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Abstract  26 

There are several approaches to understand how a landscape, with its several components, affects the 27 

genetic population structure by imposing resistance to gene flow. Here we propose the creation of 28 

resistance surfaces using a Pattern-Oriented Modeling approach to explain genetic differentiation, 29 

estimated by pairwise FST, among “Baruzeiro” populations (Dipteryx alata), a tree species widely 30 

distributed in Brazilian Cerrado. To establish the resistance surface, we used land use layers from the area 31 

in which the 25 “Baruzeiro” populations were sampled, generating 10000 resistance surfaces. To establish 32 

the resistance surface, we used land use layers from the area in which the 25 “Baru” populations were 33 

sampled, generating 10000 resistance surfaces. We randomized the cost values for each landscape 34 

component between 0 and 100. We use these surfaces to calculate pairwise matrices of the effective 35 

resistance among populations. Mantel test revealed a correlation of pairwise FST with a geographical 36 

distance equal to r = 0.48 (P < 0.001), whereas the Mantel correlations between pairwise FST and the 37 

generated resistance matrices ranged between r = -0.2019 and r= 0.6736. Partial regression on distance 38 

matrices was used to select the resistance matrix that provided the highest correlation with pairwise FST, 39 

based on the AIC criterion. The selected models suggest that the areas with lower resistance are 40 

characterized as natural savanna habitats of different forms, mainly arboreal dense savannas. In contrast, 41 

roads, big rivers, and agricultural lands cause higher resistance to gene flow. 42 

Keywords: gene flow, FST, Dipteryx alata, circuitscape, mantel 43 
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Introduction   64 

Landscape structure can influence ecological processes, such as dispersal, migration and flow gene, at 65 

different levels of biological organization and spatial scales, including those driving the population 66 

genetic structure (Manel et al. 2003; Koffi et al. 2007). For example, a strong genetic structure (i.e., high 67 

differentiation among demes or local populations) appears when habitat loss decreased connectivity and, 68 

therefore, the dispersal capacity, dividing populations and disrupting gene flow (King and With 2002, 69 

Amos et al., 2012; Braga et al. 2019). This decrease in gene flow results in loss of genetic variation and 70 

inbreeding depression, most likely increase the probability of local extinctions (Storfer 1999), changing 71 

aspects of species’ life history (Kramer et al. 2008) and eventually reducing its evolutionary potential 72 

(Frankham et al. 2004). The analysis of all these processes is the primary goal of a field that quickly 73 

developed and advanced in the last 15 years called “Landscape Genetics” (Manel et al. 2003; Holderegger 74 

and Wagner 2006; Storfer et al. 2007; Manel and Holderegger 2013). Landscape genetics seeks to 75 

evaluate the interaction between landscape features and microevolutionary processes such as gene flow, 76 

selection, and genetic drift, integrating, thus geographical, ecological, and genetic information (Manel et 77 

al. 2003; Storfer et al. 2007). 78 

In landscape genetics, it is possible to check and interpret the effective distance between 79 

individuals or populations, taking into account landscape properties that wild better reflect gene flow 80 

(Mateo-Sánches et al. 2015). This relation can be calculated through the “Isolation by Environment” 81 

(IBE) models, which describes a pattern in which genetic differentiation increases with environmental 82 

differences, independent of geographical distances (Sexton et al. 2014, Jenkins et al. 2010, Wang and 83 

Bradburd 2014). Another way to check the effective distance in landscape genetics is by Isolation by 84 

Resistance – IBR (McRae 2006), where the distance calculation incorporates the degree of “permeability” 85 

of the different landscape components (e.g., forests, croplands, roads) to the dispersion of individuals 86 

throughout the landscape. Therefore, this permeability is related to how the landscape affects the 87 

movement of organisms between the areas with resources, in terms of biological, physiological, and 88 

behavioral characteristics, thus controlling the natural flows of species (Metzger and Ddcamps 1997; 89 

Tischendorf and Fahrig 2000). IBE and IBR researchers tend to concentrate on describing patterns, 90 

without necessarily investigating the mechanisms that have generated these patterns (Wang and Bradburd 91 

2014). However, all these models are generalized versions of the much older (and simpler) Isolation-by-92 

Distance (IBD) proposed by Sewall Wright in the early 1940’s, in which it is possible to predict an 93 
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exponential decrease of genetic distance as geographic distances increase, by a balance between dispersal 94 

and local genetic drift  (see Wright 1943). So, both IBR and IBE can be viewed as more complex cases of 95 

IBD in terms of dispersal routes and changes in a balance due to landscape features. 96 

Resistance surfaces have been used to understand how landscape components influence the 97 

connectivity among species populations. (Spear et al. 2010; Koen et al. 2012). These surfaces are 98 

representations of the degree of connectivity that is attributed to the original landscape components (i.e., 99 

considering the organisms of interest) that are used to model their movement through the landscape 100 

(Spear et al. 2010; Taylor et al.,1993; Coulon et al., 2004; Vignieri, 2005). A crucial step in the 101 

development of these surfaces is to attribute values, or costs, to each of the landscape components. Such 102 

parameterization will determine how users will be this resistance to model species movement throughout 103 

the landscape (Spear et al. 2010; Koen et al. 2012). However, this attribution of costs is, in many cases, 104 

subjective and is not based on strict knowledge of species’ traits.  105 

To describe the resistance that the landscape imposes to the gene flow between populations and 106 

to reveal information on the processes behind the population’s genetic structure observed patterns, it is 107 

possible to use a Pattern-Oriented Modeling technique (Grimm 1994; Grimm et al. 1996; Grimm et al. 108 

2005; Diniz-Filho et al. 2014). The POM provides a conceptual framework to assess the applicability of 109 

models by comparing the patterns generated by the model to observed patterns (Kang e Aldstadt, 2018).  110 

One can use computational procedures to create a conceptual framework and find the set of parameters 111 

that generates the best models replicating an empirical pattern. The creation of this models resulted in the 112 

improvement of the quality of the model and the overall understanding of the system (Kang e Aldstadt, 113 

2018; Diniz-Filho et al. 2014), which allows a biological and ecological interpretation of this best set of 114 

parameter values (Wiegand et al. 2003). 115 

The system we are interested in refers to the landscape influence in the genetic structure of 116 

Dipteryx alata populations in Central Brazil. Assuming that genetic diversity has a positive relationship 117 

with the resistance landscape (McRae 2006), we used here genetic diversity to attribute the values of 118 

resistance of the different landscape components to build resistance surfaces that better explain the 119 

genetic structure pattern among populations. The main goal is to understand which landscape features (or 120 

combination of them) better define the genetic divergence between populations. This statistical definition 121 

minimizes the arbitrariness in the parameterization of these surfaces, so we used the POM approach in the 122 
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search for matches between simulated and observed patterns (Diniz-Filho et al. 2014). Several lines of 123 

evidence suggest that anthropogenic features affect the connectivity and the gene flow in natural 124 

landscapes (Pérez-Espona 2008, Ayran et al. 2017; Okamiya and Kusano 2019). Thus, we expect that 125 

anthropogenic features will be selected for the POM and present a high resistance for the gene flow. We 126 

also hope that landscape features, especially those of the species natural habitat and their dispersers, show 127 

less resistance to the gene flow. 128 

 129 

Materials and Methods 130 

For our analyses, we sampled Dipteryx alata Vog in 25 localities (local populations hereafter), a tree 131 

species widely distributed in the Brazilian Cerrado, popularly known as "Baru" tree or "Baruzeiro." We 132 

estimated the genetic variation of 644 individuals collected, with sample sizes ranging from 12 to 37 133 

individuals in each local population, covering most of the geographical distribution of the species (Table 134 

S1), as detailed described elsewhere (especially Soares et al. 2012; Diniz-Filho et al. 2012; Collevatti et 135 

al. 2013). Seven microsatellite loci were used to estimate the genetic divergence between pairs of 136 

populations using Wright's FST, calculated using the pp.fst function in the hierfstat package (Goudet 137 

2005), with modifications on R platform (R Core Team 2014).  138 

We define the study area with a polygon covering all populations, marginally buffered by 20 139 

kilometers around the local populations, covering an area of approximately 1.25 x 106 km². We used the 140 

contemporary habitat configuration to define landscape elements to build the resistance surfaces. The 141 

overall reasoning is to determine the influence of a landscape modified by changes in the Cerrado region 142 

over the last 50 years due to agricultural expansion and population growth in the region (Klink and 143 

Machado 2005; Klink 2013). Initially, we adopted land use layers with land cover classes (hydrography, 144 

roads, urban areas, and vegetation types) obtained from the Land Cover Maps Biomes, on a spatial scale 145 

of 1:250.000, based on Landsat 7 ETM + with pictures of 2002 and Brazilian roads map (see 146 

www.mma.gov.br and www.dnit.gov.br). We reclassified the raster maps with approximately 0.02 147 

decimal degrees of resolution into distinct natural (vegetation types of forests, such as savannas, 148 

grasslands, and drainage network) or anthropic classes (agricultural areas, urban areas, and roads), (see 149 

Table 2 for a description) and calculated the percentage of each class in the landscape. All this 150 

information (landscape components) was gathered into a single layer and used to calculate the resistance 151 
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surfaces. For our analysis, when a cell has two or more classes, the class with higher occurrence was 152 

selected to describe the cell, using ArcGIS 9.3 software (ESRI, 2011). 153 

 154 

Landscape Analysis and Pattern-Oriented Modeling (POM) 155 

The landscape resistance to the gene flow of a species is caused by the interaction between its 156 

biological traits for dispersion (or their dispersers) and all land cover classes structured in a resistance 157 

surface. The resistance surface is the numerical demonstration of the quantity of resistance imposed on 158 

the gene flow among the populations on the study. One of the major challenges in Landscape Genetics is 159 

the assignment of resistance values to this landscape components because its interaction (and usually 160 

primary biological data) is unknown (Spear et al. 2010; Stevenson-Holt et al. 2014). Each landscape 161 

component is a numeric variable, difficult to express in terms of real resistance values, mainly due to lack 162 

of knowledge of dispersion forms, and consequently, in the gene flow. 163 

To evaluate the potential resistance that the landscape imposes on gene flow among Baru 164 

populations, and to reveal information on the values of the parameters and the processes behind the 165 

pattern of genetic divergence between populations. We used Pattern-Oriented Modeling (Grimm et al. 166 

1996; Grimm et al. 2005; Grimm and Railsback 2012; Topping et al. 2012), an approach based on the 167 

genetic divergence between “Baru” populations. Pattern-Oriented Modeling (POM) allows finding which 168 

combination of parameters maximize the correlation between genetic and dispersal, and subsequently, the 169 

selection of the “best” resistance surface under this relationship. 170 

To build the resistance surfaces, resistance values in the interval between 0 and 100, were 171 

randomly assigned to each landscape components, generating 10.000 surfaces with different values of 172 

resistance for each class. Despite the randomization of resistance values, the landscape configuration 173 

(classes) has not changed, remaining constant in all generated surfaces (Figure 2).  174 

We started the modeling with a “null” model, where all cells on the resistance surface were 175 

zero, equivalent to considering only the Euclidean distance between pairwise populations. Next, we 176 

created more complex landscape surfaces incorporating heterogeneity, with randomized values of 177 

resistance in each of its components and comparing them with the null model. In a third cycle, we 178 

systematically removed the complexity of the surfaces in the selected models. We evaluated the 179 
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importance of each class and its resistance in the model and validation. Our work emphasizes the second 180 

step of the POM, the estimation of parameters in the creation of resistance surfaces. Our most significant 181 

interest is to quantify the resistance imposed by each landscape component to the dispersion and, 182 

consequently, to the genetic diversity and gene flow between populations. 183 

We generate 10.000 resistant surfaces and calculate the effective resistance matrices for pairs 184 

of populations according to the Electrical Circuit Theory (McRae 2006; McRae and Beier 2008 McRae et 185 

al. 2008). Differently from the more commonly used least-cost path, which indicates a single possible 186 

connection path among populations, the effective resistance calculation is based on the Electrical Circuit 187 

Theory, allowing calculating the resistance distances considering multiple pathways (McRae et al. 2008). 188 

The resistance calculation based on the Electrical Circuit Theory was generated through Circuitscape 189 

software (v.4.0 Beta-; McRae, 2006). We used the ResistanceGA package in R (Peterman 2014) to carry 190 

out the analysis in Circuitscape. 191 

 192 

Spatial Analysis 193 

We correlated the spatial arrangements (in terms of resistance distance between populations) with the FST 194 

pairwise using different Mantel tests (see Diniz-Filho et al. 2013, for a recent review). The significance of 195 

Pearson matrix correlations was estimated from 999 permutations. 196 

To check the influence of landscape resistance on the species’ gene flow, maintaining the 197 

effect of geographic distance between populations permanent, we also used a partial Mantel test 198 

(Legendre and Legendre 2012), calculated using R software (R Core Team 2014) with mantel.partial 199 

function of the vegan package (Oksanen et al. 2012). The Akaike information criterion (AIC) was used to 200 

select the best (most satisfactory) models (deLeeuw 1992), which were considered those with ΔAIC 201 

values below three. The ΔAIC values were also used to calculate the AIC weight in each model (Akaike 202 

weight - Wi) (Burnham and Anderson 2002; Diniz-Filho et al., 2008), revealing the level of certainty in 203 

achieving the best explanatory model against all the other tested models.  204 

Each landscape component has an individual contribution to the explanatory power of models. 205 

To assess this individual contribution of each landscape component in all select models (equation 1),  206 

∑ ��
�

��� ����                                                                                                    [1] 207 
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we multiplied (wi) by the resistance values of each landscape component (Xi) in the selected 208 

models (n). With this approach, we were able to measure the influence of each landscape component on 209 

gene flow, translated in genetic distances observed. 210 

We then used the mean resistance of selected models to create a final current map to verify 211 

possible species dispersion routes and identify the areas that most contribute to connectivity between 212 

populations  (as seen in Castilho et al., 2011; McRae, 2006; McRae et al., 2008). The value of each cell in 213 

the landscape represents an amount of current flowing through it, analogous to the percolation of the 214 

species (McRae et al. 2008). Where the landscape is less resistant, the routes of dispersion are more likely 215 

to occur. 216 

 217 

Results 218 

We found a significant amount of genetic divergence between populations, with an average FST of 0.258 219 

to establish a comparison among all the populations. The genetic divergence based on FST values was 220 

positively correlated with the geographic distance (Mantel test, r = 0.4805; P <0.001), showing a linear 221 

relationship between genetic and geographic distances in which genetic divergence between populations 222 

(inverse of FST) increase with geographic distance increase (Figure 3). 223 

For the resistance surfaces generated, Mantel correlation coefficients ranged between -0.2019 224 

and 0.6736 (Figure 4). About 56% out of the 10.000 resistance surfaces have a higher correlation with FST 225 

than the one obtained with geographic distance alone. Partial Mantel was used to taking into account the 226 

effect of geographical distance, providing thus an estimate of how genetic divergence is explained by 227 

landscape alone. The average partial Mantel correlation coefficient was equal to 0.2016, demonstrating 228 

explanatory gain for genetic divergence among populations, and increase their respective resistances in 229 

the model. 230 

Three out of the 10.000 resistance surfaces were selected by ΔAIC under 3. These models are 231 

providing the best relationship of landscape with the genetic diversity among the “Baru” populations. The 232 

Mantel between landscape resistance and genetic divergence suggest a major adjustment of resistance 233 

models, about r = 0.67, much larger than a pure geographical model, with r = 0.48 (Table 1). All Mantel 234 

tests were significant at P <0.001, with 999 permutations. The relative Wi suggests that there is about a 235 
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30% chance that the surface S-9247 is the more adjusted, a high chance since 10.000 models were 236 

generated. The second and third models selected have a reduced chance of 8% and 6.8%, respectively. 237 

In partial mantel, the resistance distance explains approximately 45% of the genetic divergence 238 

between populations - RR, more than twice the geographical distance explanation provided - RG (23%) 239 

(Table 2). By partitioning the effects, about 49.2% out of all the genetic divergence is explained only by 240 

resistance (a), about 50.7% of the strength by the overlap with geographical distance (b), and 0.1 % is 241 

defined exclusively by the geographic distance (c). 242 

The study area is composed of 16 different classes (Table 2). With 28% of the landscape 243 

composed by Savannah Agricultural Activities, 21% of  Dense Arboreal Savannah, 17.8% of a transition 244 

area between different vegetation types (Ecological Tension Areas), 7.7% of Savannah Grassy Woody, 245 

6.5% of roads and 4.5% of rivers and lakes. Other classes of landscape account for the remaining 14.5%. 246 

The models selected suggest that areas with lower resistance are those with vegetation types Dense 247 

Arboreal Savannah and Savanna Grassy Woody (grassland). Savannah Agricultural Activities, Roads, 248 

and rivers cause higher resistance.  249 

We built a final effective resistance surface from the weighted resistance costs and the weight 250 

of the selected models (Figure 5a). The surface is correlated with the genetic divergence of “Baru” 251 

populations, with r = 0.6854 (P <0.001). The primary gene flow routes of the “Baru” occur where the 252 

landscape is less resistant, and dispersal routes are more likely to occur (Figure 5b). The models suggest 253 

that areas with lower resistance to gene flow are the Savanna and Savanna Dense Arboreal Grassy 254 

Woody. Roads, rivers, and the agricultural regions of Cerrado cause higher resistance to gene flow. We 255 

used a current map to preview important connectivity areas between populations; in this case, the minor 256 

resistance areas represent areas propitious for species life and to areas suitable to the disperser animals of 257 

the species. Warmer colors (purple and red) indicate areas with less current density; areas with higher 258 

connectivity are shown in yellow. 259 

 260 

Discussion 261 

In population genetics, several approaches have been used to investigate patterns and infer 262 

microevolutionary processes involved in population differentiation. Landscape genetics is the study of 263 

how landscape pattern (the distribution of suitable habitat, barriers, etc.) affects gene flow and genetic 264 
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differentiation of species (Holderegger and Wagner 2008; Manel and Holderegger 2013). Here we 265 

correlated FST with geographical distances and landscape features using distinct approaches that allow us 266 

to decouple their effects. Our results seem to be sufficiently robust to can furnish a description of 267 

landscape influence in the genetic variability in a relatively well-known species and corroborate previous 268 

analyses of population genetic structure with “Baru” populations (e.g., Soares et al. 2008; Telles et al. 269 

2014), adding and complementing information, suggesting influences of anthropic actions among these 270 

populations. The Circuitscape has been widely used to check used how landscape features influence 271 

genetic connectivity (Adams et al. 2016, Mateo-Sánches et al. 2015 and Pérez-Espona et al. 2012). For 272 

creating the resistance surface is necessary parameterizing cost surfaces by assigning weights to different 273 

landscape elements has been challenging, however, because real costs are rarely known (Koen et al. 274 

2012). Here, we seek to understand how each landscape components influence genetic divergence 275 

between populations of Dipteryx alata. Using a Pattern-Oriented Modeling approach, we established 276 

which cost configuration best explains the genetic divergence between the studied populations, bringing 277 

The approach we used allows getting more insights into the importance of landscape to the genetic flow 278 

of populations based on a new way to minimize the arbitrariness in the parameterization of resistance 279 

surfaces. 280 

The patterns found in this study show the benefits of using an additional set of information to 281 

create these surfaces and to interpret the genetic differentiation among populations. Even though another 282 

study will have been trying to develop ways to measure the resistance surfaces more clearly by using 283 

modeling (e.g., Shirk et al. 2010; Spear et al., 2010) until now, there is no consensus on the most effective 284 

approach. Spear et al. (2005) took a big step by using the lowest cost path analysis and discussing the 285 

difficulty of developing cost parameters for different habitat types, without having the necessary data (the 286 

species biology information and its dispersion). But they did not use cover type because they did not use 287 

data that would allow quantifying the specific numerical cost of moving through of the studied 288 

salamander species. Koen et al. (2012) carried out a sensitivity analysis of three methods to parameterize 289 

a cost surface and two models of landscape permeability. They check that developing a cost surface 290 

improves the accuracy of functional connectivity estimates, especially when cost weights are selected 291 

through statistical model fitting procedures.  292 

The “Baru” has been widely studied in ecological and genetic terms due to its economic, 293 

environmental, and cultural importance. Our results seem to be sufficiently robust to can furnish a 294 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2020. ; https://doi.org/10.1101/2020.02.20.958637doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958637
http://creativecommons.org/licenses/by-nc-nd/4.0/


description of landscape influence in the genetic variability in a relatively well-known species. Our results 295 

corroborate and expand our understanding of the factors driving the population genetic structure of this 296 

species. Soares et al. (2008) detected that in local populations situated at short geographic distances has 297 

been the spatial structure of genetic divergence demonstrated a pattern of genetic discontinuities, 298 

suggesting influences of anthropic actions among these populations. Other studies with this species (e.g., 299 

Telles et al. 2014; Diniz-Filho et al. 2015; Soares et al. 2015) have begun to worry about the influence of 300 

environmental characteristics on the genetic differentiation of “Baru” populations. Telles et al. (2014) 301 

correlate different landscape metrics with the genetic divergence of these same Baru populations finding a 302 

strong correlation between the percentage of natural remnant and genetic divergence of populations, 303 

demonstrating how human occupation had effects such as habitat loss and fragmentation. Soares et al. 304 

(2015) and Smith et al. (2015) discuss and analyze the distribution of these populations from a center-305 

periphery dynamic, using this environmental suitability and demonstrating a historical influence on the 306 

distribution of these populations.  307 

The genetic divergence between populations of D. alata is better explained by landscape 308 

structure than by merely geographic distance. Only about 23% of the genetic divergence is explained by 309 

geographic distance, reinforcing that factors other than the geographical distance influence the genetic 310 

differentiation among Baru populations. For the resistance surfaces generated, Mantel tests resulted in 311 

correlation coefficients varying between -0.2019 and 0.6736, demonstrating the importance of 312 

considering landscape components. While the Euclidean distance was a path for this system, this is not 313 

usually the best case for studies that have landscape additive information (Coulon et al. 2004, Emel, and 314 

Storfer 2015). 315 

Regarding landscape components, forest formations did not have a significant influence on the 316 

results, mainly due to its small presence in the landscape. The landscape classes that occur in small 317 

quantity facility the transposable for “Baru” dispersers, such as birds (macaws) and mammals (monkey, 318 

agouti, and livestock), all long-distance dispersers (Ribeiro et al. 2000). Savanna arboreal dense and 319 

savanna grassy woody (grassland) behaved as classes with lower resistance to species, observing that low 320 

resistance has a direct association with high percolation for animals that disperse their seeds and pollen, 321 

as it is a plant with zoochoric dispersion. We expected low resistance in savanna arboreal dense and 322 

savanna grassy woody since this species can be found in this type of environment. The classes that 323 

showed higher resistance to “Baru” dispersion were the savanna agricultural area, rivers, lakes, and roads, 324 
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all of them with values close to 35, suggesting high resistance, but also high percolation since it can vary 325 

between 0 and 100 (35 is medium resistance). We expected that these landscape classes to have higher 326 

resistance considering that they are disturbed areas. We believe that agricultural areas cause increased 327 

resistance, mainly due to its instability plant; the Savanna case, they constitute a very high percentage of 328 

areas, 28.11%, of the entire study area, with long stretches. The fact that dispersion is mostly associated 329 

with terrestrial animals and large and medium-sized flying animals justify the median interference of 330 

landscape on species’ gene flow. We expected that species with more restrictive dispersal to have more 331 

extreme and high values, which reflects mainly on the ability of “Baru” dispersers to overcome barriers 332 

and high resistance areas along the dispersion process. The relative importance of landscape components 333 

and their spatial patterns can be the key for identifying their influence in microevolutionary processes 334 

driving population divergence. 335 

From a conservation point of view, the current map (McRae et al. 2008) is a source of 336 

information on population connectivity. It has been used to demonstrate critical areas for species’ 337 

connectivity maintenance (Castilho et al. 2011 and Schwartz et al. 2009). This enhances the 338 

understanding of isolated species and facilitates the process of decision-making regarding the main routes 339 

of connectivity between populations.  Therefore, this work shows an improvement regarding the previous 340 

analyses by demonstrating the influence that landscape components have on the processes that generate 341 

such genetic variation. Further studies comparing different tree species in this region would allow 342 

correlating the weights obtained with their life-history attributes, reinforcing the interpretation of how 343 

these differences are captured by IBR and IBE models. Moreover, once these relationships are better 344 

established, it would be possible to evaluate how the profound ongoing landscape changes in Brazilian 345 

Cerrado (Bonanomi et al. 2019) would disrupt gene flow and, consequently, would lead some 346 

economically important species as the “Baru” to local or global extinction. 347 

 348 

  349 
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Table 1. Resistance surface selected according to ΔAIC 496 

 497 

 498 

Table 2. Influence of landscape features on the gene of flow Dipteryx alata. Costs on the resistance 499 
surfaces selected and the sum of the pondered cost per wi. 500 

PHYTOECOLOGICAL 
REGIONS PLAND S-9247 S-3939 S-4515 S-mean ∑(Xi*Wii) 

Savannah Agricultural Activities 28.11 79 91 83 84 36.05 

Roads 6.52 86 90 77 84 37.60 

Rivers Lakes 4.53 78 66 97 80 34.66 

Deciduous Forest Secondary 
Vegetation and Agricultural 
Activities 

2.24 80 72 71 74 33.96 

Savannah Park 4.79 45 93 70 69 25.46 

Ecological Tension Areas of 
Savannah Savannah Estépica 

0.24 7 95 93 65 16.17 

Savannah arborous 2.99 81 56 56 64 31.92 

Deciduous Forest Submontane 0.04 36 51 100 62 21.45 

Areas of Pioneer Formations 
Influences Fluvial 

0.10 92 3 92 62 33.22 

Ecological Tension Areas 
Savanna Forest Estacional 

17.50 50 70 65 62 24.68 

Semideciduous Forest Secondary 
Vegetation and Agricultural 
Activities 

3.00 49 61 57 56 23.11 

Semideciduous Forest Alluvial 0.22 20 38 51 36 6.55 

Semideciduous Forest 
Submontane 

0.79 52 38 16 35 17.08 

Ecological Tension Areas Forest 
Rain Forest Estacional 

0.10 47 19 15 27 16.22 

Savannah Grassy Woody 7.70 22 32 17 24 12.21 

Dense Arboreal Savannah 21.13 5 4 9 6 2.39 
pland = percentage area in the landscape. Σ (xi * wii) = sum of each weighted resistance by wi your model. 501 

  502 

Surface Mantel Partial Mantel RT RR RG a b c ΔAIC Wi 

S-9247 0.6736 0.5404 0.456 0.454 0.23 0.225 0.228 0.001 0 0.29 

S-3939 0.6702 0.5364 0.452 0.449 0.23 0.221 0.227 0.002 2.528 0.082 

S-4515 0.6697 0.5319 0.449 0.449 0.23 0.218 0.23 -0.001 2.895 0.068 
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Figure captions 503 

Fig. 1 Distribution of Dipteryx alata population studied in the Brazilian Cerrado, with the landscape 504 

components (classes) analyzed in resistance surface. Areas in green tones are natural areas, and brown 505 

tones are predominantly disturbed areas. Red circles indicate the number of 25 populations genotyped, 506 

ranging between 12 and 37 individuals 507 

Fig. 2 a) and b) are homogeneous surfaces with respectively resistance values of 0 and 100 in all areas. 508 

The surfaces c) and d) are heterogeneous and contain the parameterized classes with values of 0 to 100 at 509 

intervals of 1 510 

Fig. 3 Relationship between pairwise FST and geographical distance 511 

Fig. 4 Histogram of Pearson’s correlation coefficient (r) values obtained using the Mantel test between 512 

pairwise FST and resistance matrices, highlighting the correlation coefficient between the FST and 513 

geographical distances, r = 0.4805 (red line) 514 

Fig. 5 a) landscape resistance map for Baru (Dipteryx alata) in the Brazilian Cerrado with average 515 

resistance costs ranging between 2.3928 and 37.587. The resistance gene flow was parameterized with 516 

average model parameter estimates for these variables. The lighter areas have lower resistance, and the 517 

darker has a higher resistance. b) current map with the main routes of lower resistance to the dispersion of 518 

Baru 519 

 520 
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Electronic Supplementary Material  536 

Table S1: Geographical coordinates of Baru Populations 537 

Population City / State Longitude Latitude Number of Samples 

1 Cocalinho/MT -14.397 -50.996 32 
2 Nova Nazaré/MT -13.839 -52.042 32 

3 Pirenópolis/GO -15.997 -49.034 32 

4 Sonora/MS -17.853 -54.704 31 

5 Alcinópolis/MS -18.268 -53.926 32 

6 Alvorada/TO -12.449 -49.115 32 

7 São Miguel do Araguaia/GO -13.225 -50.103 32 

8 Luziânia/GO -16.732 -48.13 32 

9 Icém/SP -20.347 -49.216 31 

10 Monte Alegre de Minas/MG -18.978 -49.024 32 

11 Estrela do Norte/GO -13.828 -49.14 12 

12 Santa Terezinha de Goiás/GO -14.52 -49.628 12 

13 Arinos/MG -15.934 -46.273 32 

14 Pintópolis/MG -16.061 -45.166 32 

15 Chapadão do Sul/MS -18.846 -52.982 13 

16 Água Clara/MS -19.33 -53.377 13 

17 Camapuã/MS -19.528 -53.9 13 

18 Indiara/GO -17.162 -49.973 13 

19 Aragarças/GO -15.9112 -52.187 27 

20 Aragarças/GO -15.9482 -52.158 37 

21 Palminópolis/GO -15.9121 -50.201 32 

22 Chapada da Natividade/TO -11.6614 -47.714 12 

23 Arraias/TO -12.9904 -46.863 15 

24 Anastácio/MS -20.611 -56.004 31 

25 Porto Esperidião/MT -15.853 -56.8222 30 
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