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Abstract—Metabolic health in the general population has 

declined significantly in just one to two generations despite 

increased emphasis on dieting and exercise.  A challenge in 

prescribing a healthy diet and exercise regimen is the variability 

individuals exhibit in response to particular foods, calorie 

restricted diets and exercise regimens.  This paper describes a 

prototype metabolic fuel sensor designed for ease of use and 

personal tracking of metabolic energy expenditure and fuel 

substrate utilization.  Examples of the sensor measurements and 

potential applications to weight management and tracking of 

chronically high blood glucose are described.  
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I. INTRODUCTION  

The cause and effect relationships between diet, metabolism, 
socioeconomic status, and debilitating medical conditions, such 
as type-2 diabetes, are a subject of active research and debate 
[1,2,3,4].  The fact that there is not universal agreement 
regarding the connections is evident from the multitude of 
different, often antithetical (e.g., low fat versus low carb), diet 
plans and the prevalence of degraded or malfunctioning 
metabolisms among a significant fraction of the US population.  
According to data published by the CDC in 2016 [5], nearly half 
of the adults in the US are either pre-diabetic (86 million) or 
diabetic (29 million) and over 35% of American adults and close 
to 17% of children, are obese.  Recent work by the Weizmann 
Institute focusing on glycemic control, and employing 
continuous glucose monitors, has shown that glycemic response 
to foods can vary significantly across individuals [6].  Their 
work underscores the importance of glycemic response tracking 
in order to personalize the nutrition profiles to individual needs 
and goals.   

Just as glycemic response to particular foods varies 
significantly across individuals, so also the individual response 
to an exercise-induced hypocaloric diet varies considerably.  In 
a three-month long weight loss experiment involving seven pairs 
of identical twins [7], a large variance between predicted and 
actual weight loss across pairs of twins was observed, whereas 
the weight loss between twins was strongly correlated, 
presumably due to genetic factors.  

The individual variability reported in these and other studies 
accounts, at least in part, for the lack of success that formulaic 
weight loss plans and exercise regimens have achieved in 
reversing the downward trend in metabolic health across the 
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population.  Given the individual variability, it is difficult to 
predict responses to dietary and exercise interventions and thus 
to formulate an effective regimen for achieving weight loss 
goals or  reversing type-2 diabetes.  However, the availability of 
a low-cost, simple to use sensor for tracking metabolic response 
to diet and exercise could enable individuals to develop more 
successful diet and exercise regimens aimed at achieving weight 
loss and metabolic health goals. Until now, a barrier to personal 
metabolic tracking has been the absence of a low-cost, easy-to-
use sensor capable of tracking metabolic fuel state and energy 
expenditure over a range of activity. 

II. COBRA METABOLIC FUEL SENSOR 

The Carbon-dioxide Oxygen Breath Respiration Analyzer 
(COBRA) is a metabolic fuel sensor developed for personal on-
demand metabolic measurement.  COBRA employs the method 
of indirect calorimetry to determine energy expenditure (EE) as 
well as the metabolic fuel mix (relative contributions from 
carbohydrate oxidation versus fat oxidation).  This method relies 
an accurate measurement of the volume rate of oxygen 
consumption (VO2) and carbon dioxide production (VCO2) by 
an individual.  The ratio of VCO2 to VO2 in exhaled breath, 
termed the respiratory exchange ratio (RER), is indicative of the 
average cellular-level respiratory quotient (RQ) and is the key to 
estimating energy expenditure (EE) and fuel substrate use [8]. 
In clinical settings, RER is measured by employing a mixing 
chamber with sufficient volume to collect several exhaled 
breaths (e.g. 3-4 liters).  The contents of the chamber are 
continuously sampled and passed through gas sensors to 
measure the residual oxygen and carbon dioxide in the exhaled 
breath. 

  Given the COBRA goal of personal use, the over-arching 
priorities guiding the design of the sensor were small size, 
weight, and power (SWaP), low cost, ease of use, and low-
maintenance.  These high-level, qualitative requirements 
translate into the following measureable design goals: 

• Small size, weight and power (SWaP) 

• Use of low-cost commercially available components 

• Gas sensor lifetimes measured in years 

• Stable gas sensor calibration with capability to 
perform ambient-air calibration checks 
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• No expendables or consumables required to make a 
measurement 

• Autonomous confirmation of a successful 
measurement 

• Accommodation of the full range of physical activity 
from resting to VO2max measurements 

• Wireless operation and smartphone interface 

• Battery endurance and on-board memory to support at 
least one full day of measurements 

• Operation over (above freezing) temperature and 
humidity extremes encountered outdoors 

The traditional approach to realizing a mobile metabolic 
measurement system capable of supporting a range of activity 
levels has been to eliminate the need for a bulky ~3-4 liter 
mixing chamber by employing a constant-rate pump to sample 
a portion of the exhaled breath and to continuously measure the 
volume fraction of O2 and CO2 in this side-stream flow. This 
approach, termed breath-by-breath, requires fast (and hence 
costly) gas sensors, rapid sampling of the breath profile, and 
careful calibration of the time delays between the volumetric 
flow measurement and the sequential measurements of the gas 
sensors.   

To realize the design objectives of both low-cost and small 
SwaP, the COBRA sensor employs an innovative passive 
proportional side-stream sampling technique [9][10] that 
enables the use of slow (low-cost) gas sensors and a mixing 
chamber volume ~100X smaller than traditional systems.  A 
prototype of the COBRA sensor, employing 3D printed 
flowtube and polycarbonate machined mixing chamber, is 
shown in Fig. 1a.  The sensor is completely passive with no 
moving parts other than two inlet umbrella valves.  In 

production, the flowtube and mixing chamber will be injection 
molded and total weight of the sensor is estimated to be less than 
150g.  In unit quantities, the parts for the sensor, including the 
printed circuit board fabrication and population, are under $500.  
In volume production, the cost of the sensor is anticipated to be 
in the $200-$300 range, making it affordable for personal use. 

 

                          (a)                                                                    (b) 
Fig. 1: (a)  Prototype COBRA sensor (b) hands-free use 

The COBRA sensor measures the volume rate of O2 
consumption and CO2 production.  Together these parameters 
enable calculation of the energy expenditure rate of the user as 
well as the relative proportion of energy derived from fats versus 
carbohydrates, under the assumption that protein is a minor 
contributor to metabolic energy.  An RER of 0.7 indicates that 
metabolic energy is being supplied exclusively from fat, 
whereas an RER =1.0 indicates that metabolic energy is being 
supplied exclusively from carbohydrates.  Values in the range 
between 0.7 and 1.0 imply a mixture of fat and carbohydrate fuel 
sources.  The RER for protein is nominally 0.85.  

III. SENSOR OUTPUT AND APPLICATIONS  

Fig. 2 shows the energy expenditure, RQ, and volume flow 
rates measured by the COBRA sensor for three different levels 
of exercise intensity.  Note that low-intensity exercise such as 

 
Fig. 2: Three different data collects. (a) Walking: RQ ~0.75 & EE~2200kcal/day (b) Jogging: RQ ~0.80 & EE ~4400kcal/day (c) Running: RQ ~ 1.0 & EE 

~12000kcal/day. 
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walking is primarily fat burning, while high intensity exercise 
such as running is primarily carb burning and burns calories at 
nearly 5x the rate of walking. 

 In the case of walking, the low RQ observed is because 
walking is dominated by slow-twitch muscular processes which 
are typically fat burning.  In this particular case, the subject has 
an RQ of 0.75 or a molar mix of approximately 17% 
carbohydrates and 83% fats.  As the subject begins to work 
harder, more glycogen from the skeletal tissue is used for energy 
production and the RQ increases to 0.80 and the EE increases 
from about 91 to 183 kcal/h (2200 to 4400 kcal/day).  As the 
exercise intensity further increases, glucose becomes the 
dominant fuel and takes over control of the macronutrient 
selection, raising the RQ to 1.  During anaerobic exercise and 
build up of CO2, RER may rise above 1 (lactic acidosis), which 
is one of the conditions in which RER is not synonymous with 
cellular RQ. 

In any case, these data exemplify the transition in metabolic 
fuel preference as a function of exercise intensity.  The transition 
points and the values of RQ and EE, paired with the exercise 
information, can be used to assess individual fitness and track 
changes in fitness and endurance over time. 

A. Feedback for Tuning Weight Management Protocols 

The traditional approach to weight loss is to estimate calories 
associated with food intake and activity, create an energy 
deficient diet, and monitor progress toward weight loss goals 
with a scale.  Not surprisingly, this approach fails much of the 
time for several reasons.  For one, counting food calories and 
estimating activity calories is fraught with error, and secondly, 
the impact diet and activity choices can be obscured by weight 
fluctuations of several pounds or more a day unrelated to 
reduction in adipose tissue.  

Rather than a one-size fits all formulaic energy deficit diet for 

weight loss, the metabolic sensor provides a previously 

unavailable tool for tracking and tailoring macronutrient intake 

and exercise activity to increase the likelihood of achieving 

weight loss and weight management goals.  In particular, a on-

demand measurement of RQ and EE may prevent dieters from 

deceiving themselves about the efficacy of daily adjustments in 

dietary macronutrients or exercise regimen aimed at achieving 

weigh loss or better glycemic control. The measurement of RQ 

throughout the day provides quantitative evidence of the impact 

of dietary and exercise choices on the goal of staying in the fat 

burning zone (low RQ).  In comparison, measured body weight 

is impacted by numerous confounds unrelated to loss of excess 

fat, such as hydration and digestive state. Consequently, daily 

body weight is difficult to correlate with specific diet and 

exercise choices made during the course of a day.  Fig. 3 shows 

an anecdotal example of how metabolic fuel mix changes in 

response to diet and exercise.  With one exception, the RQ 

measurements in Figure 3 were all made at rest.  For weight 

loss, diet and exercise choices that result in low resting RQ are 

preferred since they result in the highest rate of fat burning 

throughout the day. Note the switch to nearly all carbs in 

response to the high carb pizza/cookie lunch.  The walk at 17:11 

is predominantly fat burning and overshadows the nominal 1-2 

kcal/min carb burning when at rest.  However, while walking 

burns fat, it does not reduce the excess carbohydrates that 

prevent fat burning after the walking has ceased. In comparison, 

even three hours after completing a half marathon on 13 Oct, 

the depletion of carb stores induced by the endurance run 

resulted in reliance predominantly on fat burning to meet 

resting metabolic energy needs. 

  
Fig. 3: Anecdotal examples of the impact of diet and exercise on fuel substrate mix. Selected measurements from a 3 day period encompassing a high 

carbohydrate dinner on 12 Oct in preparation for half-marathon race on 13 October. 
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B. Type-2 Diabetes and Pre-Diabetes Detection and 

Intervention 

Pre-diabetes is defined by a fasting blood glucose level between 

100 – 125 mg/dl.  A normally functioning endocrine system 

strives to keep blood sugar below 100-110 mg/dl at all times 

and above 80mg/dl to avoid hypoglycemia.  A primary 

mechanism for achieving this regulation in the face of 

carbohydrate over-consumption is to defer oxidation of fats and 

preferentially oxidize excess glucose to meet metabolic energy 

needs.  Consequently, a chronically high resting RQ implies a 

lack of the metabolic flexibility needed to quickly dispose of 

high glycemic foods.  Measurement and tracking of RQ 

variability may prove to be a non-invasive indicator of the onset 

of type-2 diabetes.  This is one of several intriguing applications 

of the COBRA sensor that have yet to be investigated in a 

statistically significant clinical trials. 

 

IV. SUMMARY AND CONCLUSION 

Both young and old members of the general population are 

exhibiting increasing rates of metabolic syndrome.  Extreme 

diets (e.g., ketogenic) and extreme exercise (e.g. high intensity) 

have been shown to be effective in achieving weight loss and 

avoiding or reversing type-2 diabetes, but their extreme nature 

makes them difficult to sustain for many individuals.  An 

alternative is to provide an individual with the capability to 

measure energy expenditure and metabolic energy mix on 

demand, enabling the individual to design a personalized diet 

and exercise regimen that creates the daily energy deficit, and 

keeps them in the fat burning zone necessary to achieve weight 

loss and glycemic control goals..  Until recently, the sensing 

technology to provide mobile, on-demand metabolic feedback 

has been limited to resting measurements of energy expenditure, 

or required sensors of significant size, weight, power and cost.  

 

We have described the development of a prototype low-

cost, simple-to-use, personal sensor to provide metabolic 

awareness to individuals. The sensor runs for a day on a battery 

charge, archives the data for later fusion with personal sensors, 

and supports a Bluetooth smartphone interface for control and 

data display.  Initial prototypes of the sensor have undergone an 

independent validation and found to provide reliable 

measurement of VO2, VCO2, energy expenditure and related 

parameters, over a range of activity levels [11]. 

Low-rate initial production of the sensor is scheduled for the 

second quarter of 2019 and we look forward to collaboration 

with researchers interested in incorporating the sensor into 

clinical trials and wellness programs. 
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