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A set of genes involved in Long-term synaptic potentiation increased with INMEST 
treatment, particularly after >8 treatment sessions (Fig. 5B). Examples include SYNC, a gene 
encoding the protein alpha-synuclein present in neuronal presynaptic terminals and regulating 
neuronal signal transmission (36). The T-cell co-stimulation gene set involves molecules such as 
CD86 on antigen-presenting cells, which are necessary for co-stimulating T-cells activated by 
antigens. Most of these genes decreased after INMEST in line with an overall dampening of 
immune cell activation in ME-patients treated with INMEST (Fig. 5C). 
 
In a recent study by Davis and colleagues, blood cells from ME patients were reported to display 
a unique impedance pattern in response to hyperosmotic stress suggesting that a nano-electronic 
impedance sensor could be used in a diagnostic test for ME (37). We find that the GO: Response 
to osmotic stress was associated with INMEST treatment, and genes involved include the Bcl2 
family member BAX, upon treatment (Fig. 5D). 
 
Finally, multiple gene sets regulated by INMEST involved cellular energy metabolism, which is 
curious given that fatigue is the cardinal symptom of ME and linked to alterations in 
cellular metabolism (38). The GO: Negative regulation of cellular carbohydrate metabolism 
is affected by INMEST with genes like GCK encoding the glucose sensor Glucokinase, 
which shifts cellular metabolism based on the availability of glucose (39) and was found in this 
cohort to be repressed in ME-patients after INMEST treatment (Fig. 5E). 
 
To investigate changes in energy metabolism in ME patients, we took advantage of the Agilent 
Seahorse analysis energy metabolism using cultured PBMCs collected from 
ME-patients at baseline, after 8 and 16 treatment rounds, respectively (Fig. 5F). This assay 
measures multiple aspects of cellular metabolism and ATP usage and oxidative phosphorylation. 
As predicted by mRNA-sequencing results above, we find improvements in energy 
metabolism in PBMCs from ME-patients treated with INMEST, both in Maximal respiration 
(Fig. 5F), and spare respiratory capacity (Fig. 5G), suggesting that INMEST impacts multiple 
pathways previously reported to be perturbed in ME. 
 
ME - a failure of inducing disease tolerance upon chronic immune activation 
Given the evidence of chronic immune activation in ME and the multifaceted symptoms in ME 
we considered possible unifying mechanisms that could explain the variable presentation of this 
mysterious illness. Disease tolerance is an overall term describing a range of stress-response 
pathways that limit tissue damage caused by invading pathogens or indirectly by host immune 
responses (40). We hypothesized that ME could be due to a failure of upregulating such disease 
tolerance mechanisms in response to infection. To this end, we analyzed genes involved in 
disease tolerance induction based on a transcriptional regulatory network database TTRUST v 
 (41). Most effector genes increased their mRNA expression after active INMEST treatments in 
ME-patients (Fig. 6A-C), supporting the hypothesis that induction of disease tolerance could 
mitigate ME symptoms. We then focused on disease tolerance pathways most strongly 
upregulated with treatment. HIF-regulated effector genes like VEGFA, CXCR4, AR and 
SERPINE1 are induced by tissue hypoxia during infections, a response important for limiting 
tissue damage potentiated by INMEST treatment (Fig. 6A-C). Ramasubramanian 
et al has reported higher levels of reactive oxygen species (ROS) in red blood cells of 
ME-patients compared to healthy controls (42), and up-regulation of the Oxidative stress 
response pathway upon INMEST (SIRT1), corroborates this observation. These upregulated 
pathways and the induction of genes in the insulin receptor signaling pathway, Heat shock 
proteins, and cell cycle regulators all support the idea that INMEST treatment upregulates 
disease tolerance pathways normally induced during infections, and possibly improperly 
suppressed in ME-patients (Fig. 6A-C). In conclusion our findings show evidence of chronic  
immune activation in patients with ME, particularly involving the IL-17 pathway, MAIT-cells and other 
intestinal lymphocytes interacting with microbes. The INMEST treatment affecting via the vagus nerve 
induces a significant symptom relief that correlates with a normalization of immune cell regulatory 
networks, cellular metabolism and upregulation of disease tolerance programs. 
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Discussion 
Our findings paint a picture of ME as a truly multifaceted disorder involving inflammation with 
a possible origin at the immune-microbe interface in the gut. Chronic immune stimulation is 
likely given the symptomatology, but also elevated cytokine levels are found that correlate with 
symptom severity (5) and immune cell deficiencies (6). The deficiencies in cellular metabolism 
are not typically seen in other inflammatory diseases, although transient metabolic adaptations 
are common during immune responses (43). 
 
It is important to note that ME is a heterogeneous disease and the likelihood of finding one 
pathogenic mechanism shared by all patients is low. We believe that one unifying concept could 
be the failure in upregulating disease tolerance mechanisms in the event of an infection or virus 
reactivation and this is what we propose here. Such disease tolerance mechanisms are important 
in limiting the reduction in host fitness as a consequence of the infection directly or as a 
consequence of the elicited immune defenses (40). Our data of upregulated disease tolerance 
pathways upon INMEST treatment support the hypothesis that ME is a result of a failure to 
upregulate disease tolerance mechanism when faced with infection and thereby leading to a 
deterioration of physiological functions (Fig. 6D), although the precise mechanisms of this 
remains to be unraveled. The reasons why ME patients differ so much in their symptomatology 
could be explained by differences in the underlying infectious disease or immune activation, and 
the relevant disease tolerance pathway failing to be induced. The reasons for why ME 
patients would fail to upregulate disease tolerance pathways remains to be determined, 
although one interesting lead comes from an observation made of mutations in the enzyme IDO2 
seen in 20/20 patients with severe ME (https://www.omf.ngo/2018/10/19/healthrising-the- 
metabolic-trap-shines-during-the-symposium-on-the-molecular-basis-of-me-cfs-at-stanford/) 
and has led to the formulation of the metabolic trap hypothesis of ME (44). However, the IDO- 
enzymes are also involved in disease tolerance, specifically upon exposure to Endotoxin, a 
component of Gram-negative bacteria in the gut (45, 46). 
 
The symptom relief induced by INMEST targeting the vagus nerve is significant and distinct 
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from placebo, and the biomolecular correlates that corroborate several suggested aspects of ME 
pathogenesis were seen. The mechanism of action of the INMEST-treatment in ME and beyond 
is unclear, although some things are clear. We know that the vagus nerve nucleus in the 
brainstem is activated by INMEST, but also higher level centers such as the limbic system are 
activated (24). The effect of INMEST on heart rate variability differs from that of traditional vagus nerve 
stimulating methods (23). One possibility is that INMEST influences incoming (afferent) signals from the 
gut, conveying signals of dysbiosis or chronic immune activation and inflammation. This hypothesis is in 
line with previous proposals of ME as a disease caused by microbial dysbiosis in the gut (47). One 
possible mechanism of symptom relief upon INMEST-treatment could be through limiting such signals of 
enteric dysbiosis via the afferent vagus nerve. 
 
A problem with the treatment trial presented here is that ME-patients were forced to visit the 
clinic twice weekly for 8 weeks to be treated and blood sampled as well as respond to 
questionnaires. All of these activities were very demanding and caused deterioration in some 
patients that obscure some of the possible benefits of the therapy. We found no significant 
improvement of the primary outcome measurement, fatigue in this study. One possible 
explanation for this is that the recurrent clinical visits and the consequent worsening of disease. 
Another possible explanation is related to the Fatigue Severity Scale, FSS used because. This 
questionnaire has been shown to best distinguish patients with ME from healthy individuals, 
while its ability to capture quantitative changes within patients over time is in question, and 
ceiling effects have been reported (48). In the future a more sustainable way of using INMEST 
would be in the form of a self-treatment device used by subjects and care takers at home. Obviously 
larger follow-up studies are required to further assess the clinical value of this approach more generally in 
ME-patients. It is likely important to improve the diagnostic accuracy of ME and ensure more 
homogenous group of patients included in order to sharpen our ability to understand the underlying 
pathology in ME, subdivide patient groups and test treatment strategies in these different subgroups 
accordingly. The recent advances in diagnostic tests are promising in this regard (37). We hope that this 
work will inspire others to further investigate the immune/microbe interface and the failure to induce 
disease tolerance in ME and hopefully this increased attention will lead to some further relief to the 
millions missing due to this devastating condition. 
 
Materials and Methods 
Study Design 
The sample size was based on the patients who volunteered to take part in the clinical trial and both 
cohorts were included in the study. All samples were included in the trial unless the patients opted to 
drop-out of the clinical trial before the end of the study. The Swedish ME cohort that underwent the 
INMEST treatment comprises of a gender-mixed group, 23 females and 8 males. Female patients had a 
median age of 42 (range 19-62) and male patients had a median age of 35 (range 26-66). All were 
evaluated for enlistment based on the Canadian consensus criteria (49). The INMEST treatment for the 
clinical trial (NCT03502044) was undergone at the Neurological Rehabilitation Clinic in Stora Sköndal 
with Dr. Per Julin as the lead investigator. The research group has used INMEST and KOS 
interchangeably until 2018, reason for the latter term being used on clinicaltrials.gov. 

 
Experimental Design 
The randomized, placebo-controlled, and double-blinded trial of intranasal mechanical stimulation 
(INMEST) included two weekly doses over the span of 8 weeks. For each cohort, the INMEST device 
randomly selected either placebo or active treatment during the first 4 weeks followed by only active 
treatments the following 4 weeks. During the first 4 weeks both the patient and doctor were blind as to 
whether placebo or active treatment was given. In the end, the active-active group included 5 males and 
11 females while the placebo-active group included 3 males and 12 females. 
 
One of the key factors that was recorded during this study is the ME symptom rating scale, it is a rating 
scale of the severity of symptoms from the ICC criteria on a 5 degree scale from 0-4 (none, light, 
moderate, severe, very severe) in order to evaluate degree of disease burden in accordance to the 
Canadian Consensus criteria. Other than symptom severity, the following measures were recorded for the 
clinical trial: Fatigue severity scale, SF-36 Physical functioning subscale (PF-10), Hospital anxiety 
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depression scale, EQ5D, as well as VAS. Blood samples were collected at 3 timepoints for each patient 
(baseline and subsequentially either Pre-/Post-treatment depending on placebo or active group meaning 
8 or 16 active treatment). 
 
Immune cell phenotyping by Mass Cytometry 
Cryopreserved and stabilized whole blood (blood mixed with ‘Stabilizer’ component of Whole blood 
processing kit; Cytodelics AB, Sweden) collected from ME patients sampled thrice (Baseline and T1 [4 
weeks] and T2 [8 weeks]) during the study period were thawed, and cells were fixed and RBCs lysed 
using lysis and wash buffers (Whole blood processing kit; Cytodelics AB, Sweden) as per the 
manufacturer’s recommendations. This was performed a few days prior to barcoding and staining of cells. 
Post fix/lysis of cells, ~1x106 cells/sample were plated onto a 96 well ‘U’ bottom plate using standard 
cryoprotective solution (10% DMSO and 90% FBS) and cryopreserved at -80oC. On the day of barcoding 
and staining of cells, cells were thawed at 37oC using RPMI medium supplemented with 10% fetal bovine 
serum (FBS), 1% penicillin-streptomycin and benzonase (Sigma-Aldrich, Sweden). Briefly, cells were 
barcoded using automated liquid handling robotic system (Agilent Technologies, Santa Clara, CA, 
USA)(38) using the Cell-ID 20-plex Barcoding kit (Fluidigm Inc.) as per the manufacturer’s 
recommendations. Following cell pooling batch-wise (with samples from placebo and treatment groups 
equally represented in each batch), cells were washed, FcR blocked using blocking buffer (in-house 
developed recipe) for 10 min at room temperature, following which cells were incubated for another 30 
min at 4°C after addition of a cocktail of metal conjugated antibodies targeting the surface antigens. 
Following two washes with CyFACS buffer, cells were fixed overnight using 4% formaldehyde made in 
PBS (VWR, Sweden). The broad extended panel of antibodies used for staining are listed in 
Supplementary Table 1. For acquisition by CyTOF (within 2 days after staining), cells were stained with 
DNA intercalator (0.125 μM Iridium-191/193 or MaxPar® Intercalator-Ir, Fluidigm) in 4% formaldehyde 
made in PBS for 20 min at room temperature. After multiple washes with CyFACS, PBS and milliQ water, 
cells were filtered through a 35µm nylon mesh and diluted to 750,000 cells/ml. Cells were acquired at a 
rate of 300-500 cells/s using a super sampler (Victorian Airship, USA) connected to a CyTOF2 (Fluidigm) 
mass cytometer, CyTOF software version 6.0.626 with noise reduction, a lower convolution threshold of 
200, event length limits of 10-150 pushes and a sigma value of 3 and flow rate of 0.045 ml/min. 
 
Antibodies and reagents 
Purified antibodies for mass cytometry were obtained in carrier/protein-free buffer and then coupled to 
lanthanide metals using the MaxPar antibody conjugation kit (Fluidigm Inc.) as per the manufacturer’s 
recommendations. Following the protein concentration determination by measurement of absorbance at 
280 nm on a nanodrop, the metal-labeled antibodies were diluted in Candor PBS Antibody Stabilization 
solution (Candor Bioscience, Germany) for long-term storage at 4°C. Antibodies used are listed 
in Supplementary Table 1. 
 
ProSeek data collection 
Plasma protein data was generated using the proximity extension assay (ProSeek, Olink AB, Uppsala). 
Three panels (Inflammation, Metabolism and Neuro-Exploratory) were used to detect a range of 
biomarkers. Each panel kit provides a microtiter plate for measuring 92 protein biomarkers. Each well 
contains 96 pairs of DNA-labeled antibody probes. Samples were incubated in the presence of proximity 
antibody pairs tagged with DNA reporter molecules. When the antibody pair bounds to their 
corresponding antigens, the corresponding DNA tails form an amplicon by proximity extension, which can 
be quantified by high-throughput real-time PCR. The data was generated in a single batch (90 samples). 
 
Whole blood mRNA-sequencing 
Two milliliters of whole blood cryopreserved in PAXgene Blood RNA Tubes (cat.nr. 762165, Qiagen) were 
subjected to RNA isolation with QIAcube using PAXgene Blood RNA Kit (cat.nr. 762164, Qiagen). After 
elution, RNA quantity and quality (RIN value) were inspected with Qubit RNA HS Assay Kit 
(ThermoFisher, cat.nr. Q32855) and Agilent Technologies, cat.nr. 5067-1513), respectively. 

 
Initial steps of RNA isolation consist of cell washing with ultrapure water followed by centrifugation to 
remove red blood cells. However, we could detect the presence of erythrocytes contents after washings 
(red pellet and high presence of mRNA from erythrocytes confirmed by qPCR). This interference of 
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transcripts from red blood cells in extracted RNA from PAXgene tubes has been already described (50). 
This non-complete depletion of erythrocytes during RNA extraction might hamper to perform reliable 
profiles of gene expression by masking relevant genes in the white blood cells content. In order to 
overcome that, we decided to use an approach developed by Krjutškov K, et al. based on the blockage of 
Alpha and Beta-globin transcripts, two of the most highly expressed transcripts in erythrocytes (51). 
Briefly, ZNA-modified blocking oligos (lacking 3’-OH) annealing at 3´-end of mRNA molecules after RNA 
denaturation prevented the binding site of oligo-T primer, and therefore the generation of cDNA from 
these transcripts. Twenty nanograms of total RNA were used for blocking and cDNA synthesis with 
SMART-seq2 method (52). After PCR, DNA was inspected with Qubit dsDNA HS Assay Kit 
(ThermoFisher, cat.nr. Q32854) and High Sensitivity DNA Analysis Kit (Agilent Technologies, cat.nr. 
5067-4626). Nextera XT was then used to prepare DNA libraries for Illumina NovaSeq 6000 S2 (2x50bp). 
 
OCR Measurement 
Seahorse XFe96 Analyzer (Seahorse Bioscience) was used to measure oxygen consumption rate of ME-
patient derived PBMCs. Frozen PBMC were recovered in RPMI 1640 medium supplemented with 1% of 
penicillin-streptomycin solution and 10% FBS for 4.5 hours. One hour before the assay, the growth 
medium was replaced with Seahorse XF RPMI medium, and 3x105 PBMC per well were seeded with 40 
μl assay medium in XF 96-well cell culture microplate coated with poly-D-lysine (Sigma). The plate was 
centrifuged at 200 x g for 1 sec with no brake, rotated 180 ̊ and centrifuged again for 1 sec with no brake 
at 300 x g. After centrifugation,140 μl of assay medium was added per well and the plate was left to 
stabilize in a 37°C non-CO2 incubator. The wells were sequentially injected with 12.64 μM oligomycin 
(Sigma Aldrich 75351), 20 μM FCCP (Sigma Aldrich C2920), 5 μM rotenone (Sigma Aldrich R8875) 
together with 5 μM antimycin A (Sigma Aldrich A8674) and the oxygen consumption rate (OCR) was 
measured for each well three times, every 3 min, before and after each injection. OCR was normalized to 
protein concentration following BCA assay conducted according to the manufacturer’s instructions. 
 
Mass Cytometry Preprocessing and Gating 
All FCS-files were exported without any pre-processing from the CyTOF software and normalized using 
an in-house version of normalization software (53). Debarcoding of each file was done using the MATLAB 
version of the single cell debarcoder (54). CellGrid, a supervised learning algorithm based on t-SNE 
implementation, was used to gate sub-cell populations (Chen, manuscript in prep.). 
 
ProSeek plasma protein data preprocessing 
Olink’s arbitrary unit is Normalized Protein eXpression (NPX) which is Cq-values for each protein that are 
recalculated to a relative log2 scale. The data is normalized in order to minimize intra- and inter-assay 
variation, and the data from the three panels were merged to one dataset. If proteins were detected in 
less than 20% of all samples were removed and any missing values were set to the lowest detectable 
value for that protein. Due to the single batch experiment no batch correction was necessary due to 
Olink’s built-in quality control across panels, but batch effect check was performed indicating the same 
conclusion. 
 
RNAseq data analysis 
Quality control was provided by the National Genomics Infrastructure (NGI) at Science for Life 
Laboratory, Stockholm, Sweden. The first step after mRNA-sequencing was quantifying abundances of 
transcript sequences in FASTA format by generating abundance estimates for all samples using the 
Kallisto software (55). Also, gene abundance estimates were performed by summing the transcript 
expression (TPM) values for the transcripts of the same gene. Since DESeq2 expects count data, from 
the Kallisto output the tximport package was used to convert these estimates into read counts. DESeq2 
was performed as a basis for differential gene expression analysis based on the negative binomial 
distribution (56). Low gene counts (<100) were filtered out and variance stabilizing transformation (VST) 
was performed on the count data, as well as batch correction using the limma package. 
 
Analysis of variance in Metabolomic Data (Mito stress Seahorse assay) 
Mixed-effects analysis using Sidak’s multiple comparisons test over all timepoints (number of active 
treatments) was performed for maximal respiration and spare respiratory capacity results. Batch effect 
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correction was performed beforehand using the limma package, to then perform a mixed effect model to 
account for paired sampling over treatment. 
 
Automated Cell classification 
Grid is an in-house supervised algorithm based on the use of manually gated cell sub-populations as 
reference to train a classifier algorithm that can then classify similar cells quickly and accurately. The 
following populations were gated: B cells (IgD+ memory B cells, IgD- memory B cells, naïve B cells, 
transitional B cells and plasmablasts), CD4 T-cells (central memory CD4T, effector memory CD4T, naïve 
CD4T, naïve Tregs, and memory Tregs), CD8 T-cells (activated CD8T, central memory CD8T, DP T-cells, 
effector memory CD8T, and naïve CD8T), eosinophils, MAIT, monocytes (classical, non-classical and 
proinflammatory monocytes), natural killer  (NK) cells (CD56bright NK and CD56dim NK), neutrophils, 
basophils, ��T (CD161+���T and CD161- ��T) and pDC. These sub-populations were identified by 
phenotypic markers from the parameter selection. 
 
Mixed-Effects Modeling 
Complex mixed-effect models tend to result in singular fits; therefore, it is recommended to use a partially 
Bayesian method. The blme package was applied on this data to produce maximum a posteriori (MAP) 
estimates. This provided the ability to not only nest the variables, link individuals into sets of Pre- and 
Post-INMEST treatment, but also to account for sex, age as well as symptom scores and active 
treatments (57). 
 
Multi-Omics Factor Analysis (MOFA) 
The input to MOFA is a set of matrices with dimensions (plasma protein expression, cell abundance, 
and gene expression), the MOFAobject was built using MultiAssayExperiment object which was 
subsequently trained in R instead of Python through the reticulate package. Prior to model training as 
the Gaussian noise model was used, methods like DESeq2 was performed on the mRNA-seq data for 
normalization and variance stabilization. All data sets were processed individually to remove any 
features resulting in zero or low variance before fitting the model. Convergence was assessed since 
MOFA is trained using variational Bayes which consists of the Evidence Lower Bound (ELBO), therefore 
the change in ELBO (deltaELBO) was used and fit the convergence threshold which is considered to be 
between 1 to 10. The MOFAobject was trained with 10 factors and a variance threshold of 0.01%. 
Multiple models under different initializations were run to make sure that factors were consistently found 
across trials for model selection. 
 
Gene Set Enrichment Analysis (GSEA) 
Gene set enrichment analysis (GSEA) was performed to investigate enriched gene sets in accordance to 
number of active treatments (58). These groups of genes were derived from the mixed effect modeling 
and then gseGO was used for GSEA looking at GO terms for Biological Processes with p-values 
calculated from mixed effect modeling. 
 
Disease Tolerance Networks 
Disease Tolerance Networks were built by finding key regulators for query genes using Martins et al. (40) 
from TTRUST v2. Edge and node dataframes were built from information acquired from TTRUST v2 with 
the addition of calculated log2(treated/baseline) for color gradient. Node sizes were based on number of 
edges, the larger the node the more edges. These were used to build the networks with visNetwork().  
 
Supplementary Materials 
Table S1. List of antibodies used in mass cytometry 
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Figure Legends:  
Fig. 1. Study design, treatment and outcome. (A) Study design and sample collection for systems-level 
immunomonitoring. (B) Intranasal Mechanical Stimulation, INMEST. (C) Clinical responses in patients 
randomized to Placebo x8 followed by Active x8 treatments (purple) and patients randomized to Active 
treatment only (red). Y-axis indicate average ME symptom scores relative to baseline. Also shown, the 
follow-up after treatment cessation (X-axis indicates days).  
 
Fig. 2. Systems-level profiling reveal immune perturbations. (A) Blood samples were collected and 
immediately processed for whole blood mRNA-seq (PaxGene tubes), Mass cytometry (Stabilized whole 
blood cells) and plasma proteins (immediate centrifugation) by Olink assays. (B-D) Volcano plots of 
differentially regulated features vs. number of active treatments (E) Mixed effects modeling shows the 
most perturbed plasma proteins and immune cells that change in response to therapy and in relation to 
symptom scores. 
 
Fig. 3. Co-regulated immune features revealed by multi-omics factor analyses. (A)    Variance 
explained by different views (Immune cells, proteins and mRNA), (B) Variance explained by each of the 
calculated latent factors, (C) Scatterplot showing individual samples and their latent factor distributions, 
(D) Top features contributing to latent factor 7 associated with INMEST treatment response. 
 
Fig. 4. Immune cell function in ME patients treated with INMEST. (A) Spearman correlation matrix 
showing co-regulated cell population frequencies at baseline, and (B) After 16 active INMEST treatments, 
indicating re-establishment of specific cell-cell relationships, such as the highlighted module involving 
MAIT-cells and marginal zone B-cells (IgD+ mem. B) negatively correlated with memory Tregs.  
 
Fig. 5.  Immune cell metabolism is impaired in ME but normalized by INMEST.  (A) Gene Set 
Enrichment Analysis, GSEA for genes differentially regulated in response to INMEST treatment. (B-E) 
Four highlighted GO terms and the top genes with the largest absolute change in response to INMEST 
treatment. (F) Maximal respiration in cultured PBMC from ME/CFS patients at baseline, and upon 8 and 
16 active INMEST treatment rounds respectively (n = 3). (G) Spare respiratory capacity, SRC in cultured 
PBMC from ME/CFS patients at baseline, and upon 8 and 16 active INMEST treatment rounds 
respectively (n = 3).  
 
Fig. 6.  INMEST treatment induces disease tolerance programs in ME-patients. Transcriptional 
regulators (diamonds) and their target genes involved in disease tolerance are shown in ME-patients (A) 
at baseline and (B) after 8- and (C) 16-rounds of INMEST-treatment. (D) A proposed model of ME as a 
disease caused by failure to upregulate disease tolerance mechanisms in response to chronic 
inflammatory stimulus leading to broad impairments and reductions in overall health. Size of the nodes 
refers to number of regulatory interactions (larger = more regulatory interactions).  
 
 
 
 
 
 
 
 
 
 
Supplementary Materials: 
Table S1. List of antibodies used in mass cytometry 
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Metal Tag Antigen Clone Vendor 
Y89 CD45 HI30 Fluidigm 
In113 HLA-ABC W6/32 BioLegend 
In115 CD57 HCD57 BioLegend 
La139 TCR Vα7.2 3C10 BioLegend 
Nd142 CD19 HIB19 Fluidigm 
Nd143 CD5 UCHT2 BioLegend 
Nd144 CD16 3G8 BioLegend 
Nd145 CD4 RPA-T4 BioLegend 
Nd146 CD8a SK1 BioLegend 
Sm147 CD11c Bu15 Fluidigm 
Nd148 CD31 WM59 BioLegend 
Sm149 CD25 2A3 Fluidigm 
Nd150 CD64 10.1 Biolegend 
Eu151 CD123 6H6 BioLegend 
Sm152 γδTCR 5A6.E9 Fischer S 
Eu153 CD13 WM15 Biolegend 
Sm154 CD3e UCHT1 Fluidigm 
Gd155 CD7 CD7-6B7 Biolegend 
Gd156 CD26 BA5b Biolegend 
Gd157 CD9 SN4 C3-3A2 eBio 
Tb159 CD22 HIB22 Biolegend 
Gd160 CD14 M5E2 BioLegend 
Dy161 CD161 HP-3G10 BioLegend 
Dy162 CD29 TS2/16 Biolegend 
Dy163 HLA-DR L243 BioLegend 
Dy164 CD44 BJ18 BioLegend 
Ho165 CD127 (IL-7Rα) A019D5 Fluidigm 
Er166 CD24 ML5 BioLegend 
Er167 CD27 L128 Fluidigm 
Er168 CD38 HIT2 BioLegend 
Tm169 CD45RA HI100 Fluidigm 
Er170 CD20 2H7 BioLegend 
Yb171 CD33 WM53 Biolegend 
Yb172 IgD IA6-2 BioLegend 
Yb173 CD56 HCD56 BioLegend 
Yb174 CD99 HCD99 Biolegend 
Lu175 CD15 W6D3 Biolegend 
Yb176 CD39 A1 BioLegend 
Ir191 Cell-ID™ Intercalator-Ir (DNA) NA Fluidigm 
Ir193 Cell-ID™ Intercalator-Ir (DNA) NA Fluidigm 
Bi209 CD11b Mac-1 Fluidigm 
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