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Abstract: Studies have shown that STK11 mutation plays a critical role in affecting the lung ade-7 

nocarcinoma (LUAD) tumor immune environment. By training an Inception-Resnet-v2 deep con-8 

volutional neural network model, we were able to classify STK11-mutated and wild type LUAD 9 

tumor histopathology images with a promising accuracy (per slide AUROC=0.795). Dimensional 10 

reduction of the activation maps before the output layer of the test set images revealed that fewer 11 

immune cells were accumulated around cancer cells in STK11-mutation cases. Our study demon-12 

strated that deep convolutional network model can automatically identify STK11 mutations based 13 

on histopathology slides and confirmed that the immune cell density was the main feature used by 14 

the model to distinguish STK11-mutated cases. 15 
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 18 

1. Introduction 19 

 Non-small cell lung cancer is the most common type of lung cancer accounting for 20 

more than 80% of lung tumor malignancy cases, among which 50% are adenocarcinoma 21 

(LUAD) [1]. STK11 is a critical cancer related gene that provides instructions for making a 22 

tumor suppressor, serine/threonine kinase 11 [2]. About 24% of all adenocarcinoma cases 23 

are STK11-mutated, and molecular studies have shown that STK11-mutation plays an 24 

important role in influencing the tumor immune environment including the intratumoral 25 

immune cell densities [1]. As a result, many researchers suggested that precision 26 

immuno-therapy approaches should take STK11 status of individual tumors into con-27 

sideration [3–5]. In recent years, deep-learning-based methods have been proved to be 28 

able to capture morphological features on tumor images that are associated with molec-29 

ular features such as mutations, subtypes, and immune infiltration [6–10]. Here, we 30 

trained a deep learning model that can determine LUAD patients’ STK11 mutation status 31 

based on histopathology slides with high performance. Visualization of the key features 32 

learned by the model confirmed that STK11 mutation is associated with the density of 33 

immune cells near cancer cells. Practically, this model is capable of providing guidance to 34 

immunotherapy in a faster, more convenient, and less expensive way by examining his-35 

topathology images without doing sequencing analyses.  36 

2. Materials and Methods 37 

 Inception-Renet-v2, a modified version of Inception-v4 with residual connection 38 

derived from the original InceptionNet, was used as the architecture of the deep learning 39 

model for this project [11–13]. Figure 1 shows the general workflow. 541 scanned diag-40 

nostic histopathology slides from 478 patients with STK11 mutation status were down-41 

loaded from Genomic Data Commons (GDC) of National Cancer Institute (NCI). The 42 
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data were then separated into training (80%), validation (10%), and testing (10%) sets at 43 

per-patient level. Due to the large size of the slides, they were cut into 299-by-299-pixel 44 

tiles at 20X magnification level and background was omitted. The model was trained 45 

from scratch at per-tile level with batch size of 64 and dropout keep rate of 0.3. The 46 

training process stopped when either training or validation loss did not decrease for 47 

more than 10000 iterations to avoid overfitting. When training loss reached minimum at 48 

some point, a 100-iteration validation was performed. The model was saved as the best 49 

performing one only when both training and validation losses were at minimum. 50 

 51 

Figure 1. The general workflow of data preprocessing, model training and evaluation, and feature 52 

visualization.  53 

3. Results 54 

 The model achieved per-slide level area under ROC curve of 0.795 (95% CI: 55 

0.601-0.988) and 0.696 (95% CI: 0.692-0.7) at per-tile level (Figure 2). The top-1 accuracy 56 

with cutoff at 0.5 was 0.855 (95% CI: 0.742-0.931) at per-slide level and 0.837 (95% CI: 57 

0.835-0.839) at per-tile level. Considering this is a molecular feature prediction task and 58 

the labels are at per-slide level only, we believe that these results are quite decent and 59 

successful. 60 
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slide level ROC curve and per-tile level ROC curve of the trained InceptionResnetV2 model ap-75 

plying to the test set. 76 

 The activation maps before the last fully-connected layer of 30000 randomly selected 77 

tiles in test set were recorded. These activation maps were then projected onto a tSNE 78 

plot (Figure 3). To have a more straightforward visualization of the features, we put 79 

thresholds on prediction scores and randomly selected tiles to represent their corre-80 

sponding local binned areas on the tSNE space (Figure 4). An experienced pathologist 81 

with no previous knowledge in machine learning interpreted patterns in Figure 4 that 82 

tiles in the positively predicted clusters (STK11-mutated) generally showing plenty of 83 

cancer cells with very few immune cells while a large number of immune cells were 84 

present around the cancer cells in the negatively predicted areas (wild type). In addition, 85 
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most cancer cells were observed in the areas with high positive or negative predictio86 

scores, suggesting that cancer cells were the main focus of the model in making decis87 

These findings validated the molecular studies that STK11 mutation decreases the im88 

mune response in LUAD patients. 89 

90 

Figure 3. 30000 tiles were randomly sampled from the test set. The activation maps before the91 

fully connected layer of these tiles were represented in the tSNE plot. The color of labels indic92 

the positive prediction scores of the tiles. Clusters of predicted STK11-mutated and wild type 93 

can be observed. 94 
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96 

Figure 4. Randomly selected tiles represent binned areas on tSNE space (full resolution figure97 

supplement). Examples of STK11 mutated and wild type tiles are shown. Cancer cells are the 98 

focuses in these tiles. Predicted STK11 mutated tiles show no immune cells (smaller and darke99 

cells) around cancer cells (larger, lighter, and irregular shape cells) while plenty of immune cel100 

present in predicted wild type tiles. 101 

4. Discussion 102 

 The model we trained showed capability in predicting STK11 mutation in LU103 

patients based on histopathology images. It has a great potential in providing guid104 

to immunotherapies in a faster, cheaper, and more convenient way without any105 

quencing analyses. Scientifically, it confirms the molecular level findings that ST106 

mutation leads to less immune response in LUAD tumor from histopathology pers107 

tive and links a critical lung cancer molecular feature to a previously unknown 108 

phological pattern. Moving forward, we will continue working on building the con109 

tion between cancer molecular features and morphological features using deep lear110 

techniques. 111 

 112 
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