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Abstract 
Background: Wearable devices have been widely used in clinical studies to study daily activity 
patterns, but the analysis remains the major obstacle for researchers.  

Study Objective: This study proposed a novel method to characterize sleep-activity rhythms using 
actigraphy and further used it to describe early childhood daily rhythm formation and examine its 
association with physical development.  

Methods: We developed a machine learning-based Penalized Multi-band Learning (PML) 
algorithm to sequentially infer dominant periodicities based on Fast Fourier Transform (FFT) and 
further characterize daily rhythms. We implemented and applied the algorithm to Actiwatch data 
collected from a 262 healthy infant cohort at 6-, 12-, 18-, and 24-month old, with 159, 101, 111, 
and 141 subjects participating at each time point respectively. Autocorrelation analysis and 
Fisher’s test for harmonic analysis with Bonferroni correction were applied to compare with PML. 
The association between activity rhythm features and early childhood motor development, 
assessed by Peabody Developmental Motor Scales-Second Edition (PDMS-2), was studied 
through linear regression.  

Results: PML results showed that 1-day periodicity is most dominant at 6 and 12 months, whereas 
1-day, 1/3-day, and 1/2-day periodicities are most dominant at 18 and 24 months. These 
periodicities are all significant in Fisher’s test, with 1/4-day periodicity also significant at 12 
months. Autocorrelation effectively detected 1-day periodicity but not others. At 6 months, PDMS-
2 is associated with assessment seasons. At 12 months, PDMS-2 is associated with seasons and 
FFT signals at 1/3-day periodicity (P<.001) and 1/2-day periodicity (P=.04). In particular, 
subcategories of stationary, locomotion, and gross motor are associated with FFT signals at 1/3-
day periodicity (P<.001). 

Conclusions: The proposed PML algorithm can effectively conduct circadian rhythm analysis 
using time-series wearable device data. Application of the method effectively characterized sleep-
wake rhythm development and identified the association between daily rhythm formation and 
motor development during early childhood. 

 

Keywords: wearable device, actigraphy, circadian rhythm, physical activity, early childhood 
development  
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Introduction 

Wearable devices have been increasingly used in research recently, as they can provide continuous 

objective monitoring of activities as well as vital sign data such as body temperature and pulse 

rates[1-3]. In sleep and activity studies, researchers are focused on the generated actigraphy from 

wearable device activity data to study sleep and activity patterns as an alternative to sleep diaries 

and polysomnography (PSG) [1, 4]. The device usually uses an accelerometer that works by 

monitoring acceleration in one or more directions, and this wristwatch-like device is often worn 

on the wrist to record activity continuously for several days. Either the raw data or the transformed 

activity count data can be used to study sleep-wake patterns and screen sleep disorders [4, 5]. 

Actigraphy not only avoids the subjectivity and bias issues with sleep diaries but also overcomes 

the drawbacks of PSG, such as high costs, in-lab setting, intrusive measures, and difficulty in long-

time monitoring.  

Continuous objective monitoring by the wearable device provides researchers with the opportunity 

to conduct circadian rhythm studies. Circadian rhythms are endogenous and entrainable biological 

processes that follow a period of approximately 24 hours, and many physiological phenomena 

such as sleep-wake patterns, body temperature, and hormone levels all exhibit circadian rhythms. 

For humans, most circadian rhythms are under the control of the pacemaker located in the 

suprachiasmatic nuclei in the anterior hypothalamus of the central nervous system, and 

suprachiasmatic nuclei accepts environmental information such as the light/dark cycle to adjust 

the 24-hour cycle [6]. However, 24-hour human circadian rhythms are not mature at birth, when 

the predominant rhythm is ultradian, and the circadian rhythms of sleep-wake cycles and body 

temperature gradually develop during the first year after birth [6-9]. Many studies have 

investigated how circadian rhythms develop through childhood into adolescence and adults, and 
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how they are related to health issues such as sleep problems, mental problems, and disease risks, 

just to name a few [8, 10-14]. It is noteworthy that the development of circadian rhythms during 

early childhood is associated with disease risk factors and can affect both childhood and adult life 

[8]. Therefore, it is important to conduct circadian rhythm studies to get a thorough understanding 

of the formation and consolidation of daily activity rhythms during early development as well as 

the association between changes in daily rhythms and health conditions.  

Actigraphy generated from wearable devices has been validated to provide reliable information on 

sleep and circadian rhythms [15]. However, the analysis of time series data from actigraphy 

remains the major obstacle for researchers. Current major statistical methods are either parametric 

based on cosinor analysis or nonparametric [16-21]. These methods do not specifically focus on 

periodic information and are not specifically suitable for populations whose sleep-wake rhythms 

are not sinusoidal, such as circadian disorder patients, or not mature, such as young infants and 

toddlers [6-10, 12]. Therefore, traditional approaches targeting normal daily rhythms might not 

work, as detailed activity rhythms cannot be captured. There is a need to develop appropriate 

methodology to extract periodic information and study detailed circadian patterns of all 

populations to better characterize daily rhythms. 

Here we propose a Penalized Multi-band Learning (PML) approach that can complement current 

methods to characterize daily rhythms based on periodic information in time series wearable 

device data. PML extracts periodic information using Fast Fourier Transform (FFT) and then 

performs penalized selection based on regularization, a classic approach used in machine learning, 

to identify dominant periodicities and further characterize daily rhythms [22, 23]. In this paper, we 

first present the proposed PML approach in details and discuss its usefulness and advantages 

compared to other methods. Then, we present one application of the method to early childhood 
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wearable device activity data, in which we were able to characterize the formation and 

consolidation of sleep-activity rhythms and further studied its association with physical 

development during early childhood. 

Methods 

Data 

The study subjects are from a 262 healthy newborn cohort recruited in 2012-2013 by Shanghai 

Children's Medical Center, Shanghai, China. Actiwatch data were collected at 6, 12, 18, and 24 

months old, with 159, 101, 111, and 141 subjects at each time point respectively, and not all 

subjects from the cohort participated each time. Infants and toddlers were required to wear 

Actiwatch-2 (Phillips Respironics Mini-Mitter) on the ankle for seven consecutive days. Wearing 

on the ankle is commonly recommended for young infants/toddlers [24]. The Actiwatch-2 utilizes 

a piezoelectric sensor to detect accelerations between 0.5 and 2.0g with a frequency response range 

between 0.35-7.5Hz, and activity counts summarize accelerations over each epoch. The data 

output format for Actiwatch-2 was configured to be activity count per 1-minute epoch. Based on 

sleep diaries and activity plots for each individual, days showing non-wear periods with straight 

lines of zero activity counts were removed. Non-wear periods can be differentiated from sedentary 

behaviors or sleep as the former gives almost all zeros while the latter gives non-zero activity 

counts every now and then. Figure 1 shows the activity plots for subject ID 17, and it can be seen 

that at 6 months, low and high activities are intermittent during the day, suggesting multiple 

daytime naps, while near-zero activity levels at night suggests long nighttime sleep. At 12 months, 

three activity peaks, one morning nap and one afternoon nap can be identified. Then at 18 and 24 

months, two activity peaks formed and stabilized, showing one afternoon nap only. The daily 

activity rhythm developed and stabilized as the infant grew. In addition to Actiwatch data, 
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demographic information and family information were collected at baseline, such as child sex, 

child birthdate, parental age, child birth weight and body length, parents’ heights and weights, 

parental educational levels and working statuses, and family income. Peabody Developmental 

Motor Scales-Second Edition (PDMS-2) were used to assess early childhood physical 

development at 6, 12, 18, and 24 months [25]. The institutional review board of the Shanghai 

Children’s Medical Center, Shanghai Jiao Tong University approved the study and the approval 

number is SCMCIRB-2012033. Parents of children who participated in the study all gave written 

informed consent. 

Figure 1. The activity plots for ID 17 at 6, 12, 18, and 24 months respectively, with activity counts 

averaged across seven days at each time point. 
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Fast Fourier Transform 

To describe the consolidation of sleep-activity rhythms during early childhood, we utilize periodic 

information to characterize daily rhythms. Specifically, we use Fast Fourier Transform (FFT) to 

convert time-domain signals into frequency-domain spectrum in order to extract periodic 

information. We analyze the original data to allow for non-24-hour sleep-wake rhythm detection. 

Figure 2 shows FFT results for ID 17 at each age respectively. 1-day periodicity is most dominant 

at all time points. 1/5-day and 1/4-day periodicities can be identified at 12 months. 1/2-day and 

1/3-day periodicities did not become dominant until 18 and 24 months. It is noteworthy that each 

periodicity is not interpreted alone but combined to understand the overall pattern. As suggested 

on the right panel of Figure 2, the combined 1/5-day and 1/4-day periodicities form the three-peak 

two-nap pattern at 12 months. Likewise, the combined 1/2-day and 1/3-day periodicities exhibit 

the two-peak one-nap pattern at 18 and 24 months. Therefore, the combination of dominant 

periodicities can be utilized to capture main sleep-activity patterns at each age and describe the 

gradual consolidation of daily rhythms in early childhood development.  
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Figure 2. Left panel: Fast Fourier Transform (FFT) results for ID 17 at 6, 12, 18, and 24 months, 

respectively. Right panel: top three periodicities and the combined plotted on 1-day observation 

for ID 17 at 12 months and 24 months, respectively. 

 

Identification of Dominant Periodicities  

The PML algorithm is as follows. Let matrix 𝑋𝑋 ∈  𝑅𝑅𝑛𝑛× 𝑝𝑝 denote FFT results, where 𝑛𝑛 denotes the 

number of individual observations, and 𝑝𝑝  denotes the number of periodicities from FFT. 

Specifically, 𝑋𝑋 = �𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑝𝑝�, where 𝑥𝑥𝑗𝑗 is the vector of length 𝑛𝑛 for the 𝑗𝑗th periodicity. 

Let Θ be the diagonal matrix selecting columns from 𝑋𝑋 such that 𝑋𝑋� = 𝑋𝑋Θ and 0 ≤𝜃𝜃𝑗𝑗,𝑗𝑗≤1, 𝑗𝑗 =1,…, 𝑝𝑝: 

Θ = �

 𝜃𝜃1,1
   0

 0
𝜃𝜃2,2

⋯
⋯

0
0

   ⋮    ⋮ ⋱ ⋮
   0    0 ⋯ 𝜃𝜃𝑝𝑝,𝑝𝑝

�  

Θ identifies columns of dominant periodicities from 𝑋𝑋  in the way that dominant periodicities 

corresponding to nonzero 𝜃𝜃𝑗𝑗,𝑗𝑗′𝑠𝑠  are selected. We minimize the squared Frobenius norm 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.02.20.957076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.957076


||𝑋𝑋 − 𝑋𝑋�||F2 , the sum of the squared elements of the matrix. Using properties of the Frobenius norm, 

we can get: 

||𝑋𝑋 − 𝑋𝑋�||F2 = ||𝑋𝑋 − 𝑋𝑋Θ||F2 

                                                                                  = tr((𝑋𝑋 − 𝑋𝑋Θ)𝑇𝑇(𝑋𝑋 − 𝑋𝑋Θ)) 

                                                                                  = tr(𝑋𝑋𝑇𝑇𝑋𝑋 −  𝑋𝑋𝑇𝑇𝑋𝑋Θ − Θ𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋 + Θ𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋Θ) 

Because 𝑋𝑋𝑇𝑇𝑋𝑋 is fixed, it is equivalent to minimize: 

tr( 𝑋𝑋𝑇𝑇𝑋𝑋Θ − Θ𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋 + Θ𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋Θ) = − 2 ∑ 𝜃𝜃𝑗𝑗,𝑗𝑗||𝑥𝑥𝑗𝑗||2 𝑗𝑗 + ∑ 𝜃𝜃𝑗𝑗,𝑗𝑗
2 ||𝑥𝑥𝑗𝑗||2𝑗𝑗   

In order to estimate Θ and identify dominant periodicities, we use a penalized selection method 

similar to Lasso, a widely used method in shrinkage and selection of a subset of features in 

regression models and machine learning approaches [23]. In regression, Lasso penalty is most 

effective in selecting a few important features while suppressing regression coefficients of other 

non-selected features to 0 [23]. In our case, Lasso penalty serves to select a few dominant 

periodicities through diagonal elements of Θ instead of regression coefficients. Further, we add an 

elastic-net like penalty term onto the Frobenius norm, namely a combination of L1 and L2 

norms[22]: 

𝑔𝑔(𝜃𝜃) = − 2 ∑ 𝜃𝜃𝑗𝑗,𝑗𝑗||𝑥𝑥𝑗𝑗||2𝑗𝑗 + ∑ 𝜃𝜃𝑗𝑗,𝑗𝑗
2 ||𝑥𝑥𝑗𝑗||2𝑗𝑗 + 𝜆𝜆 �1−𝛼𝛼

2
 ∑ 𝜃𝜃𝑗𝑗,𝑗𝑗

2
𝑗𝑗 + 𝛼𝛼 ∑ 𝜃𝜃𝑗𝑗,𝑗𝑗𝑗𝑗  �  

where 𝜆𝜆 is the tuning parameter and 𝛼𝛼 controls the balance between the L1 and L2 norms. Note 

that 𝜃𝜃𝑗𝑗,𝑗𝑗 's are nonnegative and thus we do not need to take the absolute value for the L1 norm. By 

setting 𝜆𝜆 large enough, all diagonal elements of Θ, namely all 𝜃𝜃𝑗𝑗,𝑗𝑗′𝑠𝑠, are suppressed to zero and no 

periodicities are selected. As 𝜆𝜆 decreases, some 𝜃𝜃𝑗𝑗,𝑗𝑗′𝑠𝑠 become nonzero and they correspond to the 

most dominant periodicities that are selected sequentially according to how dominant they are. 
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To minimize 𝑔𝑔(𝜃𝜃) , we take the partial derivative of 𝑔𝑔(𝜃𝜃)  with respect to each 𝜃𝜃𝑘𝑘,𝑘𝑘 :  𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑘𝑘,𝑘𝑘

=

−2||𝑥𝑥𝑘𝑘||2 + 2𝜃𝜃𝑘𝑘,𝑘𝑘||𝑥𝑥𝑘𝑘||2 + (1 − 𝛼𝛼)𝜆𝜆𝜃𝜃𝑘𝑘,𝑘𝑘 + 𝛼𝛼𝜆𝜆, which is convex and also subject to the constraint 

0 ≤ 𝜃𝜃𝑘𝑘,𝑘𝑘 ≤  1. Thus, we have: 

𝜃𝜃�𝑘𝑘,𝑘𝑘 = arg min𝑔𝑔(𝜃𝜃) = max � 2||𝑥𝑥𝑘𝑘||2−𝛼𝛼𝛼𝛼
2||𝑥𝑥𝑘𝑘||2−(1−𝛼𝛼)𝛼𝛼

, 0�  

If we only have the L1 penalty, 𝛼𝛼 = 1 and 𝜃𝜃�𝑘𝑘,𝑘𝑘 = max �2||𝑥𝑥𝑘𝑘||2−𝛼𝛼
2||𝑥𝑥𝑘𝑘||2

, 0�. In our case, we use Lasso 

L1 penalty alone and train 𝜆𝜆, because we want to select the most important periodicities while 

suppressing other periodicities to 0. However, we still keep the L2 norm in the original model as 

an option as it might be helpful in future tasks, such as prediction, classification, reconstruction of 

curves, and so on. 

We use mean squared error (MSE), which is equivalent to the squared Frobenius norm ||𝑋𝑋 − 𝑋𝑋�||F2, 

as the criterion for choosing 𝜆𝜆  and the number of nonzero 𝜃𝜃𝑗𝑗,𝑗𝑗′𝑠𝑠  (the number of dominant 

periodicities selected) as well as evaluating how much variability is not explained by the selected 

periodicities. We did not choose cross-validation because results showed that the test dataset error 

curve is monotonous. We train 𝜆𝜆 from 2 ∙ max
1≤𝑗𝑗≤𝑝𝑝

 (||𝑥𝑥𝑗𝑗||2) to 0, as 𝜆𝜆 = 2 ∙ max
1≤𝑗𝑗≤𝑝𝑝

 (||𝑥𝑥𝑗𝑗||2) suppresses 

all 𝜃𝜃𝑗𝑗,𝑗𝑗 's to 0 and 𝜆𝜆 = 0 gives no penalty. By decreasing 𝜆𝜆, we identify dominant periodicities 

sequentially and characterize the daily sleep-activity rhythm at each age. An R package named 

PML has been developed (https://CRAN.R-project.org/package=PML) for the implementation of 

the PML algorithm [26].  

Comparison with Other Methods 

To rigorously conduct statistical tests and select significant periodicities, we apply Fisher's Test 

for Harmonic Analysis [27]. It is a sequential test for ordered statistics, and periodicities are first 
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ordered and then tested for significance. If one periodicity is statistically significant, the next one 

will be tested further. If not, the sequential test will stop. At each step, the critical value at which 

to declare statistical significance is different. In some publications the method may not be 

implemented correctly so we included the sequential test in the R package for easy implementation. 

Because we are performing multiple testing, Bonferroni correction is used to adjust p-values. If 

we conduct the tests at significance level 𝛼𝛼, we will reject the null hypothesis if p-value ≤ 𝛼𝛼/𝑝𝑝, 

where 𝑝𝑝 is the number of periodicities, and conclude that the periodicity is significant. 

To evaluate the effectiveness of the PML algorithm, we compare it with the standard approach 

autocorrelation. Autocorrelation 𝑟𝑟𝑘𝑘 is calculated between activity measurements with a time lag 𝑘𝑘, 

and the coefficient 𝑟𝑟24 for a 24-hour time lag is of primary interest in circadian studies [28]. 𝑟𝑟𝑘𝑘 

ranges between -1 and 1, and a 𝑘𝑘-hour periodic pattern can show a higher value of correlation 

coefficient  𝑟𝑟𝑘𝑘. In the plot of 𝑟𝑟𝑘𝑘 against the time lag 𝑘𝑘, a peak around 𝑘𝑘=24 can be observed when 

there is a dominant circadian pattern of 24-hour periodicity. We plot autocorrelation against the 

time lag to compare the autocorrelation method with our algorithm.  

Association between Daily Rhythms and Motor Development  

We further conduct linear regression to study the association between the consolidation of daily 

activity rhythms and early childhood physical development. PDMS-2 is considered as early 

childhood developmental assessment and used as the outcome. If PDMS-2 total motor standard 

scores are found to be associated with daily rhythm features, the standard scores for subtests 

including stationary, locomotor, object manipulation, grasping and visual motor integration as well 

as gross motor and fine motor are used as the outcome to further examine which specific 

subcategory is associated. Gross motor represents the overall performance on stationary, 
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locomotion and reflexes (6 months) or object manipulation (12, 18, 24 months) for infants, and 

fine motor represents the overall performance on grasping and visual-motor integration.  

The FFT signals at dominant periodicities identified by PML are used as daily rhythm features and 

considered as covariates in the model. In addition to periodic features, demographic information 

and family information as potential confounders are also considered in the model. Backward 

selection is used in the model fitting process. While some variable (denoted as variable A here) 

may appear to be statistically significant in the complete model, after removal of insignificant 

variables in the variable selection process, variable A may become insignificant. In such cases, 

variable A will also be removed in the final model to achieve parsimony.  

Linear regression is conducted at 6, 12, 18, 24 months respectively to study the association between 

daily rhythms and motor development. For final model comparison, 𝑟𝑟2  that measures the 

proportion of the variation in the outcome explained by the model and also the adjusted 𝑟𝑟2 that 

modifies 𝑟𝑟2  based on the number of predictor variables were also calculated. All statistical 

analyses were conducted in R (Version 3.3.2). 

Results 

Identification of Dominant Periodicities 

As shown in Figure 3, at each age, we plot MSE against the number of nonzero 𝜃𝜃's, and specifically, 

we only plot the points where the number of nonzero 𝜃𝜃's (periodicities selected) increases as the 

penalty 𝜆𝜆 decreases. For 6 months and 12 months, the first harmonic at 1-day is most dominant, as 

we can observe a large dip in MSE when the first periodicity is selected while the following 

periodicities that are further selected do not cause the same level of decrease. For 18 and 24 months, 

the first three periodicities of 1-day, 1/3-day, 1/2-day are most dominant, as selecting the first three 
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can lead to relatively large decrease in MSE. The results indicate that during the first year, only 1-

day periodicity is formed and stabilized in the infant population. Not until 18 months is the sleep-

activity rhythm stabilized, showing the pattern of one nighttime sleep, one daytime nap, and two 

daytime activity peaks.  

Figure 3. Mean squared error (MSE) against the number of nonzero 𝜃𝜃’s as the penalty term 𝜆𝜆 

decreases, at 6, 12, 18, and 24 months, respectively. 

 

Fisher’s tests give similar results. As shown in Table 1, only 1-day periodicity is significant at 6 

months (P < 10-5), because for infants at this stage, sleep-activity patterns have already adjusted to 

a 24-hour cycle. However, daytime activities have not been stabilized yet and variations exist 

across days. Then at 12 months, four periodicities are significant (P < 10-5). It is because infants’ 

sleep-activity patterns start to stabilize, but there are variations across individuals: some take one 

nap in the afternoon while others take two naps, one in the morning and one in the afternoon. The 

one-nap pattern can be captured by the 1/3-day periodicity, while the two-nap pattern can be 

captured by the 1/4-day periodicity, as previously shown in Figure 2. Further, at 18 and 24 months, 
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three periodicities are significant (P < 10-5): 1-day, 1/2-day and 1/3-day, indicating the final 

consolidation of daily sleep-activity rhythms with only one daytime nap in the afternoon. In 

addition, the proportions of variance explained by the 1/2-day and 1/3-day periodicities in 18 

months and 24 months were about the same, both higher compared to 12 months.  

Table 1. Significant periodicities at 6, 12, 18, 24 months with the corresponding proportions of 

variances among all Fast Fourier Transform (FFT) signals and p-values. 

Age (Month) Prop. Variance Period (min) Period (day)    p-value  

6 0.0110 1440 1-day    6.59×10-8 
12 0.0120 1440 1-day  1.75×10-8 
12 0.0068 720 1/2-day  3.75×10-7 
12 0.0056 360 1/4-day  2.82×10-7 
12 0.0045 480 1/3-day  6.49×10-6 
18 0.0130 1440 1-day  1.46×10-9 
18 0.0085 480 1/3-day  1.87×10-10 
18 0.0083 720 1/2-day  5.02×10-15 
24 0.0130 1440 1-day  1.97×10-9 
24 0.0086 480 1/3-day  1.17×10-10 
24 0.0080 720 1/2-day  3.78×10-14 

Comparison with Autocorrelation 

To compare the PML algorithm with autocorrelation, the plot of correlation estimates against time 

lags is shown in Figure 4. The circadian rhythm at 24 hours can be observed at all time points, as 

the peaks of estimated correlation are at time lags between 23.8 hours to 24.3 hours. We can also 

observe some local maximal correlation estimates at other time lags: 3.3 hours at 6 months, 4.7 

and 10.7 hours at 12 months, 7.5 hours at 18 months, and 7.5 and 16.3 hours at 24 months. While 

3.3 hours at 6 months may seem reasonable because of the infant feeding schedule, other cycles 

are hard to explain [29, 30]. Autocorrelation estimates can be biased due to the presence of multiple 
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periodicities, and generally researchers use it to verify the most dominant periodicity such as 24 

hours. Thus from the autocorrelation plots, the most dominant 24-hour rhythm that yields the 

global maximal correlation estimate can be identified at each age, and this dominant periodicity 

was also identified by PML.   

Figure 4. Estimated autocorrelation against time lags at 6, 12, 18, and 24 months respectively. 

 

Association between Daily Rhythms and Motor Development  

Summary of the PDMS-2 standard scores for each category are provided in Table 2.  
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Table 2. The Peabody Developmental Motor Scales-Second Edition (PDMS-2) standard scores for 

subtests, gross motor, fine motor, and total motor. 

 Standard Scores: Mean (Standard Deviation) 

PDMS-2 

Category 

6 Months 

(n=246) 

12 Months 

(n=225) 

18 Months 

(n=192) 

24 Months 

(n=170) 

Reflexes 10.56 (1.02) -- -- -- 

Stationary 9.67 (1.44) 9.48 (1.00) 9.94 (0.36) 9.03 (1.38) 

Locomotor 10.09 (1.08) 8.82 (1.76) 9.26 (1.24) 8.61 (1.70) 

Object Manipulation -- 9.92 (0.78) 9.49 (1.16) 8.74 (1.33) 

Grasping 10.69 (1.02) 11.08 (1.44) 9.55 (0.78) 9.99 (0.98) 

Visual Motor Integration 11.19 (1.20) 10.69 (1.13) 11.04 (1.74) 9.79 (1.74) 

Gross Motor 30.34 (2.72) 28.25 (2.65) 28.63 (2.21) 26.16 (3.17) 

Fine Motor 21.86 (2.02) 21.83 (2.17) 20.67 (1.93) 19.80 (2.22) 

Total 52.24 (4.18) 50.23 (5.05) 49.43 (3.19) 45.98 (4.69) 

 

As shown in Table 3, at 6 months, the PDMS-2 total motor scores are found to be associated with 

assessment seasons (P < .001). Infants receiving the PDMS-2 assessment in winter and spring tend 

to have lower PDMS-2 total motor scores compared to those assessed in summer and autumn. At 

12 months, the PDMS-2 total motor scores are associated with both seasons and FFT signals: 

infants assessed in summer tend to have higher PDMS-2 total motor scores, and infants with higher 

FFT signals detected at 1/3-day and 1/2-day periodicities also tend to have higher PDMS-2 total 

motor scores (P < .001 and P=.04 respectively). 𝑟𝑟2 is 0.25 and the adjusted 𝑟𝑟2 is 0.21. At 18 and 

24 months, no association is identified between the PDMS-2 total motor scores and any other 

variables.  
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Table 3. Linear regression of Peabody Developmental Motor Scales-Second Edition total motor 

standard scores on season and Fast Fourier Transform (FFT) signals at 6 months and 12 months, 

respectively. 

Time Variable Estimate Std. Error t-value p-value 

6-month 

(intercept) 50.10 0.56 89.52 <.001 
spring 0.48 0.85 0.56 .576 

summer 4.48 0.82 5.43 <.001 
autumn 4.06 0.89 4.54 <.001 

12-month 

(intercept) 45.52 1.29 35.25 <.001 
summer 1.66 1.58 1.05 .297 

1/2-day* 0.19 0.09 2.10 .039 
1/3-day* 0.31 0.09 3.55 <.001 

summer:1/3-day* -0.48 0.16 -3.00 .004 
* FFT signals were multiplied by 10,000 in regression models so that the estimated effect sizes are 
for every 10,000-unit increase in FFT signals.  

Because PDMS-2 total motor scores are associated with FFT signals at 12 months, further linear 

regression between each subtest scores and FFT signals are also examined. As shown in Table 4, 

subtests for stationary and locomotion as well as gross motor and fine motor are found to be 

associated with the 1/3-day periodicity. Gross motor represents the overall performance on the 

three subtests of stationary, locomotion and object manipulation for infants at 12 months, and since 

the association of FFT signals at 1/3-day periodicity with stationary and locomotion subtests is 

strong, it is expected that the association of that with gross motor is also strong. 𝑟𝑟2 and the adjusted 

𝑟𝑟2 are 0.05 and 0.04 for the stationary model, 0.23 and 0.20 for the locomotion model, 0.21 and 

0.17 for the gross motor model, and 0.15 and 0.11 for the fine motor model respectively.  
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Table 4. Linear regression of Peabody Developmental Motor Scales-Second Edition standard 

scores on season and Fast Fourier Transform (FFT) signals at 12 months: stationary and 

locomotion subtests, gross motor and fine motor as the outcome respectively. 

Category Variable Estimate Std. Error t-value p-value 

Stationary 
(Intercept) 9.23 0.19 47.9 <.001 

1/3-day 0.04 0.02 2.17 .033a 

Locomotion 

(Intercept) 7.16 0.43 16.48 <.001 
summer 0.71 0.75 0.94 .348 
1/3-day 0.19 0.04 4.61 <.001a 

summer: 1/3-day -0.13 0.07 -1.93 .057b 

Gross Motor 

(Intercept) 26.41 0.63 42.03 <.001 
summer 0.57 1.09 0.52 .602 
1/3-day 0.24 0.06 3.97 <.001a 

summer: 1/3-day -0.17 0.10 -1.73 .087b 

Fine Motor 

(Intercept) 21.08 0.5 42.15 <.001 
summer 0.34 0.86 0.39 .697 
1/3-day 0.11 0.05 2.36 .021a 

summer: 1/3-day -0.15 0.08 -1.89 .062b 
* FFT signals were multiplied by 10,000 in regression models so that the estimated effect sizes are 
for every 10,000-unit increase in FFT signals.  
a
 Statistical significance level at 𝛼𝛼=0.05. 

b
 Statistical significance level at 𝛼𝛼=0.10. 

Discussion 

Method Evaluation 

The PML approach is very effective in studying daily activity rhythms among infants and toddlers. 

At 6 and 12 months, the dominant 1-day periodicity suggests the formation of the 24-hour cycle. 

At 18 and 24 months, the combination of the dominant 1-day, 1/3-day, and 1/2-day periodicities 

forms the consolidated daily activity pattern with two activity peaks during the day and one 

afternoon nap. PML not only effectively identified population-level dominant periodicities but also 
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characterized sleep-activity patterns without complex functional analysis. PML can complement 

current methods for circadian rhythm analysis and is especially useful for populations whose daily 

rhythm patterns are non-sinusoidal and irregular. On the other hand, because PML is applicable to 

time series data bearing a similar nature to actigraphy, the application of PML can be extended to 

other types of circadian rhythm studies using information such as body temperature and hormone 

data to study and characterize daily rhythms effectively. 

Comparison with Other Methods 

In comparison, Fisher’s test for harmonic analysis tends to identify many significant periodicities 

unless a stringent threshold is used for statistical significance. Here we employed the Bonferroni 

correction to adjust for multiple testing and used the significance level 10-5 to select periodicities, 

even though we did not conduct as many statistical tests simultaneously. In sequential testing 

procedures like our scenario, people often use less conservative multiple testing correction 

methods such as the Benjamini-Hochberg procedure [31]. We chose the most stringent threshold 

to avoid selecting too many periodicities that are not helpful in characterizing daily activity 

patterns at each age. 

We also compare our PML algorithm with the standard approach autocorrelation. Plots of 

correlation estimates against time lags are useful for identifying the correlation peak at 24 hours 

but not shorter periods of rhythmicity. It is because estimation of correlation can be biased due to 

the presence of multiple periodic rhythms, and identification of multiple periodicities by simple 

calculation of autocorrelation may not be accurate. Therefore, the standard approach using 

autocorrelation is effective in confirming the most dominant 24-hour periodicity but not as 

effective in identifying other periodicities, which the PML algorithm is able to achieve.  
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Other standard approaches such as periodograms and cosinor analysis are not used here, because 

there are in fact connections between PML and the two methods. It is important to point out their 

connections and also differences. For periodograms, the Fourier periodogram, the Enright 

periodogram and the Lomb-Scargle periodogram are commonly used [18]. Both our PML 

algorithm and the Fourier periodogram utilize Fourier analysis to identify dominant periodicities, 

except that the PML algorithm uses a shrinkage method in machine learning to identify dominant 

patterns in the population, while Fourier periodograms are focused on individuals to manually 

identify dominant periodicities based on individual plots. The Enright periodogram, though 

suitable for equidistant activity measurements in our scenario, may not be applicable here because 

it requires ten or more days of data [18]. In addition, the estimation method only holds when there 

is one periodic component, but in our case the presence of multiple periodic components may 

attenuate the results [18]. The Lomb-Scargle periodogram is a modification of Fourier analysis to 

accommodate unevenly spaced data or missing data. Because our data do not have the issue, the 

Lomb-Scargle periodogram is equivalent to the Fourier periodogram here. Compared with the 

PML algorithm, the Fourier periodogram involves more manual work to generate periodograms 

for each individual and visually identify dominant periodicities, while PML is more automated 

and also more effective in studying the population as a whole and further identifying the 

periodicities that are characteristic of the population. In addition, researchers often use 

periodograms to validate the most dominant periodicity such as 24 hours but do not specifically 

examine information on secondary dominant periodicities or use periodic curves to reconstruct or 

approximate activity patterns, even though the connection between dominant 

frequencies/periodicities and functional curves can be made and the periodic information can be 

fully utilized. Therefore, the PML algorithm makes full use of the information from more than one 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.02.20.957076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.957076


dominant periodicities and links FFT results in the frequency domain with their representing cosine 

curves to effectively characterize activity patterns. 

For cosinor analysis, recall that FFT results consist of real parts and imaginary parts that 

correspond to cosine curves and sine curves respectively, and thus FFT is equivalent to fitting the 

cosine model. We actually fitted cosine models to the activity data with one to three cosine curves 

at dominant periodicities identified by the PML algorithm. Even though the estimated amplitudes 

for the cosine curves are different from FFT results, the Pearson correlation between the cosine 

coefficients and the FFT signals of the same periodicity is 1, indicating equivalence. While the 

final results are equivalent, the procedures are different. For cosinor analysis, if prior knowledge 

is known, one can use simple least squares methods to fit the model [32]. However, if there is no 

prior knowledge on periodic information, the least squares methods cannot be used because the 

dominant periodicity needs to be estimated first and the cosinor model can no longer be linearized 

in its parameters. One has to either start from an initial guess and use iterative procedures to 

minimize residual sum of squares or use simulated annealing alternatively to fit the model, the 

process of which can be exhaustive [33-35]. In comparison, without prior knowledge on dominant 

periods, the PML algorithm based on shrinkage in machine learning is still easy to implement 

without computational burden in extracting periodic information and the results are as effective as 

the cosinor model to characterize daily activity patterns using cosine curves.  

In summary, the proposed PML algorithm is effective in extracting periodic information, 

identifying dominant periodicities, and further characterizing activity patterns. In the presence of 

multiple periodicities, PML does not have the estimation problem that autocorrelation encounters. 

To identify dominant periodicities, PML uses shrinkage in machine learning methods that can 

avoid manual work in periodograms, which require individual plots and visual identification. PML 
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can also characterize activity patterns by making full use of the cosine curves represented by FFT 

signals and avoiding the computationally intensive process of choosing and fitting cosinor models 

when prior knowledge on dominant periodicities is not available. 

Sleep-Activity Rhythm Characterization 

Our study confirms previous study results that infants already form 24-hour sleep-wake cycles at 

6 months due to entrainment by cyclical changes in the environment, whether it is due to light-

dark cycles or maternal rest-activity cycles [6, 9, 10, 36, 37]. It is noteworthy that while 24-hour 

cycles are formed, sleep-activity patterns over the 24-hour period are not stabilized: infants often 

take multiple naps at different times of the day and their daily activity patterns vary across days 

and across individuals.  

From 6 months to 12 months, our study indicates that the infant sleep-activity pattern gradually 

develops: some infants take only one afternoon nap while others take two naps in the morning and 

afternoon. Strong FFT signals at 1/3-day periodicity capture two-peak one-nap activity patterns 

while strong FFT signals at 1/4-day periodicity capture three-peak two-nap patterns. The results 

are in line with previous sleep studies that the duration of nighttime sleep gradually lengthens and 

sleep patterns become more and more consolidated during the first year after birth [12, 38].  

While the timing for the stabilization of infant sleep-activity patterns varies across individuals, by 

the time infants become 18 months old, their daily activity patterns have consolidated into a 

predominant nighttime pattern with one afternoon nap only, which can be obtained by combining 

the three dominant periodicities at 1-day, 1/2-day and 1/3-day. The consolidation of sleep-activity 

patterns is confirmed by increased FFT signals at 1/2-day and 1/3-day periodicities and decreased 

FFT signals at other periodicities compared to previous ages. The results for 24 months remain the 
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same as 18 months, showing no changes and confirming further that sleep-activity patterns are 

consolidated by 18 months and stable onwards. 

In our study, the 3-hour periodicity, normally for feeding behaviors, was not detected and there 

might be two reasons. First, in the feeding guidelines for infants, feeding of infants aged 6-8 

months are advised to be 5 to 6 times in 24 hours, less frequent than the 3-hour (8 times) schedule, 

and infants aged 12-24 months are advised to have three meals with family and have additional 

snacks for 2-3 times [29, 30]. Infants younger than 6 months may have a more frequent feeding 

schedule, but our activity data were collected at 6 months or later. Second, there might be 

desynchronization between feeding schedules and activity patterns. While 6-month infants might 

be fed 5-6 times per day, they do not nap or sleep 5-6 times within the same timeframe. We referred 

to the sleep diaries recorded by parents as reference for napping information. Most 6-month infants 

have one to two naps in the morning and one nap in the afternoon. 12-month infants generally have 

one or no naps in the morning and one nap in the afternoon. Most 18-month and 24-month infants 

have one nap in the afternoon. Therefore, sleep-activity patterns are desynchronized with feeding 

schedules, as feeding behaviours might not dominate infant sleep-activity patterns at this age. For 

the above reasons, feeding cycles such as 3-hour periodicity were not detected in our data. 

Association between Daily Rhythms and Early Childhood Development 

Using FFT signals at dominant periodicities identified by PML, we are able to find the association 

between the consolidation of sleep-activity rhythms and early childhood motor development. At 6 

months, the association between PDMS-2 total motor scores and assessment seasons may be 

explained by different amounts of clothes worn by infants in different seasons. In winter, infants 

are likely to wear lots of clothes, which may restrict their behaviors and result in suboptimal 

performances compared to infants wearing light clothes and taking the PDMS-2 assessment in 
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summer. As a result, 6-month-old infants taking the assessment in summer and autumn got 

relatively higher PDMS-2 scores compared to infants in winter and spring. 

Then at 12 months, after controlling for assessment seasons, stronger FFT signals at 1/2-day and 

1/3-day periodicities are generally associated with higher PDMS-2 scores. 12 months is in the 

critical period of sleep-activity rhythm consolidation, which is captured by the growing FFT 

signals at 1/2-day and 1/3-day periodicities. It is noteworthy that for infants at this age, they all 

have strong FFT signals at 1-day periodicity, indicating that they all exhibit 1-day periodicity in 

their sleep-activity patterns and their 24-hour periodic activity patterns tend to be stabilized. As a 

result, there is not much variation in the strength of 1-day periodicity, which might not explain 

much of the variability in PDMS-2 scores among inidividuals. In comparison, the activity pattern 

over the 24-hour period is not consolidated and the activity pattern can be characterized by the 

1/3-day and 1/2-day periodicities. The larger variability in the strength of 1/3-day and 1/2-day 

periodicities can describe the degree to which the daily sleep-activity pattern is consolidated, 

which is further associated with children development evaluated by PDMS-2 scores. Infants with 

a more consolidated activity pattern tend to have better motor development evaluations. In addition, 

activity rhythm consolidation is strongly associated with subcategories of locomotion and 

stationary, which belong to the gross motor and measure how the large muscle system is utilized 

to move from place to place or assume a stable posture when not moving. Therefore, we obtained 

new insights into early childhood development that the degree to which the sleep-activity pattern 

is consolidated at 12 months is associated with infant motor development and is associated with 

the large muscle system development in particular. 

At 18 and 24 months, the PDMS-2 scores are not associated with season, FFT signals, or any other 

variables in the dataset we have. Most of the toddlers have stabilized daily activity patterns with 
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strong periodic rhythmicity at this age. FFT signals as characteristics of sleep-activity rhythms are 

no longer associated with PDMS-2 scores, and it is likely because the critical age at which the 

daily activity rhythm stabilizes has passed.  

Limitations and Future Work 

One limitation with our study is that we collected Actiwatch data every six months, and thus we 

were not able to capture more detailed monthly changes over the time period. Future work may 

collect Actiwatch data in a more frequent manner, such as every three months or every month, so 

as to capture gradual changes in the sleep-activity rhythm during early childhood. For infants 

younger than 6 months, more frequent observations can also allow us to observe how the 

predominant rhythm of infants changes from ultradian to circadian by adjusting to the 24-hour 

cycle in the environment. Another limitation of the study is that while we identified the association 

of sleep-activity daily rhythm consolidation with early childhood motor development and with the 

large muscle development in particular, the mechanism behind it is not clear. Future work should 

investigate how daily rhythm consolidation and motor development interrelate and contribute to 

early childhood development. 

Conclusions 

In summary, the proposed PML algorithm provides a new method for circadian rhythm analysis 

and is particularly useful for studying populations whose daily patterns are not regular. In addition, 

the PML algorithm is applicable to other types of wearable device data in the format of time series 

bearing a similar nature to actigraphy, so it can be extended to other types of circadian studies 

using information such as body temperature, heart rate, and hormone data. Therefore, the PML 

algorithm can be widely applied to other wearable device studies to help characterize periodic 

information. Using the proposed method, our study provides novel insights into sleep-activity 
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rhythm development in early childhood. First, in our study, the critical time period for the 

consolidation of sleep-activity rhythms is between 6 and 18 months. It is because at 6 months, 24-

hour sleep-wake cycles are formed but their daily activity patterns are not stabilized, and by the 

time toddlers become 18 months old, their sleep-activity patterns have consolidated into a fixed 

pattern with two activity peaks and one afternoon nap. The time period between 6 and 18 months 

is critical for early childhood sleep-activity rhythm development and consolidation. Second, we 

identified the association between the consolidation of daily rhythms and early childhood motor 

development, and the association is with the large muscle system development in particular. This 

association has not been identified in previous studies. Infants with more consolidated circadian 

rhythms tend to have better motor development assessments. While the mechanism is not clear, 

keeping a regular and stable sleep-activity pattern and maintaining a healthy circadian system are 

important for healthy physical development in early childhood.  
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