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ABSTRACT 1 

The respiratory syndrome caused by a new type of coronavirus has been emerging from 2 

China and caused more than 1000 death globally since December 2019. This new virus, 3 

called 2019 novel coronavirus (2019-nCoV) uses the same receptor called Angiotensin-4 

converting enzyme 2 (ACE2) to attack humans as the coronavirus that caused the severe 5 

acute respiratory syndrome (SARS) seventeen years ago. Both viruses recognize ACE2 6 

through the spike proteins (S-protein) on their surfaces. It was found that the S-protein 7 

from the SARS coronavirus (SARS-CoV) bind stronger to ACE2 than 2019-nCoV. 8 

However, function of a bio-system is often under kinetic, rather than thermodynamic, 9 

control. To address this issue, we constructed a structural model for complex formed 10 

between ACE2 and the S-protein from 2019-nCoV, so that the rate of their association 11 

can be estimated and compared with the binding of S-protein from SARS-CoV by a 12 

multiscale simulation method. Our simulation results suggest that the association of new 13 

virus to the receptor is slower than SARS, which is consistent with the experimental data 14 

obtained very recently. We further integrated this difference of association rate between 15 

virus and receptor into a mathematical model which describes the life cycle of virus in 16 

host cells and its interplay with the innate immune system. Interestingly, we found that 17 

the slower association between virus and receptor can result in longer incubation period, 18 

while still maintaining a relatively higher level of viral concentration in human body. Our 19 

computational study therefore provides, from the molecular level, one possible 20 

explanation that the new disease by far spread much faster than SARS. 21 
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Introduction 1 

The coronavirus disease 2019 (COVID-19) has emerged at the end of year 2019 2 

from Wuhan, a city in China, as a new infectious disease [1, 2]. It has been found that the 3 

disease is caused by a new member of coronavirus family, 2019-nCoV [3, 4]. Like others 4 

in the same virus family, such as the coronavirus causing SARS [5, 6], 2019-nCoV is a 5 

single and positive-stranded RNA virus enveloped by lipid bilayer. The virus can capture 6 

and enter host cells in human through targeting specific receptors on their surface. Upon 7 

entry, the viral genome is released through membrane fusion. The released RNA genome 8 

of the virus is then replicated and translated into various types of viral proteins. The 9 

replicated RNA genome and synthesized viral proteins are finally assembled together into 10 

new viruses, before they escape and attack other cells [7, 8]. As a result, the infections of 11 

2019-nCoV normally come with the similar symptoms as SARS, including fever, 12 

respiratory difficulty and pneumonia [9, 10]. Different from SARS, however, the new 13 

COVID-19 seems to have longer incubation period and thus is more contagious [11]. The 14 

disease has caused more than 70,000 confirmed cases with at least 1000 death globally, 15 

according to the data from the World Health Organization (WHO) on February 16th 2020. 16 

Therefore, the development of vaccine or therapeutic treatment for this ongoing public 17 

health crisis is highly demanding [12, 13].   18 

Almost all the coronaviruses recognize their host cells through spike (S) proteins 19 

[14, 15]. S-protein is a glycoprotein expressed on the surface of viral envelop as homo-20 

trimers [16]. Each S-protein further consists of two subunits. The S1 subunit includes a 21 

region called receptor-binding domain (RBD) which is used to target receptors in host 22 

cells, while the S2 subunit regulates the membrane fusion between virus and host cells 23 

[17]. These roles of S protein suggest that it could be a key target for vaccine and 24 

therapeutics developed to neutralize virus infection by blocking their invasion [18]. 25 

Moreover, it has been confirmed in a recent report that the new virus 2019-nCoV uses the 26 

same cell entry receptor ACE2 as SARS coronavirus [19]. The atomic structures of 27 

complex between human ACE2 and the RBD regions from S-protein of SARS-CoV have 28 

been obtained by x-ray crystallography [17]. It was also shown that the sequence of S-29 

protein from SARS-CoV shares more than 70% identity with the S-protein from 2019-30 
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nCoV [6]. Therefore, it is reasonable to hypothesize that the new coronavirus uses the 1 

similar binding interface with ACE2 as SARS to enter host cells of human. The obvious 2 

follow-up questions are: whether the 30% variations in sequences between S-protein of 3 

2019-nCoV and SARS can cause any difference in their binding to ACE2? Moreover, 4 

does this difference lead into any functional impacts on the life cycles of these viruses in 5 

host cells?    6 

Comparing with the time-consuming and labor-expensive experimental studies, 7 

computational modeling serves as an ideal alternative approach to carry out fast tests on 8 

biological systems under the conditions that are currently inaccessible in the laboratory 9 

[20-26]. Therefore, here we developed a multiscale computational strategy to compare 10 

the process of recognition between the SARS-CoV and host cells with the interactions 11 

between the new coronavirus and host cells. A mesoscale model is used to simulate the 12 

process in which the coronaviruses are captured by ACE2 receptors on cell surface. We 13 

further constructed a structural model for complex formed between ACE2 and RBD of 14 

2019-nCoV S-protein, so that the rate of their association can be estimated by a coarse-15 

grained Monte-Carlo simulation and further compared with the binding of S-protein from 16 

SARS-CoV. Our simulation indicates that association of the new virus to the receptor is 17 

slower than SARS, which is consistent with the experimental data obtained very recently. 18 

We integrated this difference of association rate between virus and receptor into a simple 19 

mathematical model which describes the life cycle of virus in host cells and its interplay 20 

with the innate immune system. Interestingly, we found that the slower association 21 

between virus and receptor can result in longer incubation period, while still maintaining 22 

a relatively higher level of viral concentration in human body. Our computational study 23 

therefore explains, from the molecular level, why the new COVID-19 disease is by far 24 

more contagious than SARS. In summary, this multiscale model serves as a useful 25 

addition to current understanding for the spread of coronaviruses and related infectious 26 

agents.    27 

Results and Discussions 28 

A rigid-body (RB) based model is first constructed to simulate the kinetic process 29 

about how viruses are captured by the cell surface receptors on plasma membrane. In 30 
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brief, within a three-dimensional simulation box, the plasma membrane is represented by 1 

a flat surface below the extracellular region. The area of the square is 1 µm2, while the 2 

height of the simulation box is 500 nm. A number of ACE2 receptors (200) are initially 3 

placed on the membrane surface (pink in Figure 1a). They are represented by rigid 4 

bodies of cylinders and their binding sites are located on top of the cylinders (red dots in 5 

Figure 1a). The height of each cylinder is 10nm and its radius is 5nm. On the other hand, 6 

space above the plasma membrane represents the extracellular region. A number of 7 

coronaviruses are located in this area (golden in Figure 1a). Each virus is simplified as a 8 

spherical rigid body with a given radius (40nm). Trimeric S-proteins are uniformly 9 

distributed on the spherical surface of each virus (green dots in Figure 1a). Each S-10 

protein can interact with an ACE2 receptor on plasma membrane. After any S-protein on 11 

one virus forms an encounter complex with a receptor, we assume that the host cell is 12 

captured by the virus. The dissociation between the virus and the receptor is not 13 

considered in the system, because we also assume that, after the association between S-14 

protein and ACE2, the virus can enter the cell through membrane fusion. Following the 15 

initial random configuration, the diffusion of receptors and viruses, as well as their 16 

association, were simulated by a diffusion-reaction algorithm until the system reached 17 

equilibrium. The detail process of the simulation is specified in the Methods.    18 

Before the rigid-body simulation, in order to provide a more realistic estimation 19 

on the binding between ACE2 and different coronaviruses, we specifically compared the 20 

S-protein from 2019-nCoV with the S-protein from SARS. We applied our previously 21 

developed residue-based kinetic Monte-Carlo (KMC) method to simulate the associate 22 

processes of these two systems. In detail, the atomic coordinates of the complex between 23 

human ACE2 and the RBD domain from the S-protein of SARS are taken from the PDB 24 

id 2AJF [17]. In parallel, the structural model of the complex between human ACE2 and 25 

the RBD domain from the S-protein of 2019-nCoV was computationally constructed, 26 

following the procedure described in the Methods. The structural comparison of these 27 

two protein complexes is shown in Figure 1b. For both systems, 500 trajectories based 28 

on their complex structures were generated by the KMC simulation which algorithm is 29 

specified in the Methods. In the initial conformation of each trajectory, S-protein and 30 

receptor were separated and placed with a random position relative to each other in which 31 
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the distance between their binding interfaces is fallen within a given cutoff value dc of 20 1 

Å. At the end of each trajectory, receptor and viral protein either form an encounter 2 

complex through their binding interface observed in the complex structure, or diffuse 3 

away from each other. Based on the simulation results collected from all the 500 4 

trajectories, we counted how many times an encounter complex can be formed by the end 5 

of the simulation time, which gives the probability of association. As a result, the 6 

comparison of calculated probabilities of association for both systems is plotted in Figure 7 

2a. 8 

The figure shows that probability of association between ACE2 and the S-protein 9 

from 2019-nCoV is remarkably lower than the probability of association between ACE2 10 

and the S-protein from SARS. Specifically, among the 500 simulation trajectories of 11 

SARS system, we found that 8 of them successfully formed encounter complexes, while 12 

among the 500 simulation trajectories of 2019-nCoV system, only 2 of them successfully 13 

formed encounter complexes. This result suggests that the association of the S-protein 14 

from SARS to the receptor is about four times faster than the association of the S-protein 15 

from 2019-nCoV. The different of association rate from our simulation, interestingly, is 16 

confirmed by the experimental data that was measured very recently by Dr. McLellan’s 17 

lab [27]. Using surface plasma resonance (SPR), they showed that the association rate ka 18 

of binding between 2019-nCoV RBD domain and ACE2 equals 1.36×105M-1s-1, while the 19 

rate between SARS RBD domain and ACE2 equals 3.62×105M-1s-1. Therefore, the 20 

experimental evidence indicated that the association of the S-protein from SARS to the 21 

receptor is about three times faster than the association of the S-protein from 2019-nCoV, 22 

which is quantitatively consistent with our simulation results. 23 

We then fed the information derived from the structure-based simulations into the 24 

rigid-body model. Two specific simulation systems were compared. A relatively fast rate 25 

of association between receptors and S-proteins on viral surfaces was adopted in the first 26 

system to represent the binding process of SARS, while a relatively slow rate of 27 

association between receptors and S-proteins on viral surfaces was adopted in the second 28 

system to represent the binding process of 2019-nCoV. All the other parameters such as 29 

diffusion constants and concentrations in both systems remain the same. As a result, the 30 
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total numbers of viruses that were captured by host cells are plotted in Figure 2b as a 1 

function of simulation time. Without surprise, the figure shows that although almost all 2 

viruses were attached to the cell surfaces by the end of both simulations, the kinetic 3 

process in the SARS system is much faster than the 2019-nCoV system, which is resulted 4 

from the difference in the association rate between receptors and their corresponding S-5 

proteins. This leads into the fact that during the early stage of simulations, more SARS 6 

viruses attach to host cells than 2019-nCoV. For instance, when the simulations in both 7 

systems reached the first 105 nanoseconds, there have already been more than 40 SARS 8 

viruses attached to the cell surfaces. In contrast, there were less than 20 viruses attached 9 

to the cell surfaces within the same amount of time in the 2019-nCoV system. 10 

Considering that the function of a bio-system is often under kinetic, rather than 11 

thermodynamic, control [28, 29], we suggest that this time-dependent behavior is 12 

biologically more relevant. In reality, not all the viruses have the opportunity to find their 13 

target receptors on host cells. Many of them will be recognized and removed by our 14 

innate immune system. Therefore, the capability of how fast a specific type of 15 

coronavirus can target its receptors is especially critical to the process of its invasion, as 16 

well as the follow-up stages in its life cycle.  17 

In order to further explore the impacts of our rigid-body simulation results on the 18 

rest process of virus infection after they invade into host cells, we proposed a 19 

mathematical model to delineate a simplified version of viral life cycle including its 20 

replication and packaging in host cells, the inflammatory signaling pathways due to the 21 

detection of foreign pathogens, and the follow-up inflammatory responses which lead to 22 

the apoptosis of infected cells and the removal of viruses by the recruitment of immune 23 

cells. The model can be summarized by the diagram shown in Figure 3. Specifically, 24 

coronavirus [V] can turn healthy cells [H] into infected cell [In] by binding to the 25 

receptors ACE2 on their surfaces. The RNA genome [m] is then released from bound 26 

virus [Vb], and then translated into different viral proteins. These proteins and replicated 27 

RNA are further packaged together as [P] in cytoplasm and finally escape from infected 28 

cells. On the other side, in order to avoid viral spread, our innate immune system triggers 29 

inflammatory signaling pathways in the infected cells [30]. For instance, the viral RNAs 30 

can be detected by RIG-I-like receptors (RLRs) [31]. The RNA binding of RLRs 31 
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receptors initiates the signaling cascade by interacting with the mitochondrial antiviral-1 

signaling (MAVS) protein [32]. The aggregation of MAVS on the surface of 2 

mitochondria will trigger the NF-κB signaling pathway that turns on gene expression of 3 

specific cytokines [S] to stimulate the inflammatory responses [33, 34]. The inflammation 4 

of host organism leads to the apoptosis of infected cells and the removal of virus by 5 

recruited immune cells such as microphages. In summary, the change of concentration for 6 

each variable in above system can be described by following set of ordinary differential 7 

equations (ODE). 8 
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Equation (1) describes the change of the healthy cells as a function of time in the 16 

system. The parameters rH, kb, and SV in the equation represent cell generating rate, the 17 

rate and saturation coefficient of virus binding, respectively. Equations (2) to (4) indicate 18 

the entry, replication and packaging of virus in host cells, in which the parameters kr, kp, 19 

and ka represent rates of viral protein translation, assembly and releasing. Equation (5) 20 
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describes the stimulation of inflammatory signaling by viral RNA. The parameters sS, Km, 1 

and dS in the equation represent the maximal activation rate, the saturation coefficient and 2 

the rate of degradation of inflammatory signals. Equation (6) gives how infected cells 3 

change in the system, while the parameters in the equation dI, and KI indicate the rate and 4 

saturation coefficient of cell apoptosis that is stimulated by inflammatory signals. Finally, 5 

equation (7) suggests that the variation of total virus in the system depends on the release 6 

of newly packaged virus from infected cells, the binding of free virus to the healthy cells, 7 

and the immune response triggered by inflammatory signals. The parameters dV and KV in 8 

the equation give the maximal rate and saturation coefficient immune cells used to kill 9 

virus. Altogether, we solved above ODEs numerically by a stochastic simulation 10 

algorithm. The brief introduction of the simulation algorithm will be specified in the 11 

Methods.  12 

Given predefined weights for all the simulation parameters and the initial values 13 

for each element, the dynamics of the system is evolved as a function of time. The 14 

simulation results of the mathematical model are summarized in Figure 4. As shown by 15 

the red curve in Figure 4a, the change of free virus in the system can be divided into 16 

three stages. It first decreases from its initial value. After reaching the minimal level, the 17 

number of virus then bounces back in the second phase until it drops again and finally 18 

vanishes at the end of the third phase. Relative to the free virus, the number of virus 19 

captured by host cells equals 0 at the beginning of the simulation. It increases in the first 20 

stage and diminishes in the second, as shown by the blue curve in the figure. In the third 21 

phase, very few viruses bound to host cells are detected in the system. Corresponding to 22 

the change of virus, the number of healthy cells is plotted as the black curve. The curve 23 

shows that the level of healthy cells reduces from the beginning and rises only after all 24 

free viruses are removed from the systems. Based on these kinetic profiles, the dynamics 25 

of the system can thus be interpreted as follows. In the first stage of simulation, free 26 

viruses invade into the healthy cells by binding to the receptors on their surface. We 27 

suggest that this stage corresponds to the incubation period. In the second stage, new 28 

viruses are assembled in and released from the infected cells. At the same moment, the 29 

viral genomes left in the infected cells stimulate the immune response. As a result, the 30 

total amount of virus is gradually lowered in the third phase, indicating that these viruses 31 
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are cleared up by the innate immune system. After the removal of all viruses, the healthy 1 

cells in the system grow again, representing the recovery of the patient.     2 

We further incorporated the results derived from the rigid-body simulations into 3 

the mathematical model to compare the viral life cycle in SARS and COVID-19. The 4 

rigid-body simulation suggests that SARS-CoV binds to receptor ACE2 faster than 19-5 

nCoV, given the same amount of time. Therefore, we applied the mathematical model to 6 

two comparative systems. A relatively fast viral binding rate kb was adopted in the first 7 

system to represent the binding process of SARS, while a relatively slow rate was 8 

adopted in the second to represent the binding process of 2019-nCoV. All the other 9 

parameters such as diffusion constants and concentrations in both systems remain the 10 

same. As a result, the kinetic profiles indicating the changes of free virus level along with 11 

the simulation time in these two systems are shown in Figure 4b. The figure suggests 12 

that the first stage in the simulation of 2019-nCoV (red curve) is longer than the 13 

simulation of SARS (black curve). This is consistent with the clinical observation that the 14 

incubation period of COVID-19 could be as long as 14 days, while the incubation period 15 

is normally from 2 to 7 days. More interestingly, we found that the level of free virus at 16 

the end of the first period in the simulation of 2019-nCoV is relatively higher than the 17 

corresponding level of free virus in the simulation of SARS. Considering that a patient 18 

can contain a higher level of new coronavirus during his or her incubation period which 19 

is also longer than SARS, our simulation gives the insights about why COVID-19 is more 20 

contagious and spread faster than SARS [11]. Finally, when both simulations came to 21 

their third phases, we found that the total amount of virus of SARS is higher than 2019-22 

nCoV. This gives possible explanation about why the symptoms in most COVID-19 23 

patients are relatively mild and not as severe as the symptoms in SARS patients [35].  24 

In summary, it is important to point out that the life cycles of different 25 

coronaviruses can also be caused by many other factors such as the difference in the 26 

assembling pathways of these viruses. Additionally, the infectious response of each 27 

individual is also a case-dependent issue, relying on the expression levels of ACE2 28 

receptors and the heterogeneity of immune response in different patients. Nevertheless, 29 

our multiscale computational model highlights the potential role of binding kinetics 30 
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between human receptor and S-proteins from different coronavirus in, and provided the 1 

possible mechanism from the molecular level to their impacts on, regulating the 2 

dynamics of the entire viral life cycle.  3 

Conclusions 4 

The recent outbreak of COVID-19 has drawn substantial attention especially after 5 

it spread to more than thirty countries and became a Public Health Emergency of 6 

International Concern (PHEIC) [2, 36, 37]. The disease is caused by a new type of 7 

positive-stranded RNA virus, known as 2019-nCoV. Similar as the coronavirus that leads 8 

to SARS, it has been confirmed that the S-protein in 2019-nCoV also mediates its 9 

recognition with the human receptor ACE2. However, the differences of receptor binding 10 

in these two virus systems and their underlying implications are not well understood. It 11 

has been found that the kinetic aspect of binding between biomolecules in many 12 

biological systems is usually more important to their functions. Here, using 13 

computational structural prediction and coarse-grained simulations, we first have 14 

compared the association rate of binding between ACE2 and the S-protein from SARS-15 

CoV with binding between ACE2 and the S-protein from 2019-nCoV. Consistent with 16 

the experimental data obtained very recently, we found association of the new virus to the 17 

receptor is slower than SARS. We further interrogate the impact of this result on the 18 

difference in viral life cycle between SARS and COVID-19. By incorporating the 19 

information derived from coarse-grained simulations into a mathematical model, we 20 

found that the slower association between 2019-nCoV and ACE2 can result in longer 21 

incubation period, while still maintaining a relatively higher level of viral concentration 22 

in human body. This multiscale modeling framework, therefore, can offer one possible 23 

molecular mechanism to explain why this new infectious disease spreads much faster 24 

than SARS. 25 

Methods 26 

Construct the structural models for the complexes between receptors and viral S-proteins 27 

The atomic structures of complex between ACE receptor and different viral S-28 

proteins are needed for the simulations of their association. The structural models of these 29 
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protein complexes were prepared as follows. The complex structure between human 1 

ACE2 and the RBD domain from the S-protein of SARS was determined by the x-ray 2 

crystallography experiment (PDB id 2AJF) [17]. On the other hand, the structural model 3 

of the complex between human ACE2 and the RBD domain from the S-protein of 2019-4 

nCoV was constructed by computational modeling. In detail, the atomic structure of 5 

2019-nCoV S-protein RBD domain was first predicted by I-TASSER [38] based on the 6 

newly released sequence of 2019-nCoV [39]. In parallel, the backbone model of the 7 

complex between human ACE2 and the RBD domain from 2019-nCoV S-protein was 8 

generated using the template-based structure prediction tool COTH [40, 41]. We then 9 

superimposed the predicted atomic coordinates of 2019-nCoV S-protein RBD domain 10 

onto its relative backbone position in the complex model, and also aligned the atomic 11 

coordinates of human ACE2 from the crystal structure onto the relative backbone 12 

position in the complex model. As a result, the structural comparison of these two protein 13 

complexes is plotted in Figure 1b. 14 

Estimate the association between ACE2 and S-protein by kinetic Monte-Carlo simulation 15 

A previously developed kinetic Monte-Carlo algorithm [42] was used to simulate 16 

the association between S-protein and ACE2. A coarse-grained model of protein 17 

structures is used. Each residue in a protein is represented by its Cα atom and the 18 

representative center of its side-chain. The simulation starts from an initial conformation, 19 

in which two proteins in the complex are separated and placed randomly. Following the 20 

initial conformation, each protein diffuses randomly within one simulation step. A 21 

physics-based scoring function containing electrostatic interaction and hydrophobic effect 22 

is used to guide the diffusions of proteins during simulations. Based on the calculated 23 

energy, Metropolis criterion is applied to determine if the corresponding diffusional 24 

movements can be accepted or not. The simulation trajectory will be terminated if an 25 

encounter complex is successfully formed through the corresponding interface observed 26 

in the constructed model of native protein complexes. Otherwise, above simulation 27 

procedure will be repeated until it reached the maximal time duration. This method was 28 

applied to study the association between ACE2 and both S-proteins from the two virus 29 

systems. For each system, 500 trajectories are carried out. Each trajectory starts from a 30 
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relatively different initial conformation, but the initial distances between the binding 1 

interfaces of S-proteins and receptors in all trajectories are below 20Å. The probabilities 2 

of association were then derived and compared based on counting how many encounter 3 

complexes formed among these trajectories in the two systems.   4 

Model the cellular attachment of coronavirus by rigid-body diffusion-reaction algorithm 5 

As described in the Results, a rigid-body (RB) based model is constructed to 6 

simulate the binding between coronaviruses and cell surface receptors ACE2 on plasma 7 

membrane. Given the model representation and a randomly-generated initial 8 

configuration (Figure 2a), the dynamics of the system is evolved by following a 9 

diffusion-reaction algorithm [43-45]. Viruses or receptors are selected by random order 10 

for stochastic diffusion within each simulation time step. A virus is free to diffusion 11 

throughout the simulation box, while diffusions of membrane-bound receptors are 12 

confined to the plasma membrane. Periodic boundary conditions along both x and y 13 

directions are applied. Moreover, viruses are not allowed to move below the plasma 14 

membrane. If any virus moves beyond the top of the simulation box, it will be bounced 15 

back. The amplitude and probability of translational and rotational movements for viruses 16 

and receptors are determined by its corresponding diffusion constant. Association 17 

between viruses and receptors are followed after diffusions. Association is triggered if the 18 

distance between any S-protein in a virus and the binding site of a receptor is below a 19 

predetermined cutoff value. The probability to trigger the association is determined by 20 

the association rate, which was estimated by the kinetic Monte-Carlo method described in 21 

the previous section. Assuming that viruses can enter the cell through membrane fusion 22 

after they associate with ACE2, the dissociation between the virus and the receptor is not 23 

considered in the system. Finally, as above diffusion-reaction process iterates in both 24 

Cartesian and compositional spaces, the system will finally reach equilibrium. 25 

Solve the ordinary differential equations of viral life cycle by stochastic simulations 26 

We use the stochastic simulation algorithm (SSA) developed by Gillespie to 27 

model the processes of biochemical reactions from equation (1) to equation (7) [46]. The 28 

algorithm starts from the initiation of time and populations of each species in the 29 
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simulation system. Within each simulation step, the rates for all reactions are re-estimated 1 

by the given parameters and updated population of corresponding species. One of these 2 

reactions is then randomly selected based on the calculation of their relative weights. 3 

Finally, populations for the corresponding species are updated. The simulation moves 4 

forward to the next step by adding the system time with τ, in which τ is an exponential 5 

random variable with the average value equals the reciprocal of the summation for all the 6 

reactions. Above process is iterated so that the populations of each species in the system 7 

evolve along the simulation time. The values of all parameters in the simulation were 8 

chosen to be within the biologically meaningful range. The choice of these parameters 9 

does not qualitatively affect the general dynamic patterns of the system. 10 
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Figure Legends 1 

Figure 1: A mesoscopic model is constructed to simulate the kinetic process about how 2 

viruses are captured by the cell surface receptors on plasma membrane (a). The plasma 3 

membrane is represented by a flat surface below the extracellular region, which contains 4 

a number of ACE2 receptors (pink). The space above the plasma membrane represents 5 

the extracellular region which contains a number of coronaviruses (golden). Each virus is 6 

simplified as a spherical rigid body with trimeric S-proteins uniformly distributed on its 7 

surface (green dots). Each S-protein monomer can interact with an ACE2 receptor on the 8 

plasma membrane. The rate of their association was estimated by Monte-Carlo 9 

simulations based on the structure models of complexes between ACE2 and RBD 10 

domains from S-proteins of different coronavirus (b). The proteins in the figure are coded 11 

by different color index. 12 

Figure 2: We used structure-based kinetic Monte-Carlo simulations to estimate the 13 

association between ACE2 and S-proteins from SARS-CoV and 2019-nCoV. For each 14 

system, 200 simulation trajectories were generated. Based on these trajectories, the 15 

calculated probabilities of association are plotted in (a). We found that the association 16 

between ACE2 and SARS-CoV S-proteins (right column) is faster than the association 17 

between ACE2 and 2019-nCoV S-protein (left column). We then fed the information into 18 

the rigid-body-based simulations. The simulations show the total numbers of viruses that 19 

were captured by host cells increased as a function of simulation time (b). Moreover, we 20 

found that during the early stage of simulations, more SARS-CoV (black curve) attach to 21 

host cells than 2019-nCoV (red curve). 22 

Figure 3: A mathematical model was proposed to delineate the simplified process of 23 

viral life cycle, including its replication and packaging in host cells, the inflammatory 24 

signaling pathways due to the detection of foreign pathogens, and the follow-up 25 

inflammatory responses which lead to the apoptosis of infected cells and the removal of 26 

viruses by the recruitment of immune cells. The meaning of each variable in the diagram 27 

is specified on the right. The system can further be described by a set of ordinary 28 

differential equations, as written from Equation (1) to Equation (7) in the main text.  29 
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Figure 4: Given predefined weights for all the rate parameters and the initial values for 1 

each variable in the model, the dynamics of the system is evolved as a function of time by 2 

solving the mathematical model numerically with a stochastic simulation algorithm. The 3 

figure suggests that the dynamics of the system can be divided into three stages (a). We 4 

further applied the model to two comparative systems. A relatively fast viral binding rate 5 

kb was adopted in the first system to represent the binding process of SARS, while a 6 

relatively slow rate was adopted in the second to represent the binding process of 2019-7 

nCoV. As shown in (b), we found that the first stage in the simulation of 2019-nCoV (red 8 

curve) is longer than the simulation of SARS (black curve), while the level of free virus 9 

at the end of the first period in 2019-nCoV is relatively higher than the corresponding 10 

level of free virus in SARS. 11 
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