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Abstract

Profiling cell morphology is a powerful tool for inferring cell function. However, this

technique retains a high barrier to entry. In particular, configuring image processing

parameters for optimal cell profiling is susceptible to cognitive biases, and dependent on

user experience. Here, we present an interactive machine learning strategy that learns

the optimum cell profiling configuration to maximise quality of the cell profiling

outcome. The process is guided by the user, from whom a rating of the quality of a cell

profiling configuration is obtained. The machine learning algorithm uses this

information to automatically recommend the next configuration to examine. We

validated our interactive approach against the standard human trial-and-error scheme to

optimise an object segmentation task on the standard software CellProfiler. Our

approach enabled rapid optimisation of an object segmentation pipeline, which more

accurately segmented objects compared to those optimsed through human

trial-and-error. Users also attested to the ease of use and reduced cognitive load enabled

by our machine learning strategy over the standard approach. We envision that our

interactive machine learning strategy can enhance the quality and efficiency of pipeline

optimisation to democratise image-based cell profiling.

Introduction

Image-based cell profiling is a powerful tool to capture the intricacies of cell phenotype.

The resolution and rapidity stemming from image-based cell profiling has enabled study

of mechanisms of and cellular response to disease [1], drugs [2], or materials [3].

Together with the explosion of automated and high-throughput microscopy techniques,

image-based cell profiling is increasingly relied on as a biological toolkit. Central to

image based profiling are software tools devoted to ease the burden of processing a large

volume of images by making detection, segmentation and feature extraction

automated [4].

February 20, 2020 1/21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.956268doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.956268
http://creativecommons.org/licenses/by-nc-nd/4.0/


To optimise a cell profiling process or pipeline for a particular image set, users

configure the optimal values for various image processing parameters (e.g. image

correction, object segmentation and feature extraction) in a trial and error process. The

standard toolbox CellProfiler already reduces this task by carefully curating the most

pertinent and widely-used parameters in cell profiling [5]. Yet selecting an optimum set

of cell profiling pipeline parameters (or ’configuration’) from the available parameter

space is still an onerous task and prone to biases. Optimising an image processing

pipeline is biased against those with limited knowledge in biology, microscopy or image

analysis. The high cognitive load of pipeline optimisation can inadvertently lead to

decision-making bias that deteriorates the quality of the cell profiling result. Testing of

pipelines on small datasets can also induce an availability bias, where positive results

from small subsets are incorrectly assumed to generalise to the entire dataset.

Furthermore, novice users may be susceptible to default bias, where default settings are

selected over the true optimal ones. While incredibly informative and powerful for

biology, cell profiling is hindered by the users’ capability to process images robustly and

reproducibly.

Here, we present a new method that integrates user input with machine learning to

optimise the configuration of a cell profiling pipeline. We obtain from the user the

quality score (QS), a metric to describe the performance of a pipeline configuration. We

use a Bayesian optimisation (BO) process to learn the optimal pipeline configuration by

maximising QS in an iterative fashion. Effectively, we present a machine learning

method that diverts the burden of pipeline optimisation from the user and automates

and accelerates pipeline optimisation. Through our interactive machine learning

method, reduce cognitive load and bias against new users and thus improve the rapidity

and quality of cell profiling.

We created new modules on the standard biological toolbox CellProfiler (CP) to

implement our interactive machine learning approach. Those three new modules can be

easily integrated within the existing CP software infrastructure. We created two types

of modules: evaluation modules to obtain QS from users; and, a BO module to define

parameters that will be automatically optimised. Our approach in optimising pipeline

configuration uses the evaluation and BO modules together to obtain QS and

automatically change pipeline settings towards maximisation of the QS. We also tested

our BO based approach to optimise a pipeline configuration for object segmentation.

Users with varying levels of expertise obtained higher QS of object segmentation using

our BO approach compared to the conventional trial and error method. Users also

attested to the ease of use of the BO approach, with a majority electing to incorporate

the process into their own pipeline optimisation process.

The rest of paper is organized as follows. First, we describe the conceptual

framework behind our BO approach to pipeline optimisation. Next, we present the

results of user experiments comparing our BO approach to the conventional method of

pipeline optimisation. Finally, we discuss the implications of our work for scientifically

reliable, high quality, and rapid image-based cell profiling for all.
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Semi-automated pipeline optimisation using machine learning

We propose to utilise a semi-automated, machine learning approach to optimise a cell

profiling configuration (Fig. 1). Critical to this approach is the explicit definition of the

level of performance of each cell profiling configuration. We define the QS as a metric of

the quality of a pipeline configuration. We also created a highly customisable Bayesian

optimisation (BO) module that allows the user to define the image processing

parameters to be optimised. The QS is then exploited by a BO algorithm to

automatically change all user specified image processing parameters simultaneously.

The BO process uses the evaluation and BO modules together to iteratively obtain the
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Fig 1. Optimising pipeline configuration through an interactive machine learning
approach. The conventional approach to optimising a set of cell profiling parameters (or
’configuration’) requires the user to change multiple settings in a trial and error manner.
This is a slow and tedious process, with quality of the image processing pipelines usually
only measured after analysis of the entire dataset. Our proposed method combines
machine learning with explicit definition of quality corresponding to a pipeline
configuration obtained from the user in real time (or the quality score (QS)). The
burden of choosing a pipeline configuration is then placed on an algorithm called
Bayesian optimisation (BO), which learns the optimum pipeline settings that maximises
the QS. Through this interactive machine learning approach, cell profiling can be
rapidly optimised, reduce cognitive load on users and ensure high quality outcomes.
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QS and automatically change pipeline parameters with the goal of QS maximisation.

Our concept has been implemented as a collection of stand-alone CP modules which can

be used as plugins to the existing software: ManualEvaluation, AutomatedEvaluation

and BayesianOptimisation modules. The implementation, module plugins, CP pipelines,

training and testing datasets, and results can be found on

https://github.com/uofg-cellprofiler-modules/bayesopt4cellprofiler.

Evaluation modules

The evaluation modules were created to obtain three key pieces of information at each

iteration: the target object requiring optimisation, the minimum acceptable QS required

by the user (referred to as the ’target QS’), and the QS from the latest pipeline

configuration (referred to as the ’current QS’). Definition of the target and current QS

depend on whether the user will provide a QS at each iteration (manual) or set a

criteria that defines robust processing of the target object (automatic). To provide a

concrete example, we discuss the application of our evaluation modules for object

segmentation, a common bottleneck in pipeline optimisation.

AutomatedEvaluation: The AutomatedEvaluation module automatically evaluates

the quality of a pipeline configuration based on user-prescribed criteria characteristics of

an optimally segmented object (the target QS) (Fig. S2). Thus, AutomatedEvaluation

requires prior knowledge of the optimally segmented object. For instance, an optimally

segmented nucleus rarely contains any concavities, allowing us to define the target QS

from high measurements of solidity. At least one target object with its characteristics

(e.g. shape, texture, intensity) measured needs to be placed before AutomatedEvaluation

in the pipeline. When multiple measurements of a segmented object are used, an

aggregate is calculated to obtain a target QS. At each iteration of BO,

AutomatedEvaluation calculates the current QS of the segmented object using the same

measurements defined in the target QS. If the current QS falls below the target QS, the

BO process continues. When the current QS meets or exceeds the target QS, the BO

process stops and the segmented object resulting from the optimised pipeline

configuration is displayed. If the user deems segmentation to be poor, the user will be

prompted to redefine the target QS.

ManualEvaluation module: The ManualEvaluation module relies on the user’s

subjective rating of a segmented object (Fig. S3). First, the user is required to define

the minimum acceptable segmentation quality or target QS on a scale of 1 (poor

quality) to 10 (excellent quality). During pipeline execution, ManualEvaluation

temporarily interrupts the pipeline to display the segmented object from the most

recent pipeline configuration. The user is required to rate the quality of the segmented

object using the same rating scale of 1 to 10 to provide the current QS. The BO process

will continue to iterate until the target QS is met or exceeded. Both
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Fig 2. Visualisation of the BO process at every iteration. (A) Scatterplot showing the
progress of reducing the quality gap between the current QS and target QS (y axis)
across increasing number of BO iterations (x axis). The optimum pipeline configuration
is achieved when the quality gap reaches 0 or when the current QS matches or exceeds
the target QS. (B) Table showing the parameter settings that minimises the deviance
between current and target QS, was tested in the previous iteration, and is tested in the
current iteration. The table updates at every iteration of the BO process.

AutomatedEvaluation and ManualEvaluation allows the user to customise objects and

images to be displayed to the user at each iteration of BO.

BayesianOptimisation module

The BayesianOptimisation module implements a Bayesian Optimisation algorithm to

automatically optimise pipeline configuration by maximising the QS (Fig. S4). To do

this, we created the highly customisable BayesianOptimisation module.

BayesianOptimisation requires at least one evaluation module placed upstream from

which the current QS can be obtained. BayesianOptimisation allows the combination of

the two evaluation modules, with weighting of contribution to the joint current QS

explicitly defined by the user. The BayesianOptimisation module also provides full

customization of the image processing modules and settings to be optimised using the

BO algorithm. Even settings within object identification modules (e.g.

IdentifySecondaryObject (e.g. threshold correction factor or adaptive window value) can

be optimised by the BO process. In principle, any parameters or settings with integer

and float values in modules upstream of the BayesianOptimization module can be

optimised by the BO process. BayesianOptimisation also gives the user control of the

BO process, including setting the maximum number of iterations of BO.

Together, the evaluation and BayesianOptimisation modules aim to minimise the
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gap between the current QS and target QS by automatically changing pipeline

configuration. A pop-up window shows the deviance of current from target QS at every

iteration of the BO process (Fig. 2). The BO process iterates until the current QS

matches the target QS (i.e. quality gap = 0) or the maximum number of iterations

specified by the user has been attained.

Bayesian Optimisation algorithm

At the core of the BayesianOptimisation module is a custom version of a BO

algorithm [6–8]. BO relies on a surrogate function/model that represents and provides

calibrated predictive distributions for the quality score (QS), y, for a given pipeline

configuration, x. We define the surrogate model, f(x), mapping from configuration to

QS as a Bayesian regression model with a Gaussian likelihood, N (y|f(x), σn), with a

Gaussian process (GP) prior on f such that f ∼ GP(m(x), k(x, x′) | θGP) [9]. The GP is

defined by the effective mean function, m(x) = 0, and chosen covariance function

k(x, x′) = σfexp(− 1
2 ||x− x

′||2) where the hyperparameters are collected in

θ = {σn, σf , σ`}. Given the GP and a training set, D = {(x, y)1:N}, containing a certain

pipeline configuration and its corresponding QS, the predictive distribution for any

pipeline configuration, x∗, is directly available as p(y∗|x∗, D, θ). This allows us to

estimate both the expected QS and its uncertainty for all unseen configurations. For

simplicity, we have defined the model without priors on the hyperparameters and we do

marginal likelihood optimisation of the hyperparameters (after an initial bootstrap

phase). However, some BO algorithm hyperparameters and GP parameters (e.g. the

length scale of the covariance function and the assumed noise level) can be customised

in the BayesianOptimisation module.

BO exploits the predictive distribution at any point in the optimisation process to

sequentially choose the next set of image processing parameters (i.e. the configuration)

to evaluate. It does so by trading-off the desire to optimise the current QS with the

implicit need to learn the surrogate model. To do so, here we applied Expected

Improvement [7, 8]. At the end of each iteration, the current QS from the newly chosen

pipeline configuration is subsequently included in the training set and the model

re-estimated before repetition of the BO process. A summary of the BO process is given

in (Fig. S1).

User experiments

Methods

User based experiments in pipeline optimisation for object segmentation were

performed. These experiments were conducted to test our interactive machine learning

approach against the trial and error (here referred to as ’conventional’) method of

optimising a pipeline configuration. Experiments involving human subjects were

performed with approval from the Ethics committee of the College of Science and
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Table 1. Tasks in user based testing of the interactive machine 
learning approach for object segmentation. All users were asked to 
optimise cell or focal adhesion segmentation using an interactive machine 
learning or the conventional (trial and error) approach. All tasks used the 
same image sets for training and testing

Task
Pipeline parameter 

setting Quality evaluation

Conventional User based None

Automated evaluation

BayesianOptimisation
module

AutomaticEvaluation
module

Manual evaluation ManualEvaluation
module

Composite evaluation
AutomaticEvaluation
and ManualEvaluation
modules

Engineering, University of Glasgow (case no. 300180170).

Participants were randomly assigned the objective of segmenting either cells or focal

adhesions. Pipelines for both objectives were designed to have interdependent modules,

where segmentation of cells and focal adhesions were dependent on nuclei and cell

segmentation, respectively. Each participant was required to optimise 1 pipeline using

the conventional approach, and 3 pipelines using our interactive machine learning

approach. Participants were given 20 minutes to optimise each pipeline. In the

conventional approach, participants were required to optimise settings across prescribed

modules in a trial and error manner. Using the BO approach, participants were

required to use BayesianOptimisation in conjunction with either AutomatedEvaluation,

ManualEvaluation or both evaluation modules (called ’Composite Evaluation’). A

summary of the pipeline configuration automatically optimised by BayesianOptimisation

is found in Table S1 and Table S2 for cell and focal adhesion segmentation, respectively.

Each pipeline optimisation task used identical image sets for training and testing. At

the end of each task, 10 images were used to test the quality of the resulting pipeline

configuration. Participants rated the QS of the test images. To provide a baseline

measurement, participants also rated the QS of the test images segmented from a

pipeline optimised by a CP expert. A summary of all tasks performed by each

participant is summarised in Table 1. All tasks were conducted on the same computer

running CellProfiler v3.1.8. A detailed description of methods (including cell

preparation, image acquisition, and participant recruitment) are provided in Supporting

Methods. CP pipelines and image sets used in both tasks are included in Supporting

Information 2.

A Friedman test for rank based analysis of paired samples with Dunn’s post-hoc test

for pairwise comparison was used to test statistical significance in QS between different

optimisation methods. For visualisation, we present QS from optimisation tasks

normalised to QS from a CP expert’s pipeline (normalised QS). One test image of cell

segmentation was excluded due to the absence of any segmented cell by the CP expert.
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Fig 3. Improved object segmentation using an interactive machine learning approach.
To optimise cell profiling pipeline configuration, BayesianOptimisation was tested
together with AutomatedEvaluation, ManualEvaluation or both evaluation types
(Composite Evaluation). QS of an image obtained from the indicated optimisation
method was normalized against QS of the same image processed by a CP expert
(’Normalised QS’). For segmentation of (A) cells and (B) focal adhesions, normalized QS
increased by using our interactive machine learning approach. Statistical analysis was
performed on raw QS of each image across different optimisation methods using
Friedman test for rank based analysis of paired samples with Dunn’s post-hoc test for
pairwise comparison. We denote statistical significance of * at p <0.05, ** at p <0.01,
*** at p <0.005, **** at p <0.0001. (A) n = 72 image sets from 8 participants and (B)
n = 80 image sets from 8 participants.

Results

Here, we tested the performance of our interactive machine learning approach. We

compared the quality of the segmentation, ease of use, and speed of optimisation

between our approach and the conventional method of pipeline optimisation. First, we

showed that our approach significantly enhanced segmentation QS over the conventional

method (Fig 3). In particular, providing user-based feedback in object segmentation

(through the use of ManualEvaluation) significantly improved cell segmentation QS

compared to the conventional approach. In contrast to cell segmentation, the interactive

machine learning approach (regardless of the evaluation module used) outperformed the

conventional approach in segmenting focal adhesions. We noted that the use of

ManualEvaluation (by itself or compositely with AutomatedEvaluation) was

advantageous for object segmentation. Indeed, despite having different characteristics,

both cells and focal adhesions were accurately segmented when using ManualEvaluation.

Presenting visual evidence (Fig 4) allow users to evaluate the conformity of outlines to

the edges of target objects. This is a critically simpler task than setting criteria that

define optimal object segmentation, which may be unknown a priori, as required by

AutomatedEvaluation.

Though it failed to show an advantage over the conventional method for cell

segmentation, AutomatedEvaluation improved focal adhesion segmentation. Presumably,

measurements in the ratio scale that easily define focal adhesions (e.g. ellipticity and

solidity) were easier to intuit and exploit compared to measurements in the interval
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Fig 4. The interactive machine learning approach results in accurate cell and focal
adhesion segmentation.

scale (e.g. cell area). Under certain circumstances or for users with some experience,

AutomatedEvaluation presents advantages for pipeline optimisation.

Next, we assessed the ease of use of the interactive machine learning approach (Fig

5). When asked to use AutomatedEvaluation, the number of users who found pipeline

optimisation to be easy doubled in number. Feedback on ManualEvaluation was even

more positive, as all participants considered pipeline optimisation to be easy when using

this evaluation mode. Participants also overwhelmingly (15 out of 16 or 93.8%) elected

to adopt our approach for future pipeline optimisation, indicating a widening of support

of a semi-automated approach to cell profiling optimisation. Aside from resulting in

poor segmentation QS, only a minority (3 out of 16 or 18.8%) of users found it easy to

optimise pipeline configuration using the conventional method.

Finally, we demonstrated the efficiency of our approach over the conventional

method for pipeline optimisation (Fig 5). Prior to user based experiments, we tested

our approach against a random selection of pipeline configuration (Fig S5). The

random selection process approximated the conventional trial and error method. On

average, our approach required less iterations to optimise nucleus, cell and focal

adhesion segmentation compared to the conventional approach. User based experiments

supported these findings, where 10 out of 16 (62.5%) users required more than 20

minutes to sufficiently optimise a pipeline using the conventional method. A large
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Fig 5. Ease of usage of the interactive machine learning approach for pipeline
optimisation. Survey data were accumulated from all participants from both
experiments (n = 16).

number (13 out of 16 or 81.3%) of users found 20 minutes insufficient for pipeline

optimisation using AutomatedEvaluation. Meanwhile, a majority of users (12 out of 16

or 75%) regardless of prior experience in cell profiling found that 20 minutes was

sufficient to optimise a pipeline using ManualEvaluation. We showed here that our

method empowers robust and rapid cell profiling without compromising on ease of use,

cognitive burden, or bias against novice users.

Discussion

Robust and reproducible image-based cell profiling depends on the optimal

configuration of the image processing pipeline. The conventional method of optimising

an image processing pipeline is effectively a trial and error process, and is thus time

consuming, tedious and prohibitive to those with minimal experience in image analysis

or biology. Here, we propose a semi-automated method that relies on minimal user

intervention and machine learning to accelerate pipeline optimisation, and enhance the

quality of cell profiling.

A key component in our proposed method is the iterative acquisition of the QS from

the user. By obtaining a QS corresponding to a certain pipeline configuration, we were

able to effectively incorporate learning into the process of pipeline optimisation. This

was performed using a BO approach. Importantly, the BO algorithm is ideal for

optimising broad parameter spaces such as in synthetic gene design [10],
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hyperparameter tuning [7] or crystal structure prediction [11]. Here, we also showed

that the BO method optimised the broad combinatorial space for image processing

parameters across multiple segmentation objectives. This is especially important for

users with little to no experience in image analysis, where the BO method reduces

default bias in pipeline optimisation.

The BO method is also an effective remedy to memory bias, which increases in

propensity with longer and more complex pipelines. Because the conventional method

relies on a user to remember outcomes corresponding to a image processing

configuration, the process is highly susceptible to memory and cognitive biases. Not

only do these biases severely narrow the setting space being tested, they prevent users

from obtaining the optimum processing pipeline that is crucial to accurate cell profiling.

Diverting the user’s focus towards providing the QS is also an essential feature of our

method that reduces cognitive load on users without compromising on the quality of

pipeline outcomes.

Though intended for completely autonomous optimisation [12], here we modified BO

to incorporate a human-in-the-loop [13,14]. By relying on the user instead of absolute

limits to determine QS, we have created a more generalised and flexible method to

assess and optimise pipeline performance. Without predefined limits on quality (as is

most apparent with the ManualEvaluation module), our method can optimise pipelines

for segmentation of objects with complex geometric properties (e.g. the mitochondria).

We can even extend the pipeline optimisation process for tasks with undefined quality

metrics (e.g. illumination and background correction [15] or for curation of images for

quality control [16]).

The flexibility of our method for pipeline optimisation is also extended to the

implemented modules, where users have control over: 1) the task; 2) the target QS; 3)

modules and settings; 4) weighting between automatic and manual evaluation into a

composite evaluation score; and 5) BO hyperparameters. The modularity of the CP also

permits multiple BO methods throughout a single pipeline to optimise various tasks.

Complex tasks such as focal adhesion segmentation undoubtedly benefit from this

scenario, where there are interdependencies between segmented objects.

The rapidity by which we collect data calls for fully or semi-automatic methods of

cell profiling that is adaptable to different experimental designs, biological systems and

imaging modalities. Many are developing machine and deep learning methods to

eliminate human intervention in the data analysis process. However, it is difficult and

often counter productive to eliminate the user, who has expertise to validate, configure,

fine-tune parameters and label data under novel conditions. Here, we show that

integrating the user with machine learning to improve both automation and quality of

analysis. Our interactive machine learning approach presents a new paradigm wherein

human decision-making and oversight is required for robust scientific discovery.
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Supporting information

Supporting Information 1 File. Participant information sheet, raw image results

and survey data from user experiments.

Supporting Information 2 File. Pipelines and raw images for the various tasks

carried out in user experiments.
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Supporting methods

Image acquisition

Cell culture

MC3T3 cells (passages 10-12, ATCC) were cultured using standard cell culture practice.

Cells were grown in growth media comprised of α-MEM with nucleosides and

L-glutamine without ascorbic acid and supplemented with 10% FBS and 1% penicillin-

streptomycin [17]. Cells were seeded at a density of 4000 cells/cm2 on injection moulded

and surface-texturised polycarbonate substrates [3, 18].

Immunofluorescence staining

MC3T3 cells were cultured for 2 days before fixation using 4% paraformaldehyde. Cells

were then stained with DAPI, AlexaFluor conjugated-phalloidin (ThermoFisher, 1:200)

to detect the nucleus and the actin cytoskeleton, respectively. On the same cells, focal

adhesions were visualised using an anti-talin1 (Abcam 71333, 1:200) and an appropriate

AlexaFluor conjugated secondary antibody (ThermoFisher, 1:500). Cells were then

mounted on 0.17 µm thick glass coverslips before imaging.

Fluorescence microscopy

Images of fluorescently stained cells were obtained using an EVOS FL2 Auto system

(ThermoFisher) with 40X magnification (numerical aperture = 1.3). Image sets of the

nucleus, the cell (visualised using the actin cytoskeleton) and focal adhesions were used

to test the newly developed CellProfiler modules.

Participant recruitment

Participants were informed that the purpose of the study was to evaluate the

performance of our CP modules for object segmentation. Participants provided consent

to participate by signing the informed consent forms. The participant information sheet

and consent form are provided in Supporting Info . The participants were required to

have a basic understanding of computer aided image analysis. Participants were offered

minor monetary compensation (10 GBP), and the possibility to win a larger amount (50

GBP) in a raffle. A total of 16 participants were recruited, all of whom showed varying

levels of experience in image analysis.
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Supporting figures

Is total number of
queried datapoints > 2 

Baseline image processing
settings

End of optimization procedure

Fit Gaussian process regressor using all 
known image processing settings and 

covariance function

Obtain the segmentation deviation of 
current QS from target QS

Select new image processing settings to 
test from candidates with largest 

expected improvement in segmentation 
deviation

Obtain posterior distribution of new 
Gaussian process regressor

Obtain minimum of segmentation 
deviation values from queried 

datapoints at this iteration

Randomly select image 
processing settings from all 

candidate datapoints

Yes

No

Yes

No

Obtain QS of current image processing 
settings from user

Is number 
of iterations = maximum or 

segmentation deviation = 0?

Obtain the segmentation 
deviation of current QS from 

target QS

Obtain QS of current image 
processing settings from user

Fig S1. Flowchart of the specific incarnation of the BO algorithm used in the
experiments. The BO algorithm is first initialised with two randomly generated settings
for pipeline configurations. A Gaussian process (GP) is estimated from all evaluated
pipeline configurations and its corresponding QS (acquired from the evaluation modules
at each iteration as the current QS). The GP generates a predictive distribution for all
pipeline configurations, each with an expected QS and uncertainty. To choose the next
pipeline configuration to evaluate, the BO algorithm uses an Expected Improvement
function to trade off maximisation of QS with the need to fully learn the GP. From the
chosen pipeline configuration, a current QS is obtained from the user. This two-step
process of (i) estimating the GP using all evaluated pipeline configurations and
corresponding QS, and (ii) selecting the pipeline configuration to evaluate is repeated
until the deviation of the current from the target QS is minimised or the user-defined
maximum number of iterations have been reached.
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Input object name:

Category:Set the 
quality

measurement
Set tolerance range:
Measurement:

Add another measurement

Automated evaluation module

(Minimum
value)

(Shape, Texture, Intensity...)

(Area, Integrated Intensity, ...)

(Nucleus, Cell, Cytoplasm...)

(Maximum
value)

Automated evaluation module

Smooth_Actin AutoEvaluationOverlay

Automated evaluation module

If result is not satisfying, please press ‘Quality not satisfying’, 
cancel pipeline execution manually

and adjust tolerance ranges in AutoEvaluation module

Quality ok Quality not satisfying

(A)

(B)

(C)

Fig S2. The AutomatedEvaluation module. A representation of the
AutomatedEvaluation module shows the settings that need to be defined by the user.
Values placed inside parenthesis show examples of possible input in each module setting.
(A) The module allows the user to define an image for visualisation of the segmented
object. The segmented object to be optimised is specified in the first level of objects to
display. Optionally, other objects that require visualisation can be added to the same
image. The module requires tolerance ranges or limits for at least one object
measurement (e.g. Area, Perimeter) that define optimal segmentation. The user can
define a maximum of 4 different object measurements, which are aggregated to calculate
the target QS. (B) At every iteration, the AutomatedEvaluation module displays the
segmented object resulting from the current pipeline configuration. (C) At the end of
the BO procedure (i.e. when current QS meets or exceeds the target QS), the
segmented object obtained from the optimum pipeline settings is displayed.
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(A)

(B)

Fig S3. The ManualEvaluation module. A representation of the ManualEvaluation
module shows the settings that need to be defined by the user. Values placed inside
parenthesis show examples of possible input in each module setting. (A) The target QS
is defined by the user using a scale of 1 (poor quality) to 10 (excellent quality). For
visualisation, the image on which to overlay segmentation outlines, the name of the
output image and the type of object outline needs to be defined by the user. The
segmented object to be optimised is specified in the first level of objects to display.
Optionally, other objects that require visualisation can be added to the same image. (B)
At each iteration of the BO process, a pop-up window displays the segmented object
from the current recent pipeline configuration. (F) The user is required to rate the
segmented object to provide the current QS.
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Select parameter:
(Smoothing radius, threshold 

correction factor, 
maximum object diameter…)

(1-4)
No. of settings
to be adjusted:

(Smooth, IdentifyObject, 
RescaleIntensity…)

Bayesian Optimisation Module

Set min and max 
boundaries for variation:

Select module:

(float or integer > 0)
Set steps between 

boundaries:

(Minimum
value)

Add parameter

(Maximum
value)

Select 
measurements
for evaluation: Measurement:

No. of evaluation modules:

(Evaluation)

(Nucleus, Cell, Cytoplasm...)Input object name:

(1 or 2)

(Deviation or ManualQuality)

Bayesian Optimisation Module

Add another measurement

Category:

(0-100)
Weighting of automated 

evaluation score (%): 

(0-100)
Weighting of manual evaluation 

score (%): 

Max. iterations for Bayesian 
optimisation:

(2-200)

(float or integer > 0)

Bayesian Optimisation Module

Length scale for Bayesian 
Optimisation kernel function:

(float or integer > 0)
Alpha for Bayesian 

Optimisation model:

(A)

(B)

(C)

Fig S4. The BayesianOptimisation module. A representation of the
BayesianOptimisation module shows the settings that need to be defined by the user.
Values placed inside parenthesis show examples of possible input in each module setting.
(A) The target object and the number of evaluation modules to be used are first
specified. The evaluation modes to be used will automatically propagate values for
evaluation, depending on the available evaluation modules placed upstream of
BayesianOptimisation. When using both ManualEvaluation and AutomatedEvaluation
modules, the weighted contribution of the current QS from each evaluation module can
be explicitly defined. (B) Parameters of the BO algorithm, such as the maximum
number of iterations and covariance function hyperparameters, can be tuned by the
user. (C) The pipeline parameters to be optimised by the BO process is easily
customised by the user. A minimum of one pipeline parameter needs to be optimised for
the BO algorithm to proceed. The specific parameters requiring optimisation is defined
individually and explicitly (including minimum, maximum, and interval). All evaluated
pipeline parameters and its corresponding QS are saved in .txt files.
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Fig S5. Efficiently optimising a pipeline for object segmentation using an interactive
machine learning approach. Segmentation of (A) nuclei, (B) the cell body, and (C)
adhesions were tested. Our BO-based approach was used to rapidly minimise the
segmentation deviation between the target (black) and the current QS (blue). Random
selection (orange) of pipeline parameters was used as a comparison. Data are presented
as mean ± standard deviation/2 from (A) n=50 and (B)(C) n=100 repetitions.
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Supporting tables

Table S1. Pipeline parameters automatically optimised in cell 
segmentation using the interactive machine learning approach. 

Object Module Setting Minimum 
value

Maximum 
Value Interval

Nucleus

Identify

Primary

Objects

Threshold 
correction 
factor

0.9 1.5 0.1

Cell body

Identify

Secondary

Objects

Size of 
adaptive 
window

50 350 25

Threshold 
correction 
factor

0.9 1.5 0.05

Smooth Typical artifact 
diameter 2 10 1

Fig S1

Table S2. Pipeline parameters automatically optimised for focal adhesion 
segmentation using the interactive machine learning approach.

Object Module Setting Minimum 
value

Maximum 
Value Interval

Cell

Identify

Secondary

Object

Size of adaptive 
window 50 350 50

Focal 
adhesions

Identify

Primary

Objects

Threshold correction 
factor 0.8 1.5 0.05

Size of smoothing 0 20 1

Suppress local 
maxima that are 
closer than this 
minimum allowed 
distance

0 20 1

Fig S2
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