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Abstract10

At the origin of multicellularity, cells may have evolved aggregation in11

response to predation, for functional specialisation or to allow large-scale12

integration of environmental cues. These group-level properties emerged13

from the interactions between cells in a group, and determined the selection14

pressures experienced by these cells.15

We investigate the evolution of multicellularity with an evolutionary16

model where cells search for resources by chemotaxis in a shallow, noisy17

gradient. Cells can evolve their adhesion to others in a periodically chang-18

ing environment, where a cell’s fitness solely depends on its distance from19

the gradient source.20

We show that multicellular aggregates evolve because they perform chemo-21

taxis more efficiently than single cells. Only when the environment changes22

too frequently, a unicellular state evolves which relies on cell dispersal. Both23

strategies prevent the invasion of the other through interference competition,24

creating evolutionary bi-stability. Therefore, collective behaviour can be an25

emergent selective driver for undifferentiated multicellularity.26
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1 Introduction27

The evolution of multicellularity is a major transition in individuality, from au-28

tonomously replicating cells to groups of interdependent cells forming a higher-29

level of organisation [1, 2]. It has evolved independently several times across the30

tree of life [3, 4]. Comparative genomics suggests [5], and experimental evolution31

confirms [6, 7] that the increase of cell-cell adhesion drives the early evolution32

of (undifferentiated) multicellularity. Increased cell adhesion may be temporally33

limited and/or may be triggered by environmental changes (e.g. in Dictyostelids34

and Myxobacteria [8, 9]). Moreover, multicellular organisation may come about35

either by aggregation of genetically distinct cells or by incomplete separation after36

cell division [8, 10].37

The genetic toolkit and the cellular components that allow for multicellularity38

- including adhesion proteins - pre-date multicellular species and are found in39

their unicellular relatives [8, 11–13]. Aggregates of cells can organise themselves40

by exploiting these old components in the new multicellular context, allowing41

them to perform novel functions (or to perform old functions in novel ways) that42

may confer some competitive advantage over single cells. Greater complexity can43

later evolve by coordinating the division of tasks between different cell lineages44

of the same organism (e.g. in the soma-germline division of labour), giving rise45

to embryonic development. Nevertheless, the properties of early multicellular46

organisms are defined by self-organised aggregate cell dynamics, and the space of47

possible multicellular outcomes and emergent functions resulting from such self-48

organisation seems large – even with limited differential adhesion and signalling49

between cells. However, the evolution of emergent functions as a consequence of50

adhesion-mediated self-organisation has received little attention to date.51

Mathematical models can define under which conditions multicellularity evolves,52

in terms of fitness for individual cells vs. the group, or in terms of the resulting53

spatial and temporal organisation. The formation of early multicellular groups has54

been studied in the context of the evolution of cooperation: by incorporating game55

theoretical interactions and transient compartimentalisation [14] or the possibility56

of differential assortment [15], it was found that adhering groups of cooperating57

individuals evolve. Alternatively, costly reproductive trade-offs in a structured en-58

vironment can give rise to division of labour and the formation of a higher-level59
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proto-organism capable of self-regeneration [16]. A plethora of multicellular life-60

cycles can emerge by simple considerations about the ecology of the uni-cellular61

ancestor and the fitness benefit that cells acquire by being in groups [17]. Once62

multicellular clusters are established, the spatial organisation of their composing63

cells can play an important role in determining group-level reproduction - possibly64

leading to the evolution of cell-death [18] and to specific modes of fragmentation65

of the aggregate [19, 20] that increase overall population growth.66

In these models, multicellularity is either presupposed or its selective pressure67

is predetermined by social dynamics, by directly increasing fitness of cells in ag-68

gregates or by adverse environmental conditions that enforce strong trade-offs.69

Here we investigate the origin of this selective pressure, motivated by the idea70

that multicellular groups emerge as a byproduct of cell self-organisation and cell-71

environment interactions, and subsequently alter the evolution of their composing72

cells. We expect that a selective pressure to aggregate can arise from the emergent73

functions of the multicellular group, without requiring explicit selective advan-74

tages and disadvantages for cells in a group. We therefore present a computational75

model of an evolving population of cells where fitness is based solely on how ad-76

equately a cell responds to a spatially and temporally heterogeneous environment,77

regardless of whether they belong to an aggregate.78

We draw inspiration from the life cycle of the slime mould Dictyostelium dis-79

coideum and in particular its slug phase (described in e.g. [21]), in that we let cells80

move preferentially towards the source of a noisy chemotactic gradient. Cells have81

a higher chance to reproduce when they are close to the source of the gradient at82

the end of each season. Upon reproduction, cells can evolve their adhesion to one83

another - and therewith undifferentiated multicellularity - when the emergent col-84

lective behaviour of cell clusters turns out to be advantageous within the structure85

of the changing environment.86

With this model setup, we consider collective cell movement as an emergent87

driver of multicellularity. Collective movement is important in simpler multicel-88

lular organisms [21–23] as well as in many processes within complex multicellu-89

lar organisms, such as embryogenesis, tissue repair and cancer [24, 25], and has90

been modelled extensively [26–32]. In our model, cells perform chemotaxis to-91
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wards the source of a noisy, shallow chemokine gradient. While individual cells92

follow the chemotactic signal very inefficiently, groups of cells exhibit efficient93

chemotaxis due to the ”many wrongs” principle [33]. We show that this emer-94

gent property of cell groups is sufficient to select for high levels of adhesion and95

multicellularity, despite the fact that fitness is only defined at the cell level.96

2 Results97

Model setup We consider a population of cells on a grid that search for re-98

sources to be able to replicate. We explicitly account for cell shape and inter-99

actions by implementing a 2D hybrid Cellular Potts Model on a square lattice100

[34–36]. Cells can adhere to each other if they express matching ligands and re-101

ceptors on their surface. A better ligand-receptor match is translated to stronger102

adhesion, quantified by cell-cell and cell-medium adhesion energy (respectively103

Jc,c and Jc,m in units of energy per unit surface, see Fig. 1a and Methods).104

We implemented two types of cell migration: persistent random walk (Fig. 1b)105

and chemotaxis towards higher local concentrations of a chemokine (Fig. 1c).106

These chemokines are released by resources present at one end of the grid, cre-107

ating a shallow and noisy gradient throughout the grid (Fig. 1c). Because of the108

noise in the gradient, the direction of cell’s chemotaxis may be different from the109

correct direction of the gradient. We used this model setup to assess the properties110

of single-cell vs. collective migration.111

To explore the evolutionary dynamics of a population of cells, we let the loca-112

tion of the resources change seasonally (thus creating an additional temporal vari-113

ation in the direction of the gradient every τs MCS). This allows cells to evolve114

their adhesion strength. During each season in the evolutionary simulations (i.e.115

one period of τs MCS) cells move due to chemotaxis and persistent migration, and116

may adhere to or repel each other by means of the receptors and ligands expressed117

on their surface (Fig. 2). At the end of the season, cells divide with a probability118

proportional to their distance to the peak of the gradient, thus assuming that more119

nutrients are present where the chemotactic signal is larger. The daughter cells120

inherit mutated copies of the ligand and receptor, so that their adhesive properties121

change with respect to the parent; cell size AT , strength of chemotaxis µχ and122
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migration persistence µp do not evolve. Finally, we keep the population size con-123

stant by randomly culling the population in excess, at which point the new season124

begins. We do not select for multicellularity directly: fitness is defined at the level125

of the single cell, and we do not explicitly incorporate a fitness advantage or dis-126

advantage for the multicellular state. Therefore, multicellular clusters can arise127

only because they perform an emergent task that single cells cannot perform.128

Strongly adhering cells perform efficient collective chemotaxis We first as-129

sessed how well groups of cells with different adhesion strengths could reach the130

source of the chemotactic signal; we characterise adhesion strength by the cell’s131

surface tension γ = Jc,m− Jc,c/2, so that cells adhere to one another if γ > 0. We132

recorded the travel distance of a group of cells over a fixed amount of time and133

compare it to the travel distance of single cells, by measuring both the position134

of the center of mass of the group (fig. 3a) and the position of the cell closest to135

the peak of the gradient (Fig. 3b). Single cells perform chemotaxis inefficiently136

(Fig. 3a) and show large variance between different simulations (Fig. 3b). A group137

of adhering cells (γ > 0) can migrate up the same gradient more accurately: the138

center of mass of this group takes much less time than single cells do to reach the139

peak of the gradient (Fig. 3a). Groups of cells can also perform collective chemo-140

taxis when they do not adhere (γ < 0), and when they do not have a preference141

for medium or cells (γ ≈ 0), although with lower efficiency in both cases. The142

velocity of the cell closest to the peak of the gradient is, instead, roughly the same143

regardless of adhesion strength (Fig. 3b).144

Adhering cells have large chemotactic persistence - as shown by the super-145

linear shape of the mean square displacement (MSD) plot (Fig. 3c, γ = 6) and by146

a diffusive exponent consistently larger than 1 (Fig. 3d; the diffusive exponent is147

obtained as the derivative of the log-log transformed MSD/time curve). Instead,148

the MSD of individual cells (Fig. 3c, γ = −4) is approximately linear and their149

diffusive exponent tends to 1, indicating that cells’ movement is much more dom-150

inated by diffusion. Interestingly, there is no difference in the instantaneous speed151

of cells when they are in a cluster or when they are alone (Fig. 3e), so the higher152

rate of displacement of a group of adhering cells is only due to larger persistence153

in the direction of motion.154
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Figure 1: Model description. a) Adhesion between two cells is mediated by receptors
and ligands (represented by a bitstring, see [37]). The receptor of one cell is matched to
the ligand of the other cell and vice versa. The more complementary the receptors and
ligands are, the lower the J values and the stronger the adhesion between the cells. b)
Persistent migration is implemented by endowing each cell with a preferred direction of
motion ~vp. Every τp MCS, this direction is updated with a cell’s actual direction of motion
in that period. c) The chemokine gradient in the lattice. The lines and colour indicate
equal amounts of chemokine. Note the scattered empty pixels. d) A cell can sense the
chemokine in the lattice sites that correspond to its own location. The cell will then move
preferentially in the direction of perceived higher concentration, the chemotaxis vector.
This vector points from the cell’s center of mass to the center of mass of the chemokine
detected by the cell (the blue dot).
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Figure 2: The eco-evolutionary setup of the model: a) A population ofN = 200 cells
moves by chemotaxis towards the peak of the gradient, which in this season is located at
the left boundary of the grid. b) At the end of the season, cells divide, the population
excess is killed randomly, and the direction of the chemotactic signal is changed, after
which the new season begins (c, d). The snapshots are taken at the indicated time points
from a simulation where a season lasts τs = 100×103 MCS. Dashed lines in the snapshots
are gradient isoclines.

Within a group of adhering cells, small clusters align, pull and push on each155

other, generating extensions, retractions and rotations (see Supp. Video 1), so156

that the entire cluster visually resembles a single amoeboid cell (Supp. Video 2).157

This behaviour is not influenced by the presence of the chemotactic signal, since158

the flow field is identical in the two cases (Supp. Section S1). It is caused by159

the strong persistent motion of the individual cells, which aids in speeding up the160

movement of the cluster, but is not strictly required for chemotaxis (Supp. Section161

S2). Fig. 4 shows the movement of a cluster of strongly adhering cells (γ = 6)162

compared to the movement of a single cell, over the typical setup of the simulation163

system. Although the cluster moves straight towards the source of the gradient,164

individual cells follow noisy trajectories.165

We calculated the deviation of each individual cell’s measurement of the gra-166

dient as the angle θ( ~X, ~χ) between the true direction of the gradient ~X and the167

direction of the gradient locally measured by the cells ~χ (so that θ( ~X, ~χ) = 0 is168

a perfect measure). We found that the measurements of individual cells deviate169

significantly from the true direction of the gradient (Fig. 3e). Despite this, they170

are carried in the right direction by the other cells.171
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Figure 3: A group of cells performs chemotaxis efficiently in a noisy shallow gra-
dient. a) Distance of the center of mass of N = 50 cells from the peak of the gradient
as a function of time, for different values of γ ∈ [−4, 6] (five independent runs for each
value), together with the average position of 10 single cells (independently run). b) The
position of the cell closest to the gradient origin as a function of time (taken from the
same simulations as in a), and the positions of 10 individuals cells (whose average gen-
erates the corresponding plot in a). c) Mean square displacement per time interval for
two datasets each with 50 simulations of either single cells or clusters of strongly adher-
ing cells (N = 50, γ = 6), in which case we extracted one cell per simulation. These
data sets were also used for the following plots. d) Diffusive exponent extracted from
the MSD plot, obtained from the log-log transformed MSD plots by fitting a smoothing
function and taking its derivative. e) Distribution of instantaneous cell speeds f) Distri-
bution of angles between cells’ measurement of the gradient, and the actual direction of
the gradient. g) The length of straight segments in cell tracks vs. their angle with the
actual gradient direction. Each point represents one segment of a cell’s trajectory. To ex-
tract these straight segments a simple algorithm was used (Supp. Mat. 3). Contour lines
indicate density of data points. 8
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a b

Figure 4: a) The movement of a single cell; b) Typical movement of a cluster of strongly
adhering cells, and of the cells inside the cluster. Cells are placed on the right of the field
and move towards higher concentration of the gradient (to the left of the field). Dashed
lines are gradient isoclines.

Altogether, collective chemotaxis of a cluster of adhering cells emerges, despite172

each cell measuring the gradient as poorly as cells alone (Fig. 4f). Thus, cells173

within a cluster must be altering each others’ paths by exerting pushing and pulling174

forces. To assess how these forces alter the short-timescale trajectories of cells, we175

extracted the straight segments from the cell tracks and assessed both the length176

of these segments and their orientation with respect to the gradient source (Supp.177

Section S3). We find that cells in a cluster tend to migrate for longer in straight178

lines, and that these straight lines are also more likely to be oriented towards the179

source of the gradient (Fig. 4g). For single cells, there is no such bias. Single180

cells could also improve their ability to sense the gradient by becoming bigger,181

since they will perceive a larger area of the chemotactic signal (Supp. Section182

S4). However, there are many factors that restrict how big a cell can be, such as183

the complexity of the metabolism and cellular mechanisms such as cell division184

[38, 39]. This also puts a limit on the area of a gradient that a cell can cover by185

sheer size. We therefore assume that cells can evolve adhesion, but not cell size.186
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The evolution of uni- or multicellular strategies depends on environmental187

stability The emergence of reliable chemotactic behaviour in adhering cell clus-188

ters suggests an evolutionary path to multicellularity: a population of cells may189

aggregate if chemotaxis is necessary for locating a resource. We therefore let190

cells’ adhesion - i.e. the receptor and ligands expressed by the cells - evolve in191

response to a seasonally changing environment. Cells closer to the peak of the gra-192

dient have a higher chance to reproduce at the end of the season (see also model193

setup and Methods). The receptors and ligands of the initial population are chosen194

such that cells neither adhere nor repel each other (γ = 0).195

When the season lasts τ = 100 × 103 MCS, the average adhesion between196

cells readily increases after only few generations (Fig. 5a): Jcell,cell decreases and197

Jcell,medium increases (see also Supp. Video 3 and Fig. 2 for snapshots). Fig. 5b198

shows that two evolutionary steady states are possible, depending on the duration199

of the season τs. For τs < 20 × 103 MCS, cells evolve to become unicellular,200

as cell-cell interactions are characterised by strong repulsion (γ < 0). Fig. 5c201

suggests that by selecting for γ < 0 cells scatter efficiently throughout the grid.202

Although repelling cells follow the chemotactic signal only weakly, the spreading203

ensures that at least some cells end up close to the source of the gradient at the end204

of the season. In contrast, a cluster of adhering cells would not have enough time205

to reach the source of the chemotactic signal when seasons are short, and would all206

have the same (low) fitness (see the speed of a cluster in Fig. 3). For τs > 40×103
207

MCS, instead, cells evolve to adhere to one another, i.e. γ > 0 (see Fig. 5c for208

a snapshot). When seasons are sufficiently long, clusters of adhering cells have209

enough time to reach the source of the gradient. At this point, the fitness of cells210

within a cluster outweighs that of non adhering cells, because clustering increases211

the chances of reaching the peak of the gradient. Finally, for intermediate season212

duration, 20 × 103 ≤ τs ≤ 40 × 103 MCS, both repulsion and adhesion are213

evolutionary (meta) stable strategies, and the outcome of the simulation depends214

on initial conditions (for τs = 20× 103 MCS, the steady state with γ > 0 is very215

weakly stable).216

Interference competition between unicellular and multicellular strategies causes217

evolutionary bi-stability We next investigated what causes the evolutionary bi-218

stability in adhesion strategies for season duration 20 × 103 ≤ τs ≤ 40 × 103
219
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Figure 5: The evolution of multicellularity. a) Multicellularity (γ > 0) rapidly evolves
in a population of N = 200 cells with τs = 105 (dotted lines represent initial condi-
tions). b) Multicellularity only evolves when seasons are sufficiently long τs ≥ 50 ∗ 103;
unicellular strategies evolve when seasons are short τs ≤ 10 ∗ 103, and both strategies
are viable depending on initial conditions for intermediate values of τs (the dashed line
indicates the separatrix between the basins of attraction of the two evolutionary steady
states). c) Snapshots of the spatial distribution of the population at evolutionary steady
state for τs = 20 · 103 and τs = 100 · 103 MCS. In both panes, 〈〈γ〉〉 is estimated
as 〈Jc,m〉 − 〈Jc,c〉/2, and the initial J values indicated by the dotted lines are such that
γ = 0.
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MCS. We performed competition experiments between two populations of cells,220

one adhering (γ = 6) and one repelling (γ = −4), to determine whether a strat-221

egy can invade in a population of cells using the other strategy. We first studied222

how the initial distribution of the two populations affects fitness after one season223

of 30 × 103 MCS, when both populations have equal size N = 100 cells. We224

compared a situation where the adhering cells are positioned in front of the re-225

pelling ones (Fig. 6a), with a situation where the positions of the two clusters is226

swapped (Fig. 6b). The distance from the peak at the end of the season (the fitness227

criterion) of a cluster of adhering cells is larger if they are hindered by a popula-228

tion of repelling cells in front of them. Next we incorporated in the competition229

experiments the fact that mutants invading a resident population are in small num-230

bers and furthest away from the new peak (because they are likely born from cells231

that replicate most, i.e. those closest to the previous location of the peak). We232

simulated repelling mutants invading adhering cells by placing a large cluster of233

adhering cells in front of a small group of repelling ones (Fig. 6c), and conversely,234

a small cluster of adhering cells invading a large group of repelling cells (Fig. 6d).235

In both cases, the resident population physically excludes the invading one from236

the path to resources, and thus the distance travelled by the invading population237

is limited. Taken together, these results show that there is interference compe-238

tition (i.e. direct competition due to displacement) between populations of cells239

with different strategies, which explains why the two strategies are meta-stable for240

intermediate season duration. This result may also provide a simple explanation241

for the fact that many unicellular organisms do not evolve multicellularity despite242

possessing the necessary adhesion proteins. Moreover, evolutionary bi-stability243

protects the multicellular strategy from evolutionary reversal to unicellularity over244

a large range of environmental conditions.245

3 Discussion246

We demonstrated that undifferentiated multicellularity can evolve in a cell-based247

model as a byproduct of an emergent collective integration of noisy spatial cues.248

Previous computational models have shown that multicellularity can be selected249

by reducing the death rate of cells in a cluster [17, 19], through social interaction250

[15, 40], by incorporating trade-offs between fitness and functional specialisation251

[41] or by allowing cells to exclude non-cooperating cells [42]. In these studies,252
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Figure 6: Interference competition between adhering and repelling cells explains
evolutionary bistability. We let a simulation run for τs = 30 × 103 MCS and then
record the distance from the peak of the gradient, for two different populations of cells
- one repelling (in red, γ = −4) and one adhering (in blue, γ = 6), for different initial
conditions. The snapshots underneath are the initial and final spatial configurations of the
cells on the grid. A) 100 adhering and 100 repelling cells, placed so that the adhesive ones
are closer to the source of the gradient; B) 100 adhering and 100 repelling cells, placed
so that the repelling cells are closer to the source of the gradient; C) 180 adhering and 20
repelling cells, placed so that the adhering cells are closer to the source of the gradient;
D) 20 adhering and 180 repelling cells, placed so that the repelling cells are closer to the
source of the gradient. Dashed lines in the snapshots are gradient isoclines.
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direct selection for forming groups is incorporated by conferring higher fitness to253

the members of a cluster.254

Earlier work found that multicellular structuring can emerge without direct se-255

lection when cells are destabilised by their internal molecular dynamics (e.g. the256

cell cycle) [43], or because of a toxic external environment [16]. In both cases,257

cell differentiation stabilises cell growth and arises as a consequence of physio-258

logical or metabolic trade-offs. Our work bears some similarity with these models259

because we do not explicitly incorporate a fitness benefit (or disadvantage) for be-260

ing in a group. Our results also show that division of labour - although important261

- is not a strict requirement for emergent aggregation. Furthermore, the simple262

nature of our model makes our results easily testable in vitro.263

In many ways, the evolution of multicellularity can be compared to the evo-264

lution of collective dynamics. Previous studies on the evolution of herding be-265

haviour showed that aggregating strategies evolve in response to highly clumped266

food even though the pack explores the space slowly and inefficiently before find-267

ing food [44]. In our case, aggregation leads to a highly efficient search strategy,268

guided by long-range, albeit noisy, gradients. Moreover, modelling cells with269

an explicit shape and size (something largely neglected in models of multicellu-270

larity) allows for spatial self-organisation and generates interference competition271

between the unicellular and multicellular search strategies. The ensuing evolu-272

tionary bi-stability stabilises unicellularity despite these cells possessing the sur-273

face protein toolkit to adhere to each other, and prevents multicellular organisation274

from evolutionary reversal into single cells (over a range of environmental condi-275

tions). The “automatic” outcome of spatial self-organisation provides an initial,276

non-genetic robustness, which can be further stabilised by later adaptations [45].277

The driver for the evolution of adhesion in our model is (emergent) collective278

chemotaxis. This is reminiscent of the aggregate phase of the life cycle of Dic-279

tyostelium discoideum [21], in that a cluster of cells moves directionally as a unit280

following light or temperature, while individual cells are incapable of identifying281

the correct direction of motion. There are some important differences between282

our model and Dictyostelium, however. Individual cells are able to sense the283

chemotactic signal in our model, albeit inefficiently, and information about the284
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direction of the gradient is transmitted mechanically within cell clusters. In Dic-285

tyostelium, individual cells cannot perceive light and thermal cues: photo- and286

thermo-taxis are coordinated by waves of cAMP secretion that travel through the287

slug. The lack of extra chemical cues to organise movement within a cell cluster288

in our model makes for a simpler scenario without large-scale transmission of in-289

formation throughout the aggregate. Nevertheless, computational modelling has290

shown that long-range chemical signaling coupled to cells’ differential adhesion291

suffices to reproduce Dictyostelium’s life-cycle [26, 46]. Combining that with our292

evolutionary framework would likely enrich our understanding of Dictyostelium293

evolution towards partial multicellularity.294

Our model of collective movement is an example of the “many wrongs” prin-295

ciple [33]: the direction error of each cell is corrected by the interactions with296

the other cells in the cluster. We adopted the Cellular Potts Model to model cells297

because it allowed for a straightforward implementation of the evolvable receptor-298

ligand system. Several other models of cell clusters and collective chemotaxis299

have been proposed ([30, 32]), in some cases displaying chemotaxis in qualita-300

tively different ways (for instance without sensing the chemokine gradient, only its301

concentration [47]). We hypothesise that the evolutionary mechanism described302

here are independent of the particular cell model choice, and thus would also work303

with other models discussed in [30], provided that cells were able to polarise or304

move also in the absence of other cells.305

The importance of a bottom-up approach to study the evolution of multicellu-306

larity has been repeatedly emphasised [48, 49], and a broader understanding of307

cells self-organisation and evolution may have applications to clinically relevant308

multiscale evolutionary problems, such as the evolution of collective metastatic309

migration of cancer cells [50–53]. Our work highlights that the properties of sin-310

gle cells emergently give rise to novel properties of cell clusters. These novel311

properties - in a downward causative direction - generate the selection pressure to312

form the first undifferentiated multicellular groups.313
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4 Model314

We model an evolving population of cells that migrate and perform chemotaxis315

on a 2-dimensional lattice. Cell-cell interactions and movements are modelled316

with the Cellular Potts Model (CPM) [34, 35]. The evolutionary dynamics (mu-317

tations and selection) are implemented assuming constant population size. Cells318

undergo fitness-dependent reproduction after every season which lasts τs Monte319

Carlo Steps of the CPM algorithm, and then the population is culled back to its320

original size. After this, environmental conditions are changed and a new season321

begins.322

4.1 Cell dynamics323

The model is a hybrid Cellular Potts Model implemented with the Tissue Sim-324

ulation Toolkit [36]. A population of N cells exists on a regular square lattice325

Λ1 ⊂ Z2. The chemotactic signal is located on a second plane Λ2, of the same size326

and spacing as Λ1. A cell c consists of the set of (usually connected) lattice sites327

~x ∈ Λ1 to which the same spin s is assigned, i.e. c(s) = {~x ∈ Λ1 | σ(~x) = s}.328

The time dynamics are modelled as a Monte Carlo simulation. The algo-329

rithm attempts to copy the spin value σ(~x) of a randomly chosen lattice site ~x to330

a site ~x ′ in its Moore neighbourhood. One Monte Carlo Step (MCS) consists of331

L attempted copying events, with V 2 = |Λ1| (the size of the lattice, and V one of332

its dimensions on a regular square lattice). Whether an attempted spin copy is ac-333

cepted depends on the contribution of several terms to the energyH of the system,334

as well as other biases Y (explained in detail below). A copy is always accepted335

if energy is dissipated, i.e. if ∆H + Y < 0 (with ∆H = Hafter copy −Hbefore copy),336

and may be accepted if ∆H + Y ≥ 0 because of “thermal” fluctuations following337

a Boltzmann distribution:338

P (∆H,Y ) = e
−∆H+Y

T

with T > 0 the temperature of the system, determining the probability of the fluc-339

tuations. The Hamiltonian H of the system consists of two terms, corresponding340

to adhesion and size constraint:341

H = Hadhesion +Hcell size
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The copy biases, or “work terms”, Y consist of terms corresponding to cell mi-342

gration and chemotaxis:343

Y = Ymigration + Ychemotaxis

Cell adhesion Adhesion between cells and to medium contribute to the Hamil-344

tonian as:345

Hadhesion =
∑
(~x,~x ′)

J (σ(~x), σ(~x ′)) (1− δ (σ(~x), σ(~x ′)))

where the sum is carried out over all the neighbour pairs (~x, ~x ′), and δ (σ(~x), σ(~x ′))346

is the Kronecker delta which restricts the energy calculations to the interface be-347

tween two cells, or a cell and medium.348

In order to calculate the values of J (σ(~x), σ(~x ′)), we assume that cells349

express ligand and receptor proteins on their surface. Ligands and receptors are350

modelled as binary strings of fixed length ν (Fig. 1, inspired by [37]). Two cells351

adhere more strongly (experience lower J values) when their receptors R and352

ligands L are more complementary, i.e. when the Hamming distance D(R,L) =353 ∑ν
i=1 δ(Ri, Li) between them is larger. Thus, given two cells with spin values σ1354

and σ2 and their corresponding pairs of receptors and ligands (R(σ1), L(σ1)) and355

(R(σ2), L(σ2)):356

J (σ1, σ2) = Jα + 2ν −D(R(σ1), L(σ2))−D(R(σ2), L(σ1))

with Jα = 4 chosen so that the final calculation yields values for J (σ1, σ2) in the357

interval [4, 52].358

Adhesion of a cell with medium is assumed to depend only on the cell359

(the medium is inert), and in particular it depends only on a subset of the ligand360

proteins of a cell. This subset consists of the substring of L which begins at the361

initial position of L and has length ν ′. The value of J (σ1, σmedium) is calculated362

as:363

J (σ1, σmedium) = J ′α +
ν′∑
i=1

F (i)Li

with J ′α = 8 and F (i) a piece-wise defined function (a lookup table). The J values364

range in the interval [8, 20].365
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Encoding the energy values for cell adhesion in terms of receptor-ligand366

binding allows for some flexibility and redundancy. Two cells that have the same367

receptors and ligands (i.e. given R(σ1), L(σ1) and R(σ2), L(σ2) with R(σ1) =368

R(σ2) and L(σ1) = L(σ2)) can adhere with any strength (or not at all), by virtue369

of the particular receptor and ligand combination. Finally, implementing receptors370

and ligands in terms of binary strings allows for a simple evolutionary scheme,371

where mutations consist of random bit-flipping (more on this below). The nu-372

merical values of the various constants are chosen with two criteria in mind: the373

receptor-ligand system has to be long enough that many different combinations374

are possible, so that its evolution is more open ended; and two cells with random375

receptors and ligands do not (on average) adhere preferentially to each other or to376

the medium.377

Cell size constraint Cell size A(c) = |c(s)|, the number of lattice sites that378

compose a cell, is assumed to remain close to a target size AT (equal for all cells).379

This is achieved by adding an energy constraint in the Hamiltonian that penalises380

cell sizes that are much larger or smaller than AT :381

Hcell size =
∑
c ∈ C

λ (A (c)− AT )2

with C the set of cells and λ a scaling factor for cell stiffness.382

Cell migration We assume that each cell c ∈ C preferentially migrates to-383

wards a target direction given by a vector ~p (c) (following [54]). Lattice site copies384

of a cell are energetically more favourable when they are closer to the direction of385

that cell’s ~p:386

Ymigration = −µp cos(θp)

Where µp is the maximum energy contribution given by migration, and θp is the387

angle between ~p and the vector that extends from the center of mass of the cell388

to the lattice site into which copying is attempted. Every τp MCS the vector ~p389

is updated: its new value is the vector corresponding to the actual direction of390

motion of the cell over the past τp MCS (scaled to unit) (Fig. 1). Note that all cells391

have the same τp, but their initial moment of updating is randomised so that they392

do not update all at the same time.393
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Chemotaxis Individual cells are able to migrate towards the perceived direc-394

tion of a chemokine gradient. The slope of the gradient is very shallow, making it395

difficult to perceive the direction over the typical length of a cell. Moreover, sev-396

eral sources of noise are introduced: cell’s sampling error due to small size, noise397

due to integer approximation, and noise due to random absence of the signal.398

The chemotactic signal is implemented as a collection of integer values on399

a second two dimensional lattice (Λ2 ⊂ Z2, with the same dimensions as the CPM400

lattice). The (non-negative) value of a lattice site represents the local amount of401

chemotactic gradient. This value remains constant for the duration of one season402

(τs MCS). The amount of chemotactic signal χ is largest at the peak, which is403

located at the center of one of the lattice boundaries, and from there decays lin-404

early in all directions, forming a gradient: χ(d) = 1 + (kχ/100)(V − d), where405

kχ is a scaling constant, d is the Euclidean distance of a lattice site from the peak406

of the gradient, and V is the distance between the source of the gradient and the407

opposite lattice boundary; V =
√
|Λ1| for a square lattice. Non integer values of408

χ are changed to dχe (the smallest integer larger than χ) with probability equal to409

dχe − χ, otherwise they are truncated to bχc (the largest integer smaller than χ).410

Moreover, the value of χ is set to zero with probability pχ=0 to create ”holes” in411

the gradient.412

A cell has limited knowledge of the gradient, as it only perceives the chemo-413

tactic signal on the portion of Λ2 corresponding to the cell’s occupancy on Λ1. We414

define the vector ~χ(c) as the vector that spans from the cell’s center of mass to the415

center of mass of the perceived gradient. Copies of lattice sites are favoured when416

they align with the direction of the vector ~χ(c), i.e. when there is a small angle θc417

between ~χ(c) and the vector that spans from the center of mass of the cell to the418

lattice site into which copying is attempted (Fig. 1):419

Ychemotaxis = −µχ cos(θc)

Where µχ is the maximal propensity to move along the perceived gradient. A420

uniform random θc ∈ [0, 2π[ is chosen whenever |~χ(c)| = 0, i.e. when, locally,421

there is no gradient (which may happen for very shallow gradients).422
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4.2 Evolutionary dynamics423

A population ofN cells undergoes the cell dynamics described above for the dura-424

tion of a season, i.e. τs MCS. At the end of the season the evolutionary dynamics425

take place. The evolutionary dynamics are decoupled from the cell dynamics for426

the sake of simplicity, and consist of fitness evaluation, cell replication with mu-427

tation, and cell death to enforce constant population size.428

Fitness evaluation Fitness - i.e. the probability of replication - is calculated429

at the end of each season for each cell. We do not include any explicit advantage430

or disadvantage due to multicellularity, and instead assume that fitness is based431

only on individual properties of the cells. Therefore, any multicellular behaviour432

is entirely emergent in this simulation.433

The fitness F (c) of a cell c ∈ C depends on the distance d = d(c) of the center434

of mass of a cell c from the peak of the gradient as a sigmoid function which is435

maximal when d = 0, and decreases rapidly for larger values of d:436

F (c) =
1

1 +
(
hd
d

)2
with hd being the distance at which F (c) = 1/2.437

Replication For each cell i ∈ C with fitness F (i), the probability of repli-438

cating is P(cell i replicates) = F (i)/
∑

c ∈ C F (c). We allow for N replication439

events, each calculated with the same probabilities, choosing only cells that were440

already present in the previous season (so not their offspring). Cells with larger441

fitness may be chosen multiple times for replication.442

Each replicating cell divides along its short axis to create a daughter cell (see443

e.g. [37]), ensuring that related cells start close to each other at the beginning of444

the new season. One of the two cells (chosen randomly) is considered the mother445

cell, and can re-enter the competition for replication, the other cell may undergo446

mutations in their receptor and ligand composition. The bitstrings of the receptor447

and ligand may be modified with a per-position probability µR,L. Mutations flip448

individual bits (from 0 to 1, and vice versa).449
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Because repeatedly halving a cell’s area would quickly lead to very small450

cells, we run a small number η of steps of the cell dynamics (without cell migra-451

tion and chemotaxis) between two replication events that affect the same cell, so452

that cells can grow back to target size.453

Death After replication, there are 2N cells on the lattice. In order to restore454

the initial population size N , half of the cells are removed from the lattice at ran-455

dom. When the initial population size is restored, the season ends. The new season456

begins by randomly placing the peak of a new gradient at the mid-way point of a457

randomly chosen boundary (different from the previous one). The remaining cells458

will then undergo the cell dynamics for the following τs MCS.459
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Table 1: Parameters

Parameter explanation Values

V 2 lattice size 500× 500 pix
T Boltzmann temperature 16 AUE
λ cell stiffness 5.0 AUE/pix2

AT cell targetarea 50 pix

Cell adhesion
Jα minimum J value between cells 4 AUE/[pix length]
J ′α minimum J value between cell and medium 8 AUE/[pix length]
ν length of receptor and ligand bitstring 24 bits
ν ′ length ligand bitstring for medium adhesion 6 bits

Cell migration and chemotaxis
µp strength of persistent migration 3.0 AUE
τp duration of persistence vector 50 MCS
µχ strength of chemotaxis 1.0 AUE
kχ scaling factor chemokine gradient 1.0 molecules/[pix length]
pχ=0 probability of zero value (’hole’) in gradient 0.1 pix−1

Evolution
N population size 200 cells
τs duration of season 5× 103 - 150× 103 MCS
hd distance from gradient peak where fitness is 1

2
50 [pix length]

µR,L receptor and ligand mutation probability 0.01 per bit, per replication

AUE: Arbitrary Units of Energy (see Hamiltonian in Model Section); pix: unit
of area (one pixel of the lattice); pix length: unit of distance; MCS: Monte Carlo
Step (unit of time).
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S1 Indistinguishable relative movement of cells with471

and without a chemotactic gradient472

Here we investigate whether cells in a cluster move differently when they are473

performing chemotaxis or not. Fig. S1.1 shows the flow field around moving cells474

in a cluster with or without a gradient, as devised by [29]. In short, the flow field475

is calculated by taking each cell as a reference, and then rotating all other cells476

and their displacement vectors such that the reference cell displacement points to477

the right (~d =

[
x

0

]
). Then the rotated displacement vectors are summed in bins at478

defined points in the neighbourhood (using all the cells as a reference, and using479

different time points) to obtain the average displacements in the neighbourhood480

[29]. In this case, the flow field shows that the relative movement of cells in a481

cluster is the same whether there is a gradient or not.482
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Figure S1.1: The flow field of a cluster of cells with and without gradient. a With
chemokine gradient. b Without chemokine gradient. In both cases N = 50 cells with
γ = 6 are placed at the center of the field (All other parameters as in main text).
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S2 Chemotaxis with short persistence of migration483

and small persistence strength484

Fig. S2.2 shows that chemotaxis occurs in a rigid cluster of strongly adhering485

cells. The lower persistence strength reduces the number of changes in the relative486

position of cells within the cluster.487
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Figure S2.2: Chemotaxis of a rigid cluster. a τp = 5. b µp = 0.5. In both cases
N = 50 cells with γ = 6 are placed on the right of the field and move towards higher
concentration of the gradient (the semicircle indicates the resource location, where the
gradient is highest. All other parameters as in main text).
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S3 Extraction of straight segments from cell tracks488

For the contour plots in Fig.3 of the main text, we extracted straight segments of489

the cells’ trajectories, then measured the length of this segment and its angle with490

the direction of the source of the gradient. To identify these straight segments,491

we take increasingly longer intervals between the recorded cell positions, and492

measure how far the intermediate data points are positioned from the line spanning493

these two data points (Fig. S3.3A). As soon as one of the data points has a distance494

greater than a threshold, we stop extending the interval and continue from the495

cell position at which the chosen segment ends (the threshold value is set to 3496

pixel lengths; this value is chosen because it is the largest integer smaller than497

the average cell radius, given a cell area = 50 pix). In figure S3.3B, the resulting498

segments are superimposed on cell position data from two simulations: one with499

a single cell and one with a cluster of adhering cells. While the overlap between500

the segment and the track itself varies, the length and orientation of the straight501

parts of the track are generally well-preserved in the segments.502
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longest possible segment

starting point
for first segment

starting point
for next segment

error is too large:
choose previous segment
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43

error is still small enough:
try longer segment

end point
for first segment

start with a segment over
3 consecutive recorded 
positions

A

B track from one cell in adhering cluster

track from one cell alone

Figure S3.3: Simple algorithm for segment extraction a) Visual explanation of the
algorithm, with a cartoon representation of a cell track with cell positions recorded at
regular time intervals. Images 1-4 represent subsequent stages of the algorithm. For 1-3,
the maximum distance of intermediate cell positions is still small enough, while for the
segment in image 4 two intermediate positions are too far away. So the segment in image
3 will be used in the analysis, and we will start the algorithm from the fourth data point.
b) Two cell tracks from simulations, with the extracted segments superimposed in red.
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S4 Chemotaxis of cells with different AT503

We explored the behaviour of different cell sizes and cell number by running sim-504

ulations where the total area of the cells is kept constant, NAT = 5000. We505

expect that large cells move with greater persistence towards the peak of the gra-506

dient than small cells, because they perceive a larger portion of the gradient, thus507

averaging out noise. Indeed, Fig. S4.4 shows that larger cells perform chemotaxis508

more efficiently than smaller cells, given the same chemotactic gradient.509
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Figure S4.4: Large cells perform chemotaxis more efficiently than clusters of small
cells. Each line corresponds to one simulation with a given combination of number of
cells N and cell size AT , and shows the distance of the centre of mass of the cluster of
cells from the peak of the gradient over time. We kept the total volume of the cells constant
in all simulations (i.e. NAT = 5000). All other parameters (including the chemotactic
signal) are the same as in main text.
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S5 Supplementary videos510

1. Migrating cluster of adhering cells. Cell colour indicates the direction of511

migration, to emphasize the dynamics within the cluster.512

2. The same cluster of adhering cells. All cells have the same colour to show513

how the migration of the cluster as a whole resembles that of an amoeba.514

3. Video of an evolutionary simulation, starting with neutrally adhering cells515

(γ = 0). The season changes every 100 ∗ 103 MCS.516
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