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63 Abstract

64 Background

65 Genome-wide association studies have identified multiple genomic loci associated with coronary artery 

66 disease, but most are common variants in non-coding regions that provide limited information on causal 

67 genes and etiology of the disease. To better understand etiological pathways that might lead to discovery 

68 of new treatments or prevention strategies, we focused our investigation on low-frequency and rare 

69 sequence variations primarily residing in coding regions of the genome while also exploring associations 

70 with common variants. 

71 Methods and Results

72 Using samples of individuals of European ancestry from ten cohorts within the Cohorts for Heart and 

73 Aging Research in Genomic Epidemiology (CHARGE) consortium, both cross-sectional and prospective 

74 analyses were conducted to examine associations between genetic variants and myocardial infarction 

75 (MI), coronary heart disease (CHD), and all-cause mortality following these events. Single variant and 

76 gene-based analyses were performed separately in each cohort and then meta-analyzed for each outcome. 

77 A low-frequency intronic variant (rs988583) in PLCL1 was significantly associated with prevalent MI 

78 (OR=1.80, 95% confidence interval: 1.43, 2.27; P=7.12 × 10-7). Three common variants, rs9349379 in 

79 PHACTR1, and rs1333048 and rs4977574 in the 9p21 region, were significantly associated with prevalent 

80 CHD. Four common variants (rs4977574, rs10757278, rs1333049, and rs1333048) within the 9p21 locus 

81 were significantly associated with incident MI. We conducted gene-based burden tests for genes with a 

82 cumulative minor allele count (cMAC) 5 and variants with minor allele frequency (MAF) < 5%. ≥  

83 TMPRSS5 and LDLRAD1 were significantly associated with prevalent MI and CHD, respectively, and 

84 RC3H2 and ANGPTL4 were significantly associated with incident MI and CHD, respectively. No loci 

85 were significantly associated with all-cause mortality following a MI or CHD event.

86 Conclusion
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87 This study confirmed previously reported loci influencing heart disease risk, and one single variant and 

88 three genes associated with MI and CHD were newly identified and warrant future investigation. 
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89 Introduction

90 Coronary heart disease (CHD) is a leading cause of morbidity and mortality worldwide, 

91 accounting for one of every seven deaths in the United States in 2016. (1) In addition to major modifiable 

92 risk factors such as dyslipidemia, hypertension, diabetes, and cigarette smoking (2), genetic susceptibility 

93 to CHD has also been investigated extensively through family-based studies, candidate gene studies, and 

94 more recently genome-wide association studies (GWAS). (3-9) With progressively expanded sample sizes 

95 in recent GWAS, at least 160 loci have been associated with the risk of coronary artery disease. (10-13) 

96 Most of these loci are represented by common variants located in noncoding regions, resulting in limited 

97 implications for causal genes and etiological pathways. Further, while most available data are derived 

98 from genome-wide analysis of prevalent CHD, data are sparse from prospective studies of incident 

99 cardiovascular events in populations free of baseline cardiovascular disease.

100 Low-frequency and rare coding sequence variations across the genome have been investigated in 

101 studies of cardiovascular disease risk factors (14-18), with the goal of better understanding the etiology of 

102 these risk factors and to advance the discovery of the treatment and prevention of diseases. (19) We 

103 previously published the results from a prospective analysis of CHD among individuals of European 

104 ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

105 Consortium, and identified low-frequency and common variants associated with incident CHD. (20) 

106 In this current study of individuals of European ancestry, we implemented both a cross-sectional 

107 and prospective study design in the setting of the CHARGE Consortium to examine the association 

108 between genetic variants and the risk of prevalent and incident myocardial infarction (MI) and CHD. 

109 Study of incident cardiovascular events is enabled by the rigorous prospective design of population 

110 cohorts contributing to the CHARGE Consortium. We also investigated whether these genetic variants are 

111 associated with all-cause mortality after incident MI and CHD.

112

113 Materials and Methods
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114 Study design and participants

115 Ten cohorts within the CHARGE Consortium Subclinical Working Group were included in this 

116 study: Age, Gene, Environment, Susceptibility Study (AGES), Atherosclerosis Risk in Communities 

117 (ARIC) Study, Cardiovascular Health Study (CHS), Family Heart Study (FamHS), Framingham Heart 

118 Study (FHS), the GeneSTAR Study (GeneSTAR), Multi-Ethnic Study of Atherosclerosis (MESA), 

119 Rotterdam Study (RS), Study of Health in Pomerania (SHIP), and the Women’s Genome Health Study 

120 (WGHS). Detailed characteristics of the participating cohorts and study participant are shown in the 

121 Supporting Document. All study participants provided written informed consent to participate in genetic 

122 studies, and all study sites received approval to conduct this research from their local Institutional Review 

123 Boards (IRB) respectively.

124 Genotype calling and quality control

125 Participants from WGHS were genotyped by the HumanHap300 Duo+ (Illumina, Inc., San 

126 Diego, CA), and all other study participants were genotyped by the HumanExome BeadChip (v1.0-1.2, 

127 Illumina, Inc., San Diego, CA) which contains more than 240,000 variants including those discovered 

128 through exome sequencing in ~12,000 individuals and other non-coding common variants such as 

129 previously-reported GWAS signals and ancestry-informative markers. Data for AGES, ARIC, CHS, 

130 FamHS, FHS, MESA, and RS were jointly called at the University of Texas Health Science Center at 

131 Houston (21); SHIP was called in Illumina GenomeStudio using the CHARGE Consortium joint calling 

132 cluster file; GeneSTAR used the Illumina GenomeStudio and zCall software (22); and WGHS data was 

133 called using the Illumina BeadStudio v.3.3. Variant quality control (QC) was performed centrally (21) 

134 and by the individual studies, including checking concordance with previous GWAS data, and excluding 

135 participants with missing >5% genotypes, population clustering outliers, individuals with high inbreeding 

136 coefficients or heterozygote rates, gender mismatches, duplicated pairs, and unexpectedly high proportion 

137 of identity-by-descent sharing for family studies.  
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138 Cardiovascular outcome definition

139 Two cardiovascular outcomes were examined for association in this study: 1) MI: fatal or non-

140 fatal MI; and 2) CHD: fatal or non-fatal MI, fatal CHD, sudden death within one hour of onset of 

141 symptoms, or revascularization (percutaneous coronary artery intervention such as stent or balloon 

142 angioplasty, or coronary artery bypass grafting). No exclusions were applied for the cross-sectional 

143 analysis of prevalent MI and prevalent CHD. For analysis of incident events, participants with a history of 

144 MI, CHD or revascularization at the baseline examination were excluded. All-cause mortality after MI or 

145 CHD was also investigated with follow-up time from first MI or CHD incident events until death, loss to 

146 follow-up, or the end of study. 

147 Statistical analysis

148 Single variant and gene-based analyses were conducted in each participating cohort respectively, 

149 followed by meta-analysis performed for each cardiovascular outcome to summarize results. All 

150 autosomal variants were coded to the minor allele observed in the CHARGE jointly called data (21) and 

151 assumed log-additive genetic effect in the analyses. The minor allele frequency (MAF) thresholds were 

152 defined using the European allele frequencies derived from the CHARGE jointly called data. (21) Variant 

153 annotation was performed centrally within CHARGE using dbNSFP. (23, 24) Variants with MAF ≥ 1% 

154 were included in single variant tests for prevalent MI and CHD and for incident MI. Single variant results 

155 for incident CHD followed the same analytic approach and are reported in Morrison et al. (20) and are not 

156 reported in detail here. Gene-based tests were evaluated for MI and CHD outcomes: the Sequence Kernel 

157 Association Test (SKAT) (25) and a burden test (26). Only functional coding variants (missense, stop-

158 gain, stop-loss, or splice-site changes) with MAF < 5% were aggregated by gene, and we only analyzed 

159 genes with a cumulative minor allele count (cMAC) ≥ 5.

160 For both single variant and gene-based burden tests of prevalent events, we performed Firth’s 

161 logistic regression model to test the association between each variant and cardiovascular outcome using 

162 the “logistf” package in R (27-29) to account for the possible inflated type one error in the rare variant 
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163 association analysis in a case-cohort study design.(30) Meta-analysis for prevalent events was conducted 

164 with METAL (31) and applied the genomic control correction. For the single variant and two gene-based 

165 tests of incident events, a Cox proportional hazards regression model implemented in the seqMeta 

166 package in R was used to test the association between each variant and the incident event or post-event 

167 all-cause mortality. SeqMeta was used both at the study-specific analysis and meta-analysis levels. (32) 

168 All study-specific analyses (single variant and gene-based tests) were adjusted for cohort-specific design 

169 variables (e.g. study sites, family structure) and for population substructure using principal components as 

170 needed. We applied a Bonferroni corrected threshold to determine statistical significance in each analysis 

171 as described below.

172

173 Results

174 Prevalent MI and CHD association

175 A total of 27,349 participants of European ancestry from seven cohorts including 1831 prevalent 

176 MI cases (6.7%) and 2518 prevalent CHD cases (9.2%) were used in the meta-analyses of prevalent 

177 events (S1 Table). We examined individually a total of 36,406 variants, combining both low-frequency 

178 and common variants (MAF ≥ 1%), across all autosomal chromosomes corresponding to a Bonferroni 

179 corrected significance threshold of P=1.37 × 10-6. A low-frequency (MAF=1.64%) intronic variant 

180 (rs988583) in the phospholipase C like 1 gene (PLCL1) was significantly associated with prevalent MI 

181 (P=7.12 × 10-7; OR=1.80, 95% confidence interval=1.43 to 2.27; Table 1). Three common variants were 

182 significantly associated with prevalent CHD: rs9349379 in PHACTR1 and rs1333048 and rs4977574 in 

183 the 9p21 region (Table 1).

184 Table 1. Low-frequency and common variants associated with prevalent MI and CHD.

Outcome Variant Chromosome 
and Position*

Allele 
1 / 

Allele 
2

Locus Function
Frequency 
of Allele 2 

(%)

Odds Ratio 
(95% 

Confidence 
Interval)

p-value
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MI rs988583 2:198987935 C/A PLCL1 Intronic 1.64 1.80
(1.43, 2.27) 7.12×10-7

CHD rs9349379 6:12903957 A/G PHACTR1 Intronic 39.99 0.84
(0.79, 0.89) 2.96×10-8

CHD rs1333048 9:22125347 A/C 9p21 Intergenic 48.98 0.85
(0.80, 0.91) 3.25×10-7

CHD rs4977574 9:22098574 A/G 9p21 Intronic 48.24 0.86
(0.87, 0.91) 1.03×10-6

185 *Chromosome and nucleotide positions are based on genome build GRCh37.

186 In the gene-based burden tests, we analyzed 16,628 autosomal genes that contained functional 

187 low-frequency or rare variants with MAF < 5% and with a cumulative minor allele count (cMAC) ≥ 5; 

188 therefore, the Bonferroni corrected p-value threshold was P=3.01 × 10-6.  The transmembrane serine 

189 protease 5 gene (TMPRSS5) on chromosome 11, containing nine nonsynonymous rare variants (S2 

190 Table), was significantly associated with prevalent MI (P=2.59 × 10-6, OR=3.00, 95% confidence 

191 interval: 1.90, 4.73; Table 2). The low-density lipoprotein receptor class A domain containing 1 gene 

192 (LDLRAD1) on chromosome 1 contained seven rare variants (S2 Table) and was significantly associated 

193 with prevalent CHD (P=1.30 × 10-6, OR=4.48, 95% confidence interval: 2.44, 8.23; Table 2). 

194

195 Table 2. Genes associated with prevalent MI and CHD in gene-based analysis.

Outcome Gene Chromosome 
and Position* cMAC** Variants 

(n)^ Test
Odds Ratio 

(95% Confidence 
Interval)

p-value

MI TMPRSS5 11:113558268-
113577151 152.02 9 Burden 3.00 (1.90, 4.73) 2.59×10-6

CHD LDLRAD1 1:54472971-
54483859 60.05 7 Burden 4.48 (2.44, 8.23) 1.30×10-6

196 *Chromosome and nucleotide positions are based on genome build GRCh37.
197 **cMAC = overall cumulative minor allele count.
198 ^Variants (n) = number of variants included in the analysis; variants were restricted to those with MAF < 
199 5% and annotated as nonsynonymous, splice-site, or stop loss/gain function.

200
201 Incident MI and CHD association

202 Nine cohorts contributed a total of 55,736 participants of European ancestry to the analyses of 

203 incident events, where 3,031 incident MI cases (5.4%) were reported during an average of 15.0 years of 
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204 follow-up and 5,425 incident CHD cases (9.73%) were reported during an average of 15.6 years of 

205 follow-up (S3 Table). A total of 37,109 low frequency and common autosomal variants (MAF ≥ 1%) 

206 were individually tested for association with incident MI, with adjustment of age, sex, and population 

207 substructure. The Bonferroni corrected p-value threshold for single variant analysis of incident MI was 

208 P=1.35 × 10-6.  Four common variants in the noncoding region at the 9p21 locus were significantly 

209 associated with incident MI (Table 3). As previously stated, single variant results for incident CHD are 

210 reported in Morrison et al. (20) and are not reported here.

211 Table 3. Low-frequency and common variants associated with incident MI.

Outcome Variant
Chromosome 

and 
Position*

Allele 
1 / 

Allele 
2

Locus Function
Frequency 
of Allele 2 

(%)

Odds Ratio 
(95% 

Confidence 
Interval)

p-value

MI rs4977574 9:22098574 A/G 9p21 Intronic 48.55 1.13 
(1.08, 1.19) 1.21×10-6

MI rs10757278 9:22124477 A/G 9p21 Intergenic 48.00 1.16
(1.10, 1.22) 6.61×10-9

MI rs1333049 9:22125503 G/C 9p21 Intergenic 48.06 1.16
(1.11, 1.22) 5.92×10-9

MI rs1333048 9:22125347 A/C 9p21 Intergenic 49.13 1.15
(1.09, 1.21) 7.27×10-8

212 *Chromosome and nucleotide positions are based on genome build GRCh37.

213 For the gene-based analyses, we examined 17,574 genes across all autosomal chromosomes for 

214 association with incident MI, and the Bonferroni corrected significance level was P=2.85 × 10-6. The ring 

215 finger and CCCH-Type domains 2 gene (RC3H2) on chromosome 9 was significantly associated with 

216 incident MI in the burden test (P=2.99 × 10-6, OR=0.35, 95% confidence interval=0.23, 0.55; Table 4) 

217 and contained 12 nonsynonymous and one splice-site rare variants (S4 Table). No genes were 

218 significantly associated with incident MI using SKAT. For the gene-based analyses of incident CHD, 

219 16,620 genes were evaluated and the Bonferroni significance levels was P=3.01 × 10-6. Angiopoietin-

220 like 4 (ANGPTL4) on chromosome 19 was significantly associated with incident CHD using SKAT 

221 (P=1.29 × 10-6; Table 4) and contained 10 variants (S4 Table), and no gene was significantly associated 

222 using the burden test.
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223 Table 4. Genes associated with incident MI and CHD in gene-based analysis.

Outcome Gene Chromosome 
and Position* cMAC** Variants 

(n)^ Test
Odds Ratio 

(95% Confidence 
Interval)

p-value

MI RC3H2 9:125606835-
125667562 356.02 13 Burden 0.35 (0.23, 0.55) 2.99×10-6

CHD ANGPTL4 19:8429011-
843925 2830.07 10 SKAT - 1.29×10-6

224 *Chromosome and nucleotide positions are based on genome build GRCh37.
225 **cMAC = overall cumulative minor allele count.
226 ^Variants (n) = number of variants included in the analysis; variants were restricted to those with MAF < 
227 5% and annotated as nonsynonymous, splice-site, or stop loss/gain function.
228

229 Post MI and CHD mortality analysis

230 Among the 3,751 MI and CHD cases from six cohorts that contributed to the analysis of all-cause 

231 mortality, there were 1,860 all-cause deaths over a mean 10.9 years of follow-up (S5 Table). We 

232 examined 36,685 autosomal variants with MAF ≥ 1% in the single variant analysis (Bonferroni corrected 

233 significant level of P=1.36 × 10-6) and 17,574 genes in the gene-based analysis (Bonferroni corrected 

234 significant level of P=2.85 × 10-6). No single variant or gene reached the significance threshold in the 

235 analysis of all-cause mortality among survivors of MI or CHD. We examined the significant variants and 

236 genes reported in Tables 1-4 for their relationship with mortality following a MI or CHD event (S6 

237 Table). While these loci were significantly associated with prevalent and incident MI or CHD events, 

238 only the 9p21 common variants were nominally associated with all-cause mortality (P < 0.05). The 9p21 

239 variants that were associated with reduced risk of prevalent CHD (rs1333048 and rs4977574; Table 1), 

240 and with increased risk of incident MI (rs1333048, rs4977574, rs10757278, and rs1333049; Table 3) 

241 were all associated with modestly reduced risk of all-cause mortality (S6 Table).

242

243 Discussion

244 Our study evaluated genetic susceptibility to MI and CHD in cross-sectional and prospective 

245 settings among individuals of European ancestry. We confirmed several previously reported loci and 
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246 newly identified one low-frequency variant and three genes harboring low-frequency and rare coding 

247 variants that warrant investigation in future studies. 

248 Single variant analysis of prevalent cardiovascular outcomes revealed a low-frequency 

249 (MAF=1.64%) intronic variant, rs988583, in PLCL1 significantly associated with increased risk of MI 

250 (P=7.12 × 10-7). In silico replication was conducted by a look up of rs988583 and its association with 

251 prevalent MI in the Myocardial Infarction Genetics and CARDIoGRAM exome chip meta-analysis public 

252 release (33), and there was no significant association with MI (P=0.34). A GWAS of MI and coronary 

253 artery disease (CAD) in a Saudi Arab population identified an intergenic variant, rs7421388, near PLCL1 

254 associated with CAD (P = 4.31 × 10-6) and replicated in an independent sample of Saudi Arabs (P = 5.37 

255 × 10-7). (34) In another study of an ethnic Arab population, rs1147169 in PLCL1 was protective against a 

256 low level of high density lipoprotein-cholesterol levels (P = 2.87 × 10-7). (35) In individuals of European 

257 ancestry, rs988583 and rs1147169 are in linkage equilibrium (R2= 0.0043). In addition to these studies, 

258 PLCL1 has been implicated in coronary artery aneurysm in Kawasaki disease and PLCL1 might play a 

259 role in the regulation of vascular endothelial cell inflammation via interference with proinflammatory 

260 cytokine expression. (36) 

261 A burden test aggregating low-frequency and rare coding variants in genes showed a significant 

262 positive association between TMPRSS5 and prevalent MI (P=2.59 × 10-6) and LDLRAD1 and prevalent 

263 CHD (P=1.30 × 10-6), and a significant protective association between RC3H2 and incident MI (P=2.99 × 

264 10-6). A significant association between ANGPTL4 and incident CHD was identified using SKAT (P=1.29 

265 × 10-6). The relationship between ANGPTL4 and CHD has been previously reported, with the 

266 rs116843064 missense variant playing a major role in reducing lipid levels and risk of CHD. (33, 37) 

267 Serine proteases, such as TMPRSS5, are known to be involved in many physiological and pathological 

268 processes, and TMPRSS5 has been implicated in impaired hearing function. (38) Little is known about 

269 LDLRAD1, with most marked gene expression in lung and fallopian tube (39), and a rare variant in this 

270 gene has been associated with breast cancer. (40) Roquin-2 is encoded by RC3H2 and has been shown to 

271 play a key role in posttranscriptional regulation of autoimmunity and inflammatory response. (41) Each of 
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272 these genes associated with prevalent or incident cardiovascular outcomes has rare and low-frequency 

273 variants underlying the gene burden tests (S2 and S4 Table). We identified 11 putative driving variants 

274 of these gene-based associations (i.e. those with p<0.05 in S2 and S4 Table; rs201233178, rs200417674, 

275 and rs116913282 in TMPRSS5; rs150560713, rs202234131, rs142900519, and rs76122098 in LDLRAD1; 

276 rs201920127, rs144714368, and rs199901510 in RC3H2; and rs116843064 in ANGPTL4). An in silico 

277 replication was not possible due to the rare frequency of these coding variants and their absence in the 

278 public release of the Myocardial Infarction Genetics and CARDIoGRAM exome chip meta-analysis or 

279 the analysis of CAD in the UK Biobank and the UK Biobank and CARDIoGRAMplusC4D meta-analysis 

280 (10, 33) However, it is important to note that rs116843064 of ANGPTL4 is the same variant found in the 

281 single variant analysis conducted for incident CHD by Morrison et al., and this gene is likely to be driving 

282 the significant association found in the SKAT analysis of incident CHD. (20) It is of interest that the 

283 effect sizes of the gene-based tests (Tables 2 and 4) are larger than the single variant test effect sizes 

284 (Tables 1 and 3), supporting the notion that low-frequency and rare variants may have a more substantial 

285 impact on disease risk. 

286 Although there was no statistically significant result found for all-cause mortality after MI or 

287 CHD, after accounting for multiple testing, the protective direction of effect for many of our mortality 

288 results suggests that genetic variants might contribute differently in various stages of disease 

289 manifestation. Specifically, our results highlight differences in the direction of effect for common variants 

290 at the 9p21 locus associated with decreased risk of prevalent CHD, increased risk of incident MI, and a 

291 nominally significant reduced risk of all cause-mortality following a cardiovascular event. Generally, the 

292 loci identified for prevalent disease were not the same as those identified for incident disease, as has been 

293 observed in previous studies. (9) Indeed, comparison of prevalent and incident findings (S6 Table) shows 

294 that the single variant (PLCL1 locus) and gene-based (TMPRSS5 locus) results for prevalent MI were not 

295 significantly associated with incident MI, and the direction of effects were consistent for PLCL1 but not 

296 TMPRSS5. Similarly, the significant gene, LDLRAD1, identified for increased risk of prevalent CHD was 

297 not significantly associated with incident CHD, but the direction of effect was consistent. The RC3H2 
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298 gene, which showed an inverse association with incident MI, was not significantly associated with 

299 prevalent MI and it exhibited an opposite direction of effect. A possible explanation for these observed 

300 differences is that genetic studies of cardiovascular diseases are usually conducted with the cross-

301 sectional study design, which has the potential to oversample participants with longer post-event survival 

302 (42) and the results do not always replicate in the prospective studies for disease onset and vice versa. (9) 

303 Given the limited statistical power of our findings for post-event survival, our study supports the need for 

304 substantially larger well-phenotyped cohorts to differentiate effects of variants associated with CHD from 

305 post-event mortality.

306 An advantage of this study is that within the setting of the CHARGE Consortium we are able to 

307 evaluate and make comparisons between cross-sectional and prospective study designs, and to investigate 

308 all-cause mortality following cardiovascular events. There are differing, but overlapping, sample sizes 

309 across the various study designs: 27,349 participants from seven cohorts for prevalent outcomes, 55,736 

310 participants from nine cohorts for incident outcomes, and 3,751 MI and CHD cases from six cohorts that 

311 contributed to the analysis of all-cause mortality. These differing sample sizes influence our power to 

312 detect associations, and inferences about similarities and differences across study designs could be due to 

313 biological differences or differences in sample sizes. This investigation of low-frequency and rare variants 

314 was limited to the variants included on the genotyping platforms (HumanHap300 Duo+ and 

315 HumanExome BeadChip, v1.0-1.2, Illumina, Inc., San Diego, CA) and was also limited to individuals of 

316 European ancestry. Additionally, although the variants on the genotyping platform and included in our 

317 gene-based tests were enriched for coding variants predicted to be causal, we cannot attribute causality to 

318 the variants or genes with novel associations. A strength of this study is that the quality of rare variant 

319 genotype calling was maximized by the joint clustering performed within CHARGE on thousands of 

320 samples (21).

321 In conclusion, this study comprehensively evaluated the relationship between autosomal genetic 

322 variation and prevalent and incident cardiovascular outcomes in participants of European ancestry in the 
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323 context of the CHARGE consortium. We confirmed previously reported loci influencing heart disease 

324 risk as well as newly identified several loci associated with MI and CHD that warrant future investigation. 

325
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