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ABSTRACT [250/250 words]  

 The objective of the study was to examine the association between diffusion MRI 

techniques [diffusion tensor imaging (DTI) and neurite orientation/dispersion density imaging 

(NODDI)] and brain-injury blood biomarker levels [Tau, neurofilament-light (NfL), glial-

fibrillary-acidic-protein (GFAP)] in high-school football and cross-country runners at their 

baseline, aiming to detect cumulative neuronal damage from prior seasons. Twenty-five football 

players and 8 cross-country runners underwent MRI and blood biomarker measures during 

preseason data collection. The whole-brain, tract-based spatial statistics was conducted for six 

diffusion metrics: fractional anisotropy (FA), mean diffusivity (MD), axial/radial diffusivity (AD, 

RD), neurite density index (NDI), and orientation dispersion index (ODI). Diffusion metrics and 

blood biomarker levels were compared between groups and associated within each group. The 

football group showed lower AD and MD than the cross-country group in various axonal tracts 

of the right hemisphere. Elevated ODI was observed in the football group in the right hemisphere 

of the corticospinal tract. Blood biomarker levels were consistent between groups except for 

elevated Tau levels in the cross-country group. Tau level was positively associated with MD and 

negatively associated with NDI in the corpus callosum of football players, but not in cross-

country runners. Our data suggest that football players may develop axonal microstructural 
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abnormality. Levels of MD and NDI in the corpus callosum were associated with serum Tau 

levels, highlighting the vulnerability of the corpus callosum against cumulative head impacts. 

Despite observing multimodal associations in some brain areas, neuroimaging and blood 

biomarkers may not strongly correlate to reflect the severity of brain damage. 

 

 

 

INTRODUCTION  

 Concussive and subconcussive brain injury in sports have emerged as a complex public 

health issue. Policy and rule changes, as well as societal awareness, have played a catalytic role 

in decreasing concussion incidence in sports.1 However, despite decades of investigation, there is 

no concrete evidence on gold-standard diagnostic biomarkers for concussion, preventive tools 

that can increase neural resiliency to trauma, or factors contributing to the potential long-term 

consequence of subconcussive head impact exposure. This knowledge gap is partly due to the 

unimodal approach, in which many papers report data derived from a single modality (e.g., 

neuroimaging, blood biomarker, behavioral measures). This precludes validation of study 

findings. For example, elevated Tau protein in blood theoretically indicates axonal damage or 

degeneration, but without cross-referencing against imaging data, the usefulness of tau protein as 

a surrogate for brain damage remains speculative at best.  

 Several interdisciplinary groups have begun testing 2- and 3-way multimodal 

relationships that reflect subconcussive neuronal stress. In 2014, initial studies by Talavage et 

al.2 and Bazarian et al.3 revealed head impact-dependent declines in neural activation patterns 

and axonal microstructural integrity after a single high school and college football season, 
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respectively. These neuroimaging findings were correlated with declined cognitive function2, 4 

and the development of autoimmune response to brain-derived blood biomarkers (e.g., ApoA1, 

S100B).3, 5 Despite the unequivocal importance of the multimodal approach, association studies 

in subconcussion research are limited.6, 7 

 Neuroimaging techniques, especially diffusion MRI, and brain-derived blood biomarkers 

are the fastest growing areas of neurotrauma research. Diffusion tensor imaging (DTI) is the 

most extensively used technique worldwide to examine the white matter microstructural 

properties in humans. However, DTI metrics such as mean diffusivity (MD) and fractional 

anisotropy (FA) represent basic statistical descriptions of diffusion that do not directly 

correspond to biophysical properties of neuronal axons.8 In 2012, Zhang et al.9 introduced the 

neurite orientation and dispersion density imaging (NODDI) technique that can measure axonal 

density within white matter, dispersion of axonal orientation, and free water diffusion. The 

combined use of DTI and NODDI has been shown to detect progressive axonal degeneration 

even 6 months after a concussion.10 Similar to neuroimaging techniques, blood biomarker 

technology has evolved to be able to detect neural factors at a femtomolar concentration. Among 

the many potential biomarkers for brain injury, Tau, neurofilament-light (NfL), and glial 

fibrillary acidic protein (GFAP) have shown their superior ability to predict concussion recovery 

time,11, 12 cumulative subconcussive axonal damage,13-15 and absence of intracranial bleeding.16-18 

However, the relationships between DTI/NODDI metrics and blood biomarkers in reflecting 

cumulative neural stress from football head impacts have never been reported in the literature.  

 Therefore, we conducted a cross-sectional association study in high school football 

players and cross-country runners (control athletes) to examine the relationship between axonal 

diffusion imaging metrics and blood biomarkers at their preseason baseline, aiming to detect 
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cumulative neuronal damage from prior football seasons. We hypothesized that there would be 

group differences in diffusion metrics and blood biomarkers. We also hypothesized that there 

would be significant associations between imaging and blood biomarkers to reflect axonal 

microstructural damage in some areas of the brains of football players, but not in cross-country 

runners. 

 

METHODS 

Participants 

 This single-site, cross-sectional study enrolled 25 male high school football athletes and 8 

male high school cross-country athletes, who served as the control group. None of the 33 

participants was diagnosed with a concussion or traumatic brain injury in the 12 months prior to 

the enrollment. Inclusion criterion was being an active high school football or cross-country team 

member. Exclusion criteria included a history of head and neck injury in the previous year or 

neurological disorders. Conditional exclusion criteria for the neuroimaging data collection were 

metal implants in the body or implanted electro/magnetic devices (e.g. orthodontic braces, 

pacemakers, aneurysm clips). The Indiana University Institutional Review Board approved the 

study, and all participants and their legal guardians gave written informed consent. The data were 

collected during the preseason baseline assessment in July 2019 and included self-reported 

demographic information (age, race/ethnicity, height, weight, number of previously diagnosed 

concussions, and years of tackle American football experience), 7 mL of blood samples, and 

MRI scans.   

 

Blood biomarker assessments 
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Seven-milliliter samples of venous blood were collected into red-cap serum vacutainer 

sterile tubes (BD Bioscience). Blood samples were allowed to clot at room temperature for a 

minimum of 30 min. Serum was separated by centrifugation (1,500 x g, 15 min) and stored at -

80°C until analysis. Serum levels of Tau, NfL, and GFAP were measured using the SimoaTM 

Platform (Quanterix), a magnetic bead-based, digital enzyme-linked immunosorbent assay 

(ELISA) that allows detection of proteins at femtomolar concentrations.19 An analytical protocol 

was previously described in detail.20 The analyses were performed by a board-certified 

laboratory technician blinded to the study design and subject characteristics. Limit of detection 

was 0.024 pg/mL for Tau, 0.104 pg/mL for NfL, and 0.221 pg/mL for GFAP. The average intra-

assay coefficients of variation for the samples were 6.7 ± 5.2% for Tau, 8.3 ± 6.0% for NF-L, 

and 3.7 ± 2.7% for GFAP. 

 

MRI acquisition 

 The MRI data were acquired on a 3T Siemens Prisma MRI scanner (Siemens, Erlangen, 

Germany) equipped with a 64-channel head/neck coil. High-resolution anatomical images (T1 

weighted) were acquired using 3D MPRAGE pulse sequence with the following parameters: 

TR/TE=2400/2.3 ms, TI=1060 ms, flip angle=8, matrix=320x320, bandwidth=210 Hz/pixel, 

iPAT=2, resulting in 0.8 mm isotropic resolution. For diffusion analysis, two consecutive 

diffusion weighted imaging (DWI) sessions with opposite phase encoding directions were 

performed with a simultaneous multi-slice single-shot spin-echo echo-planar pulse sequence with 

the following parameters: TE=89.4 ms; TR=3590 s, flip angle=90, 1.5 mm isotropic resolution. 

Each session had 103 images with different diffusion weightings and gradient directions 
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summarized as following: 7 b=0 s/mm2, 6 directions with b=500 s/mm2, 15 directions with 

b=1000 s/mm2, 15 directions with b=2000 s/mm2, and 60 directions b=3000 s/mm2. 

 

Imaging processing 

First, the DWI images were denoised using the PCA-based denoising tool in Mrtrix 

(https://www.mrtrix.org/),21 and then magnetic field map information for susceptibility artifacts 

correction was derived from the b0 (b=0 s/mm2) images with opposite phase encoding directions 

using TOPUP in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki).22 The images were then corrected 

for susceptibility artifact, eddy current distortions, and motion artifacts simultaneously using the 

“eddy” command of FSL and the average of the b0 volumes as a reference. DTI analysis was 

performed using the FSL Diffusion Toolbox. The diffusion metrics of fractional anisotropy (FA), 

mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) maps were calculated.  

Meanwhile, the NODDI metrics including neurite density index (NDI) and orientation 

dispersion index (ODI) were derived using the NODDI Matlab toolbox v1.01 

(http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab) using the default settings. NDI 

primarily represents axonal density within white matter, and ODI represents organization of 

white matter tracts.10 

 

Statistical analysis 

The whole-brain, tract-based spatial statistics (TBSS) was conducted for six diffusion 

metrics: FA, MD, AD, RD, NDI, and ODI in FSL.23 The FA maps were co-registered to a 

template via nonlinear transformation. A skeleton of mean white matter tracts was obtained, and 

FA values of nearby voxels were projected to the template to obtain skeletonized FA maps. The 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.20.958694doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958694


nonlinear warps and skeleton projection derived from FA maps were applied to all other 

diffusion metrics to obtain skeletonized maps of MD, AD, RD, NDI, and ODI as well.  

Two different statistical analyses were conducted to examine group differences between 

football players and cross-country runners, as well as the relationships between diffusion metrics 

and blood biomarkers. First, group difference in blood biomarker levels was tested by Welch’s t-

test, while two-sample t-tests were used for each diffusion metric through randomized 

permutation.  

The second analysis used complete samples to test the relationship between blood 

biomarker and MRI data. Univariate regression analyses were conducted for each diffusion 

metric in both groups against their blood biomarker levels via randomized permutation. The 

model included years of tackle football experience and number of concussion occurrences as 

covariates. The Threshold-Free Cluster Enhancement (TFCE) option was used in the permutation 

test, which gives cluster-based thresholding for family wise error (FEW) correction.24 As a result, 

the TFCE p-value images obtained were fully corrected for multiple comparisons across space. 

When there was a significant association, post-hoc analysis using a Pearson correlation 

coefficient was computed between the blood biomarker level and an average value of the 

imaging voxels that showed a significant effect in the regression analysis. 

 

RESULTS 

Demographics 

Five of 25 participants in the football group were excluded from MRI due to a metal 

implant in the body (n=4) and orthodontic braces (n=1), whereas all 8 cross-country runners 

completed the MRI. Three serum samples in the football group were not assessed for biomarkers 
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due to hemolysis, and a boxplot analysis identified 1 data point for Tau and NfL in the cross-

country group to be an unexplainable outlier, which was excluded from the analysis. As a result, 

28 imaging data (n=20 football, n=8 cross-country) and 30 blood biomarker data (n=22 football, 

n=7 cross-country) were valid for the group difference analysis. We used 24 completed sets of 

the imaging-blood biomarker data (n=17 football, n=7 cross-country) for the association analysis. 

Demographic information is detailed in Table 1.  

 

Group differences in diffusion metrics and blood biomarker levels 

Examples of the six different diffusion metrics are shown in Fig. 1A on one slice of a 

representative subject that is mapped on FMRIB58_FA standard space. These parameter maps 

are distinct from one another, with each metric (FA, MD, AD, RD, NDI, and ODI) 

characterizing different diffusion features arising from underlying tissue microstructure.  

Significant group differences were observed between football players and cross-country 

runners for AD, MD, and ODI (Fig. 1B). Specifically, the football group showed lower AD and 

MD than those of the cross-country group primarily in the right hemisphere of the inferior 

longitudinal fasciculus, superior longitudinal fasciculus, uncinated fasciculus, inferior fronto-

occipital fasciculus, and corticospinal tract, with the lowest p-value of 0.008 for AD and 0.023 

for MD. Elevated ODI was observed in the football group compared to the cross-country group, 

mainly in the right hemisphere of the corticospinal tract (p=0.035).  

There was large variability in blood biomarker levels. The football group (0.23±0.12 

pg/mL) had a significantly lower Tau level than the cross-country group (0.45±0.16 pg/mL, 

p=0.013: Fig 2A). There was no group difference in NfL (Football, 4.16±1.75 pg/mL vs. Cross-
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country, 5.00±1.45 pg/mL, p=0.219: Fig 2B) or in GFAP (Football, 61.02±19.59 pg/mL vs. 

Cross-country, 76.00±27.58 pg/mL, p=0.263: Fig 2C).  

 

Associations between diffusion metrics and blood biomarker levels 

Regression analyses revealed significant associations between several diffusion metrics 

and blood biomarker levels in the football group. Specifically, serum Tau level was positively 

associated with MD (Fig. 3A) and negatively associated with NDI (Fig. 3C) mainly in the corpus 

callosum. While the Tau-MD association was widespread over the corpus callosum (p=0.027), 

the Tau-NDI association was focal on the anterior body of the corpus callosum (p=0.048). In our 

post-hoc analysis using a Pearson correlation coefficient, we found a significant positive 

correlation between an average value of MD voxels that showed significant associations in Fig 

3A and serum Tau levels (r=0.87, p<0.0001: Fig 3B). Similarly, there was a significant negative 

correlation between an average value of NDI voxels that showed significant associations in Fig 

3C and serum Tau levels (r=-0.76, p=0.0005: Fig 3D). We did not observe similar relationships 

in the cross-country group. It is worth noting that both covariates, years of tackle football 

experience and number of previous concussions, had a non-significant influence on the imaging-

blood biomarker association. 

Additionally, in the football group, a small number of voxels showed positive association 

between GFAP and AD in the brain stem (p=0.052: Fig. 4A) and negative association between 

NfL and ODI in the left superior corona radiata (p=0.046: Fig. 4B).  

 

DISCUSSION 
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 The novelty of the current study was the multimodal association of the sensitive 

neurologic metrics (DTI, NODDI, Tau, NfL, and GFAP) to reflect the potential cumulative stress 

in the brains of high school football players. There are three primary findings from the study: (1) 

Axonal microstructural integrity differed between football and cross-country runners at baseline, 

with a notable reduction in AD and elevation in ODI in various axonal tracts of football players. 

In other words, football players had less water movement along axonal tracts and disorganized 

axonal orientation compared to cross-country runners; (2) Football players expressed lower Tau 

levels in blood compared to cross-country runners; and (3) Elevated Tau levels were related to 

increased axonal diffusion and decreased neurite density in the corpus callosum of football 

players, but there was no imaging/blood biomarker relationship in cross-country runners.   

 The lower MD in football players, as compared to cross-country runners, is likely driven 

by a significantly reduced level of AD. AD represents the magnitude of diffusion along the 

direction of axons, and an AD reduction is often interpreted as a reflection of compromised 

axonal membrane integrity or axonal injury.25, 26 Although there are some opposing data,27, 28 

studies have shown that contact-sport athletes had significantly lower MD in the corpus callosum 

than noncontact-sport athletes at preseason baseline.29 Previous studies further reported that 

significant preseason to postseason decreases in MD and AD were observed in widespread white 

matter areas in high school football players,30-32 and that the similar reduction in AD was found 

in youth football players at postseason.30 Our DTI findings were further substantiated by NODDI 

metrics especially in ODI, whereby football players had a significantly elevated ODI in the 

corticospinal tracts as compared to cross-country runners. Since the ODI reflects the overall 

coherence of the fibers, with lower ODI representing highly coherent structures,9 our data 

possibly indicate that playing American football may relate to chronic microstructural 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.20.958694doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958694


abnormality in axonal tracts that are important for motor control. However, it is important to note 

that we found no significant group differences in RD in any areas of the brain, which means that 

there was no evidence of demyelination in this sample of high school football players.  

 The corpus callosum is comprised of nearly 200 million myelinated axonal tracts that 

enable interhemispheric neuronal communications.33 The corpus callosum has been shown to be 

one of the most vulnerable areas of the brain to concussive and subconcussive mechanical forces 

(e.g., shear, stretch, shortening),34-36 and significant atrophy has been found in brains with 

chronic traumatic encephalopathy (CTE).37, 38 Our data on the imaging-blood biomarker 

associations in the corpus callosum are intriguing, in that lower NDI was related to elevated 

serum Tau levels in football players but not in cross-country runners. It is possible that football-

related head impacts can trigger microstructural disruption in axons, as represented in reduced 

NDI, and concurrently induce Tau dissociation from microtubules. Dissociated Tau can reach 

peripheral circuitry through either blood-brain barrier leakage or glymphatic pathway.39 This 

interpretation is physiologically reasonable, except for the fact that the cross-country group had 

higher Tau levels than the football group.   

Tau has long been regarded as a promising blood biomarker to gauge the severity of 

axonal damage and neurodegenerative progression because of its location and role in stabilizing 

microtubules. Ample clinical studies support its use for diagnosis of Alzheimer’s disease,40 

prediction of concussion recovery duration,11, 12 and association with short-41 and long-term 

subconcussive neural stress.42  However, Tau is expressed not only in the cerebral tissue, but also 

in skeletal muscle and in the kidney/bladder.43 Di Battista et al.44 shed light on the contribution 

of the extracranial sources, such that acute high-intensity interval training could transiently 

elevate plasma Tau levels. Kawata et al.45 further corroborated the finding in football players, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.20.958694doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958694


whereby plasma Tau levels increased after intense exercise during summer training, which 

possibly masked acute subconcussive effects on circulating Tau levels. Taken together, elevated 

Tau levels in the cross-country group may be driven by extracranial sources (e.g., muscle) from 

their off-season running without axonal injury, hence an NDI/Tau relationship in the corpus 

callosum was absent in the cross-country group. 

 We observed a positive association between MD and Tau in the corpus callosum of the 

football group. This association is noteworthy since increased MD often attributes to more severe 

form of TBI, whereas decreased MD is frequently reported due to repetitive subconcussive head 

impacts, as revealed in a recent systematic review.46 The corpus callosum contains less coherent 

axons, and it is plausible that playing football (or recurring head impacts) result in changes in 

MD values within the corpus callosum. Further investigation is warranted to confirm whether 

high levels of MD, particularly in the corpus callosum, is reflective of axonal damage, and if so 

to what level of severity, as well as its relationship with serum Tau level.  

 

Limitations 

 While the current study used state-of-the-art technologies to examine the brain 

microstructural integrity of adolescent athletes, there were limitations to be noted. A relatively 

small sample size from a single site, lack of female sports, and imbalance sample size between 

the football and cross-country groups limit generalizability of the results. We are also aware that 

the true novelty lies with a longitudinal multimodal relationship, by testing if parameters of 

neuroimaging and blood biomarkers change over time in relation to head impact exposure. Hirad 

et al.47 recently showed longitudinal agreement between DTI and Tau, but other biomarkers and 

NODDI were not included. Therefore, this study is an excellent step to encourage 
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interdisciplinary collaborations between neuroimaging and blood biomarker scientists since these 

fields rarely intersect to delineate subconcussive brain injury. The potential residual neural 

burden was accounted for by the number of previous concussions and years of tackle football 

experience. Although these are commonly used variables, there might be an unquantifiable recall 

bias in self-reporting. A more rigorous approach would be to use head impact data from previous 

seasons and conduct a medical chart review to validate prior concussion history. 

 

CONCLUSION 

 Evidence is beginning to uncover the effects of cumulative concussive and subconcussive 

head impacts in sports. Neuroimaging and blood biomarker have been two of the most active 

areas of research in the neurotrauma community. Our data from DTI/NODDI suggest that 

football players may develop axonal microstructural abnormality. Levels of NDI in the corpus 

callosum were associated with serum Tau levels, highlighting the vulnerability of the corpus 

callosum against sport-related head impacts. Despite observing multimodal associations in some 

brain areas, our study indicates that neuroimaging and blood biomarkers may not strongly 

correlate to reflect the severity of brain damage. Future study is warranted to determine the 

longitudinal multimodal relationship in response to repetitive exposure to sport-related head 

impacts.  
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FIGURE LEGENDS 

Figure 1. Group difference in DTI and NODDI metrics. (A) Example maps of DTI [axial 

diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD), fractional anisotropy (FA)] and 

NODDI [neurite density index (NDI), and neurite orientation dispersion index (ODI)] from a 

single subject in FMRIB58_FA template. (B) Two-sample t-tests between football players and 

cross-country-runners from TBSS analysis show significant difference for AD, MD, and ODI. F, 

football; and C, cross-country. All results corrected for multiple comparisons using threshold-

free cluster enhancement (TFCE) at p≤ 0.05. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.20.958694doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958694


 

Figure 2. Baseline Blood biomarker levels between groups. Group difference was observed 

only in Tau (A), but not in NfL and GFAP.  

 

Figure 3. The relationship between imaging and serum Tau levels. Regression analysis in the 

football group showed that Tau was positively associated with mean diffusivity (A) and 

negatively associated with neurite density index (C) in some brain regions. Post-hoc correlation 

analysis revealed a positive correlation between Tau and MD that showed a significant effect in 

the regression analysis and a negative correlation between Tau and NDI that showed a significant 

effect in the regression analysis. The TFCE p-value was set to p≤0.05.  

 

Figure 4. The relationship between imaging and serum GFAP levels Regression analysis 

showed that GFAP was positively associated with radial diffusivity (A) and negatively 

associated with neurite orientation dispersion index (B) in a small portion of the longitudinal 

fasciculus. The TFCE p-value was set to p≤0.05.  

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.20.958694doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958694


Table 1. Group demographics  

Variables Football Cross-Country 

n 25 8 
Sex (%) 25M (100) 8M (100) 
Age, y 15.8 ± 1.11 15.3 ± 1.4 
BMI, kg/m2 27.4 ± 6.08 19.3 ± 1.02 
No. of previous concussion   

0, n (%) 17 (68.0) 0 (87.5) 
1, n (%) 6 (24.0) 1 (12.5) 
2, n (%) 2 (8.0) 0 (0) 

Tackle football experience, y 5.8 ± 2.9 0.0 ± 0.0 
Race, n (%)   

White 21 (84) 7 (87.5) 
Black/African American 0 (0) 0 (0) 
Asian 0 (0) 1 (12.5) 
African Indiana/Alaska 1 (4) 0 (0) 
Multiracial 3 (12) 0 (0) 

Ethnicity, n (%)   
Not Latino/Hispanic  21 (84) 6 (75) 
Latino/Hispanic 4 (16) 2 (25) 

Psychiatric condition    
ADHD 0 (0) 1 (12.5)a 
Learning Disability 0 (0) 0 (0) 
Major Depressive Disorder 0 (0) 0 (0) 

Blood Biomarker Levels, 
mean±SD, pg/mL 

  

Tau 0.23 ± 0.12 0.45 ± 0.16 
Neurofilament light 4.16 ± 1.75 5.00 ± 1.45 
Glial fibrillary acidic protein 61.02 ± 19.59 76.00 ± 27.58 

Note: BMI, body mass index. ADHD, attention-deficit/hyperactivity 
disorder. a this subjects did not take medication during the baseline testing, 
but his MRI and biomarker data were consistent with others. 
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