolve allele-specific signal in transcription, we 
applied Qllelic, a novel, highly stringent approach to the 

analysis of allele-specific expression, which uses 
replicate RNA-seq libraries to account for technical AI 
overdispersion and to minimize false positives for 
differential AI (22). Note that accounting for the whole-
transcriptome scale of RNA-seq necessarily made some 
AI changes, readily detectable in targeted assays, fall 
short of statistical significance in RNA-seq. For example, 
of the three genes with shifts in 5-aza-dC detected with 

  
 
Figure 4. Genome-wide allele-specific effects of cell exposure to 5-aza-dC. 
(A) Comparison of allele-specific expression in Abl.1 cells in control cells and 2 µM 5-aza-dC. Genes with significant shift in AI 
[methylation-sensitive genes] are shown in red. For other 5-aza-dC concentrations, see Suppl. Fig.S11. 
(B) Density plots for distribution of AI values of genes with no significant changes in AI (grey) and with changes (red) [same experiment 
as in (A)]. Note that grey and red areas are plotted to be equal. Left: control; right: 2 µM 5-aza-dC. For other concentrations, see 
Suppl. Fig.S19. 
(C) Shifts of AI in expression for methylation-sensitive genes [same experiment as in (A)]. Genes shown in the order of their nominal 
AI in control (grey circles). AI after treatment is shown (color denotes 5-aza-dC concentration). For other clonal lines, see Suppl. 
Fig.S15. For full list of methylation-sensitive genes, see Suppl. Table S7 and Suppl. Fig.S12. 
(D-E) Allele-specific changes in DNA methylome and transcriptome in Abl.1 cells. (D) Allele-specific DNA methylation analysis of 
RRBS (reduced representation bisulfite sequencing) data. Left: Sites were binned by AI, defined as difference between methylated 
fraction of CpGs on maternal and paternal alleles in control conditions (1% DMSO). Right: AI in the same bins after treatment. See 
also Suppl. Fig.S9. (E) Genes were binned by AI values, in control (left) and after treatment (right). Note: in (D,E), AI bins are 
labeled with central value X, with the bin covering the range of (X-0.05; X+0.05]. See also Suppl. Fig.S10 and S13 for bins 
showing significant shifts between control and treatment. 
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Screen-seq (Fig.1) and confirmed using ddPCR (Fig.2), 
only the shift in Col6a5 reached statistical significance in 
the RNA-seq analysis (Suppl. Table S6). This 
underscores the utility of targeted assays for screening 
purposes. 

Applying this stringent analysis to the Abl.1 RNA-seq 
data, we saw 51 genes with a significant AI shift after 
exposure to the low 5-aza-dC concentration, 145 genes 
in medium, and 140 genes in high 5-aza-dC (Fig.4A, 
Suppl. Fig.11 and Suppl. Table S7). The direction of AI 
shifts at different concentrations of 5-aza-dC all agreed, 
with higher concentration generally corresponding to 
larger shift (Fig.4C). No known imprinted genes showed 
AI changes under these conditions, and for the 3 X-
linked genes with statistically significant changes, the 
absolute shift was very small (e.g., shift in Hccs from 
AI=0.0 to 0.05, Suppl. Table S7), suggesting more 
robust mitotic maintenance of imprinting and X-
inactivation than MAE. 

Known examples of changes in transcription AI, such 
as loss of imprinting and loss of X-inactivation in cancer 
(32, 33) involve relaxation of very strong allelic biases 
towards AI=0.5. This aligns with the notion of genetic 
variation by itself making a small contribution to allelic 
bias, while epigenetic mechanisms can impose dramatic 
allelic imbalance. In Abl.1 cells, observed initial AI values 
and shifts were following this pattern in some genes 
(e.g., Anxa1, Ttp, Ang, and Ltbr; Fig.4C)). 

Use of replicate RNA-seq libraries and Qllelic enabled 
highly confident estimation of AI, revealing that most of 
the genes with AI shifts had initial (before treatment) AI 
values between extreme bias and AI=0.5, with these 
intermediate values much more common among these 
genes than in the transcriptome as a whole (Fig.4B). In 
addition, the direction of the AI shifts was also often 
unexpected. Out of 145 genes with significant shifts in AI, 
44 genes (30%), including Lgmn and Etfdh, showed 
greater allelic bias (further away from AI=0.5) after 5-aza-
dC exposure than in their initial state (at 2 µM; 13/51 
genes (26%) at 0.2 µM, and 37/140 (26%) at 10 µM; 
Fig.4C). 

To analyze changes in allele-specific signal in the 
DNA methylome from RRBS data, we first grouped sites 
by AI bins, since very few individual sites had sufficient 
coverage for statistical significance in a genome-wide 
analysis (Suppl. Table S9). In this analysis (Fig.4D), 
every bin with significant AI changes showed a shift 
towards AI=0.5 (Suppl. Fig.S13A). This appears 

inconsistent with ~30% of the genes showing increased 
AI in expression after exposure to 5-aza-dC (Suppl. 
Fig.S13B and Fig.4C). Furthermore, using similar 
binning of genes by AI, although the overall relaxation 
towards AI=0.5 was statistically detectable, the extent of 
this AI shift was much less pronounced than for RRBS 
(Fig.4E).  

Taken together, these observations show that AI in 
transcription is not necessarily a simple predictor of AI in 
DNA methylation. Instead, allele-specific gene 
expression is often determined by an interplay of genetic 
and epigenetic regulation. 

   DNA demethylation leads to increased similarity 
between clones 

An MAE gene can show extreme allelic bias in one 
clone and biallelic expression in another; this is a distinct 
feature of MAE genes, in contrast to XCI and imprinting 
(5, 34), and it directly contributes to clonal heterogeneity. 
In previous RNA-seq studies of MAE, assignments of 
allelic states were categorical and based on arbitrary 
thresholds. Gene expression would be classified as 
“monoallelic” if the major allele constitutes over 85% (9), 
or 66% (12), or 98% (7).  

We took advantage of the precision of AI estimates 
from Qllelic to perform differential analysis of allele-
specific expression across several clones and its 
changes after DNA demethylation. In addition to Abl.1 
clone, we assessed allele-specific expression in clones 
Abl.2, Abl.3, and Abl.4, all derived from 129xCastF1 
mice (13) and thus genetically nearly identical. To 
control for possible loss of heterozygosity events, we 
performed exome sequencing and removed from 
comparisons any locus with pronounced allelic bias in 
genomic DNA (AI<0.3 or AI>0.7; see Methods).  

To compare shifts in AI after DNA demethylation, we 
first assessed the toxicity of 5-aza-dC across clones. 
The viability of Abl.2, Abl.3, and Abl.4 clones was 
affected at 0.2 µM similarly to the Abl.1 clone at 2 µM 
(Suppl. Fig.S14). After two days’ exposure to these 
equitoxic concentrations, 677 genes between the four 
assessed clones showed AI shifts: 252 genes in Abl.2, 
282 in Abl.3, and 172 in Abl.4 cells (Suppl. Table S7). 
AI shifts had similar features in all clones. Initial and final 
AI states of the affected genes were distributed similarly 
to Abl.1 clone, and the direction of shifts was also similar 
(Suppl. Fig.S15). 
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There were 1,767 genes with significant differential AI 
between clones (Suppl. Table S11), and 346 (20%) of 
these showed significant changes of AI after DNA 
demethylation (Suppl. Table S12). AI in the other genes 
with differential AI did not change after exposure to 5-
aza-dC, suggesting that the mitotic maintenance of 
differences in AI between clones in such loci was due to 
some mechanism other than DNA methylation. 

Comparison of AI changes of the same genes across 
clones revealed a striking property. Depending on the 
initial AI, allelic bias in a given clone could shift towards 
balanced expression (AI=0.5) or towards stronger bias. 
However, when considered together, AI values 
converged across clones after exposure to 5-aza-dC 
(Fig.4F).  Principal component analysis for all genes with 
AI shifts showed that transcriptome-wide AI states of 
clones became closer to each other after demethylation 
(Suppl. Fig.S16). The target AI to which clones 
converged varied between genes and encompassed the 
whole range of AI values, including extreme allelic bias 
for some genes (inferred target values shown as green 
boxes in Fig.5 and Suppl. Fig.S17). In clones where an 
MAE gene was already in the target AI state (e.g., 
Col6a5 in Abl.3 and Abl.4, or Casp6 in Abl.1 and Abl.4; 
Fig.5), there were no further AI shifts after DNA 
demethylation. 

These observations are consistent with a simple 
model in which the AI for many MAE genes are set at 
different values across clones and are maintained via 
DNA methylation of regulatory sequences in cis to the 
affected genes. Demethylation causes these AI values to 
converge to a genetically determined “target” state, with 
partial demethylation resulting in an AI value between 
the start and the target states (Fig.5).  

DISCUSSION 
Using a screening-by-sequencing approach, we 

identified DNA methylation as a key mechanism involved 
in the mitotic maintenance of monoallelic expression in 
clonal cell lineages of mammalian cells. Dnmt1-
dependent maintenance DNA methylation offers a 
straightforward explanation for MAE stability, since it is a 
very stable form of molecular memory: cytosine 
methylation in the Cryptococcus genome has apparently 
been maintained for millions of years in the absence of 
de novo methylation (35). We propose a simple model 
(Fig.5), with the allele-specific regulatory landscape 
defined by genetic variation (possibly in interaction with 
epigenetic mechanisms), while a specific state of a 
clonal cell population depends on DNA methylation. 
Note that this model predicts specific regulatory 
elements located in cis to the affected genes. Such 
genomic elements would offer a simple explanation to 

 
Figure 5. DNA methylation as a rheostatic mechanism of the mitotic maintenance of allele-specific expression.  
(A-C) Examples of genes with significant changes in AI across four lymphoid clonal lines. All genes with statistically significant shifts 
(after correction for AI overdispersion) are shown in Suppl. Fig.S17. AI values in control (filled grey circles) and after exposure (open 
circles) are shown (no shifts are in grey). Same Abl.1 data as in Fig.4. Clones Abl.2, Abl.3 and Abl.4 were exposed to 0.2 µM 5-aza-
dC. Green box denotes imputed common end states. 
(D-F) Diagram of interaction between cis-regulatory landscape and DNA methylation (DNAme) which determines the rheostatic 
control of allele-specific expression. There are multiple stable DNAme states, and corresponding AI in expression. Decreases in 
DNAme lead (arrows) to convergence of states between clones, with complete loss of DNAme leading to common AI state (green 
box).  
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the evolutionary conservation of MAE status of genes 
across human populations (18) and between human and 
mouse (12, 13, 15). When and how DNA methylation is 
established in these regulatory regions remain to be 
uncovered.  

Not all assessed MAE genes were affected by DNA 
demethylation, suggesting that MAE maintenance for 
some loci involves other mechanisms instead of (or in 
addition to) DNA methylation. This offers one likely 
explanation of the previous observations that DNA 
demethylating agents did not affect allelic imbalance in 
any of the several assessed MAE genes (8, 9). 
Consistent with the idea of additional mechanisms of 
MAE maintenance, a SIRT1 activator BML-278 and a 
sirtuin inhibitor, salermide, appeared as primary hits in 
our screen (see Suppl. Fig.S3), suggesting that 
expanded application of the Screen-seq strategy can 
uncover such additional mechanisms. 

We assessed the genome-wide impact of DNA 
demethylation on the allelic imbalance in the 
transcriptome of clonal lymphoid cells. Using a new, 
highly stringent approach to allele-specific RNA-seq 
analysis (22), we found AI shifts in over 600 autosomal 
genes between four analyzed clones. Interestingly, only 
six X-linked genes showed small but statistically 
significant changes (Suppl. Fig.S18), suggesting that 
DNA methylation-dependent mitotic maintenance of AI is 
easier affected in autosomal genes than X-chromosome 
inactivation. 

Significant impact of DNA demethylation drugs on 
allele-specific expression in lymphocytes is of particular 
importance since both 5-aza-2’-dC and 5-azaC are used 
in the clinic to treat acute leukemia and other 
malignancies (28). Notably, concentrations of these 
compounds in our experiments (0.2 – 1.0 µM; Fig.3) are 
similar to that measured in the patients’ plasma [5-aza-
dC at ~60 ng/ml, about 0.25 µM (36)]. Our findings thus 
imply that DNMT inhibitors likely affect gene regulation in 
patients in ways that would be undetectable without 
allele-specific analysis. Similarly, we note that large 
shifts in AI were often independent of changes in overall 
RNA abundance (see Suppl. Fig.S10, Suppl. Fig.S12 
and Suppl. Table S8). This suggests that analyses of 
allele-specific gene regulation in polyclonal and 
monoclonal cell populations should lead to new 
translational insights. 

Stringent quantitative analysis of RNA-seq data 
reveals a more complex landscape of mitotically stable 
clonal diversity in allele-specific gene regulation than is 
implied by monoallelic/biallelic dichotomy. This 
complexity suggests that the biologically relevant 
questions concern molecular mechanisms and functional 
impact on cellular function, rather than arbitrary 
thresholds. In different clones, AI of a gene can span a 
range of values, with epigenetic regulation acting as a 
rheostat rather than an on/off switch. This extends the 
idea of the rheostatic role of DNA methylation, proposed 
for the regulation of the overall abundance of transcripts 
(37, 38).  
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METHODS 

Cell culture 
v-Abl pro-B clonal cell lines Abl.1, Abl.2, Abl.3 and Abl.4 (13) were cultured in Roswell Park Memorial Institute medium 
(Gibco), containing 15% FBS (Sigma), 1X L-Glutamine (Gibco), 1X Penicillin/Streptomycin (Gibco) and 0.1% β-
mercaptoethanol (Sigma). 

Drug treatment 
The SCREEN-WELL® Epigenetics arrayed drug library was purchased from Enzo Life sciences (BML-2836). The Abelson 
clone Abl.1 was treated with the entire drug library (Suppl. Table S3) at concentrations of 1 µM, 10 µM and 20 µM in order 
to encompass a wide enough range of concentrations where the drugs are potentially pharmacologically active. Cultures 
were treated for 21 days where media was changed every second day. After following up hits from the initial drug screen, 
5-aza-2'-deoxycytidine (5-aza-dC, Sigma, A3656) was diluted in DMSO at a concentration of 10mM and Abl.1 cells were 
treated using a concentration range of 10 nM to 20 µM 5-aza-2'-deoxycytidine. Cells were treated for a total of 21 days 
where media was changed every 2 days and samples of ~1x105 cells were harvested for RNA extractions on days 2, 5, 7, 
9, 12 and 14. Viable cells were counted using trypan blue solution (GibcoTM) on Countess™ II FL Automated Cell 
Counter machine (Life Technologies). For all treatments, drugs were solubilized in DMSO and dilutions were made to ensure 
the final DMSO added to cultures was 1% (v/v). For exposure/recovery experiment (Fig.3), 5-aza-dC was dissolved in water. 

RNA and DNA preparation 
For all Abelson monoclonal cultures, RNA was extracted from cells using a magnetic bead-based protocol using Sera-Mag 
SpeedBeadsTM (GE Healthcare). Isolated RNA was DNase-treated with RQ1 DNase (Promega). First strand cDNA 
synthesis was done using EpiscriptTM RNase H-reverse transcriptase (Epicentre) where RNA samples were primed with 
random hexamers (NEB). Both DNase treatment and cDNA synthesis were performed using manufacturer specifications 
with minimal modifications. For RNA preparation from mouse spleen, cells were extracted by crushing the whole spleen 
using the back of 1 ml syringe plunger in 40 µM nylon filter and washing the strainer with 1X PBS (Phosphate-buffered 
saline, Sigma) to collect cells. Cells from spleen were spun down and RNA was extracted using Trizol reagent (Invitrogen). 
Genomic DNA extractions for testing the sensitivity of Screen-seq were performed using the salting out method (39) and for 
reduced representation bisulfite sequencing (RRBS) were performed using Sigma GenElute kit (G1N10-1KT).  RT-qPCRs 
were performed using iTaq™ Universal SYBR® Green Supermix (BioRad) using manufacturer’s protocol on a 7900HT Fast 
Real-Time PCR system (Applied Biosystems Inc.). All primers used in this study were ordered from Integrated DNA 
Technologies and their sequences are listed in Suppl. Table S2. 

Screen-seq methodology 
A targeted sequencing method similar to that described in Nag et al (2013), was used to assay multiple genes 
simultaneously for assessing allele-specific expression. Here, we assayed 23 genes. The assay involved RNA extraction, 
cDNA synthesis (Fig. 1B), two rounds of PCR amplification and Illumina sequencing. After magnetic bead-based RNA 
purification, cDNA synthesis was performed within each well of a 96-well plate, separately using EpiScriptTM Reverse 
Transcriptase (EpiCentre Biotechnologies) using both random hexamers (NEB) and UMI-tagged oligo-dT primer with 
universal tail (Suppl. Table S2) using manufacturer’s instructions. Half the portion cDNA products were transferred to a 
separate 96-well plate. Gene-specific multiplex PCR are performed in both the plates using Phusion U multiplex Master Mix 
(ThermoFisher, F562L, Waltham, MA). Two types of multiplexed readouts were generated within each plate: readouts 
without UMI and readouts with 3’-UMI. For the multiplex readouts without UMI, target genes that contain the SNP(s) 
differentiating the maternal and paternal allele, were amplified using gene-specific primer pairs containing one of two 
universal tails (UT1 or UT2, Suppl. Table S2). For the multiplex readouts with 3’-UMI, the forward primers were gene-
specific and contained universal tail UT2 (Suppl. Table S2). They were always positioned near the SNP of interest. Reverse 
primer for these genes were complimentary to the universal tail UT1. These readouts were always constrained to the 3’ end 
of the transcript. These two types of multiplex readouts were not generated for all readout genes. A list the readout genes 
for which the multiplex assay was used is given in Supp. Table S1. MPprimer primer design program (40) was used to 
design the non-UMI multiplex PCR assay. We computationally generated an input form that would 1) constrain our SNP(s) 
of interest within 135 base pairs from one end of the amplicon, 2) mask repetitive regions, 3) prevent the design of primers 
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pairs that exist within more than one exon and 4) ensure that the total fragment size for each readout falls within 250-500 
base pairs. Once the gene-specific primer sequences were designed, the universal tails were added. Primers generated 
were tested for specificity and primer dimerization using MFEprimer (41) and also experimentally validated. The two groups 
of multiplex products from the gene-specific PCR were combined and carried over as templates to the second PCR which 
is performed using Phusion® High-Fidelity DNA Polymerase (New England Biolabs Inc., M0530L, Ipswich, MA) that 
barcodes each well/perturbation separately. These reactions use primers that target the universal tails (UT1 and UT2) of 
the readouts amplified in the first multiplex PCR and add a six-nucleotide barcode, a seven-nucleotide spacer and an 
Illumina primer dock (Suppl. Table S2). Combinatorial barcoding was achieved by using a pair of unique forward and 
reverse primers, which tag each sample with a unique barcode combination. These barcode combinations allowed pooling 
of samples in the subsequent steps of the assay. Once pooled, the readout library was cleaned up using magnetic beads 
at a bead to sample ratio of 1.2 to get rid of primer dimer bands <150bp in size. The sample was then carried over as a 
template into a third PCR reaction which adds Illumina adapters.  

We observed high accuracy of multiplexing and barcoding steps of Screen-seq by comparing the AI calculated from Screen-
seq and expected AI for a range of pure 129 and Cast parental genomic DNA mixes for all genes (Suppl. Fig.S1). A good 
correlation was observed between the reads with UMI and without UMI for readout genes tested using both methods. For 
this, Screen-seq was performed for a range of RNA mixes from pure 129 and Cast mice spleen. Allelic imbalance (AI) 
calculated from Screen-seq for Adamtsl4 and Adnp2 showed good correlation with the expected AI, and also between UMI 
and non-UMI assays (Suppl. Fig.S2). Smtnl2 and Dnajc12 showed low expression in mice spleen tissue and hence 
comparison could not be made. Finally, the assays for genes we selected had to combine successfully in multiplexed PCR. 

Screen-seq data analysis 
After Screen-seq libraries were prepared as described above, they were sequenced at the UMass Boston and Center for 
Cancer Systems Biology (CCSB) sequencing core on Illumina HiSeq 2500 and MiSeq, respectively using four-color reagent 
kits. From the P7 adapter end, 65nt were sequenced (Read 1), including one of the two barcodes for encoding plate wells 
(and the UMI, where appropriate). From the P5 adapter the remaining 135nt were sequenced (Read 2), covering the second 
well-encoding barcode and the cDNA amplicon containing the interrogated SNP. In addition, standard Illumina barcodes 
were used to distinguish individual plates within the overall pooled library, with demultiplexing before further processing. 
Reads were aligned using bowtie2 (42) against mm10 mouse genome assembly. The resulting BAM files were processed 
using custom Perl scripts to extract allele-specific, UMI-corrected counts for each gene and each well. 

To identify primary hits (outliers in Figs.1E and 1F), the allele-specific counts were analyzed using custom R scripts. Briefly, 
for each gene, point AI estimates for all drug conditions were considered together to determine median AI and the 
interquartile range (IQR = Q3 – Q1, with Q1 and Q3 the 25th and 75th percentiles). Observations with counts under 50 were 
filtered out (an observation consists of allelic counts for one gene in one well). A common practice for identification of outliers 
is to use values below Q1-1.5×IQR or above Q3+1.5×IQR (44). We used a more stringent threshold of 3×IQR, to reduce 
the likelihood of false positive hits. Complete results can be found in Suppl. Table S5. 

Droplet Digital PCR 
Droplet digital PCRs (ddPCRs) were performed on QX200 ddPCR system (BioRad) for absolute quantification of 129 and 
Cast alleles using manufacturer-recommended settings. C1000 TouchTM thermal cycler was used to perform amplification 
within droplets. SNP-specific TaqMan assays (IDT; sequences in Suppl. Table S2) were designed manually. We first 
validated all TaqMan assays experimentally using homozygous Cast and 129 cDNA and optimized reaction conditions for 
each assay using Abl.1 clonal cell line cDNA, including Tm of each primer-probe mix by performing thermal gradient PCR. 
Finally, we tested the specificity of this method by using known quantities of left kidney cDNA from homozygous 129 and 
Cast mice parents and comparing it with the estimated allelic imbalance from ddPCR. To determine the false-positives, we 
made 2-fold dilutions of these samples starting from 1 ng cDNA till its 1/16th dilution. Results demonstrated our ability to 
precisely measure allelic imbalance in samples with 30 copies/µl using ddPCR. cDNA was prepared from around 100,000 
cells and 8μl template cDNA (1/4th of eluted sample) was used per reaction. Gating for clusters with maternal and paternal 
alleles was decided by comparing the fluorescence intensity individually for the maternal and paternal probes in 
homozygous 129 and Cast tissue samples. Data was processed using QuantaSoft v.1.6 (Bio-Rad). Inverse fractional 
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abundance given displayed by the Quantasoft software was divided by 100 and noted as AI measurement [mat/(mat+pat)] 
from ddPCR. 

shRNA infection 
Two shRNA vectors targeting Dnmt1 (SHR000038801.1_TRC001.1 and SHR000373188.1_TRC005.1) and a control empty 
vector (NUL003.3_TRC021.1) packaged in lentiviral vectors obtained from the Genetic Perturbation Platform at the Broad 
Institute were tested. The optimal multiplicity of infection (MOI) was determined by infecting Abl.1 cells with pLKO_TRC060 
lentiviral vector expressing eGFP. Abl.1 cells were infected with 3 shRNA vectors (2 targeting Dnmt1 and 1 control) 
individually on day 1 at the optimal MOI under normal growth conditions in the presence of 8 µg/ml polybrene and spun at 
800×g for 90 minutes at 37ºC. The next day the media was changed and media containing 2 µg/ml of puromycin was added 
on day 2. Selection was maintained continuously afterwards, and media changes were done every 2-3 days. Cells were 
harvested on day 12 and 19 after infection, and RNA was extracted.  

Estimation of allelic imbalance in RNA-seq, RRBS and exome sequencing. 
5x106 cells treated with concentrations of 0.2 μM, 2 μM and 10 μM 5-aza-2'-deoxycytidine were harvested on days 1, 2 and 
5. Live cells were separated from debris by sucrose gradient centrifugation (Histopaque®-1077, Sigma). RNA was extracted 
from 2x105 live cells, and the remaining live cells were washed with 1X PBS and flash frozen on dry ice for genomic DNA 
extractions.  

Libraries for RNA-seq were prepared for cells collected on day 2, using at least two technical replicates from the same RNA 
(5 replicates for Abl.1 cells treated with 2 µM 5-aza-dC), using SMARTseqv4 kit (Clonetech), starting with 10 ng input RNA 
for each library according to manufacturer’s instructions. Library preparation, QC and sequencing were performed at the 
Molecular Biology Core Facilities at Dana-Farber Cancer Institute. Single-end 75bp reads were generated using a Nextseq 
500 instrument (Illumina).  

Allele-specific gene expression analysis was performed using ASEReadCounter* and Qllelic version v0.3.1 pipeline 
described in (22). Briefly, RNA-seq reads were aligned with STAR aligner v.2.5.4a using imputed parental genomes as 
reference, with default quality filtering. Only uniquely aligned reads were used. Allele-specific coverage over SNPs was 
counted using samtools mpileup and further processed using ASEReadCounter* tool based on the GATK pipeline. All exons 
belonging to the same gene were merged into a single gene model based on RefSeq GTF files (GRCm38.68 and 
GRCh37.63); overlapping regions that belong to multiple genes were excluded. AI point estimate per gene obtained as a 
proportion of maternal gene counts to total allelic gene counts. Differences in AI were accepted as significant after 
accounting for experiment-specific overdispersion, estimated using Qllelic v0.3.1 analysis of replicate libraries. Complete 
results can be found in Suppl. Table S9. 

To control for the possible loss of heterozygosity, exome sequencing was performed on genomic DNA for all clones. Library 
preparation, QC and sequencing (50x) were performed at LC Sciences (TX, USA). Exome capture was performed using 
SureSelect (Agilent Technologies) following the vendor's recommended protocol. Paired-end 150bp reads were generated 
using a Hiseq X Ten sequencing instrument (Illumina). Genes with total allelic counts of <10 and those with nominal AI >0.7 
or <0.3 were excluded from respective clones before comparing RNA-seq data between clones. 

For Reduced Representation Bisulfite-seq (RRBS), libraries were generated from 50 ng input genomic DNA using a scaled-
down (half reactions) of the NuGEN Ovation RRBS Methyl-Seq System (Tecan) following the manufacturer's 
recommendation. Libraries were PCR amplified for 11 cycles. Paired-end 100bp reads were generated using HiSeq 2500 
instrument (Illumina). Reads were aligned to the mouse mm10 genome using BSmap3 with flags -v 0.05 -s 16 -w 100 -S 1 
-p 8 –u. Custom scripts written in Perl were used to calculate the methylation percentage for CpGs covered by 4 or more 
reads (43) at locations of known SNPs. Briefly, VCF files containing SNPs between 129 and Cast strains were filtered to 
exclude calls that did not pass minimum requirements as well as CàT or GàA calls. For each SNP, RRBS reads that 
overlapped that SNP were extracted, and the methylation status of genomic cytosines was calculated by dividing the number 
of unconverted (methylated) cytosines (C) by the total number of unconverted (C) or converted (T) cytosines. The 
methylation status of all cytosines on reads overlapping a SNP were aggregated by SNP status to create a methylation 
average for the reference and alternate genotype. Complete results can be found in Suppl. Table S10. 
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Data availability 
RNAseq and RRBS data is deposited at NCBI Gene 
Expression Omnibus (GEO) repository under accession 
number GSE144007 (subseries: GSE144005 for RNAseq 
and GSE144006 for RRBS). 
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