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Abstract	49 

Poor	trans-ethnic	portability	of	polygenic	risk	score	(PRS)	models	is	a	critical	issue	that	may	be	50 

partially	due	to	limited	knowledge	of	causal	variants	shared	among	populations.	Hence,	51 

leveraging	noncoding	regulatory	annotations	that	capture	genetic	variation	across	populations	52 

has	the	potential	to	enhance	the	trans-ethnic	portability	of	PRS.	To	this	end,	we	constructed	a	53 

unique	resource	of	707	cell-type-specific	IMPACT	regulatory	annotations	by	aggregating	5,345	54 

public	epigenetic	datasets	to	predict	binding	patterns	of	142	cell-type-regulating	transcription	55 

factors	across	245	cell	types.	With	this	resource,	we	partitioned	the	common	SNP	heritability	of	56 

diverse	polygenic	traits	and	diseases	from	111	GWAS	summary	statistics	of	European	(EUR,	57 

average	N=180K)	and	East	Asian	(EAS,	average	N=157K)	origin.	For	95	traits,	we	were	able	to	58 

identify	a	single	IMPACT	annotation	most	strongly	enriched	for	trait	heritability.	Across	traits,	59 

these	annotations	captured	an	average	of	43.3%	of	heritability	(se	=	13.8%)	with	the	top	5%	of	60 

SNPs.	Strikingly,	we	observed	highly	concordant	polygenic	trait	regulation	between	61 

populations:	the	same	regulatory	annotations	captured	statistically	indistinguishable	SNP	62 

heritability	(fitted	slope	=	0.98,	se	=	0.04).	Since	IMPACT	annotations	capture	both	large	and	63 

consistent	proportions	of	heritability	across	populations,	prioritizing	variants	in	IMPACT	regulatory	64 

elements	may	improve	the	trans-ethnic	portability	of	PRS.	Indeed,	we	observed	that	EUR	PRS	65 

models	more	accurately	predicted	21	tested	phenotypes	of	EAS	individuals	when	variants	were	66 

prioritized	by	key	IMPACT	tracks	(49.9%	mean	relative	increase	in	!").	Notably,	the	67 

improvement	afforded	by	IMPACT	was	greater	in	the	trans-ethnic	EUR-to-EAS	PRS	application	68 

than	in	the	EAS-to-EAS	application	(47.3%	vs	20.9%,	P	<	1.7e-4).	Overall,	our	study	identifies	a	69 

crucial	role	for	functional	annotations	such	as	IMPACT	to	improve	the	trans-ethnic	portability	of	70 
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genetic	data,	and	this	has	important	implications	for	future	risk	prediction	models	that	work	71 

across	populations. 72 

	73 

Introduction		74 

	75 

An	important	challenge	for	complex	trait	genetics	is	that	there	is	no	clear	framework	to	transfer	76 

population-specific	genetic	data,	such	as	GWAS	results,	to	individuals	of	other	ancestries1–3.	The	77 

importance	of	this	challenge	is	accentuated	by	the	fact	that	80%	of	all	genetic	studies	have	78 

been	performed	using	individuals	of	European	ancestry,	accounting	for	a	minority	of	the	79 

world’s	population4.	This	is	exacerbated	by	the	fact	that	population-specific	linkage	80 

disequilibrium	(LD)	between	variants	confounds	inferences	about	causal	cell	types	and	variants	81 

(Figure	1A)5–7.	GWAS	have	the	potential	to	revolutionize	the	clinical	application	and	utility	of	82 

genetic	data	to	the	individual,	exemplified	by	current	polygenic	risk	score	(PRS)	models5,8–16.	83 

However,	while	the	utility	of	PRS	models	relies	on	accurate	estimation	of	allelic	effect	sizes	84 

from	GWAS	and	benefits	from	genetic	similarity	between	the	test	cohort	and	the	GWAS	cohort,	85 

recent	studies	have	explicitly	observed	a	lack	of	trans-ethnic	portability2,3,5,8,17,18.	Previous	86 

studies	have	extensively	shown	that	functional	annotations	can	improve	PRS	models	when	87 

learned	and	applied	to	the	same	population19,20,		by	introducing	biologically-relevant	priors	on	88 

causal	effect	sizes	and	compensating	for	inflation	of	association	statistics	by	LD.	However,	the	89 

potential	for	functional	annotations	to	improve	trans-ethnic	PRS	frameworks,	where	the	90 

influences	of	population-specific	LD	are	more	profound,	has	not	yet	been	extensively	91 

investigated. 92 
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However,	designing	functional	annotations	that	may	improve	PRS	models	is	challenging.	93 

While	the	genetic	variation	of	a	complex	trait	likely	regulates	diverse	biological	mechanisms	94 

genome-wide,	such	functional	annotations	must	strike	a	balance	of	specificity,	comprehensively	95 

but	precisely	capturing	large	regulatory	programs.	Pinpointing	these	mechanisms	is	especially	96 

difficult	as	genome-wide	association	studies	(GWAS)	have	identified	thousands	of	genetic	97 

associations	with	complex	phenotypes8,21–23.	It	has	been	estimated	that	about	90%	of	these	98 

associations	reside	in	protein	noncoding	regions	of	the	genome,	making	their	mechanisms	99 

difficult	to	interpret24,25.	Defining	the	etiology	of	complex	traits	and	diseases	requires	100 

knowledge	of	phenotyping-driving	cell	types	in	which	these	associated	variants	act.	101 

Transcription	factors	(TFs)	are	poised	to	orchestrate	large	polygenic	regulatory	programs	as	102 

genetic	variation	in	their	target	regions	can	modulate	gene	expression,	often	in	cell-type-103 

specific	contexts26,27.	Genomic	annotations	marking	the	precise	location	of	TF-mediated	cell	104 

type	regulation	can	be	exploited	to	elucidate	the	genetic	basis	of	polygenic	traits.	However,	105 

currently	there	is	no	comprehensive	catalogue	of	the	binding	profiles	of	the	approximately	106 

1,600	human	TFs	in	every	known	cell	type28.	Moreover,	existing	TF	ChIP-seq	datasets	are	107 

limited	to	factors	with	effective	antibodies	and	suffer	from	inter-experimental	variation,	noise,	108 

and	genomic	bias29,30. 109 

To	overcome	these	challenges,	we	previously	developed	IMPACT,	a	genome-wide	cell-110 

type-specific	regulatory	annotation	strategy	that	models	the	epigenetic	pattern	around	active	111 

TF	binding	using	linear	combinations	of	functional	annotations31.	In	rheumatoid	arthritis	(RA),	112 

IMPACT	CD4+	T	cell	annotations	captured	substantially	more	heritability	than	functional	113 

annotations	derived	from	single	experiments,	including	TF	and	histone	modification	ChIP-seq6.	114 

In	this	study,	we	expanded	this	approach	by	aggregating	5,345	functional	annotations	with	115 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.21.959510doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.959510


 

 5 

IMPACT	to	create	a	powerful	and	generalizable	resource	of	707	cell-type-specific	gene	116 

regulatory	annotations	(Web	Resources)	based	on	binding	profiles	of	142	TFs	across	245	cell	117 

types	(Figure	1B,C).	This	study	builds	on	our	previous	study	introducing	IMPACT,	in	which	we	118 

created	only	13	annotations	(13	TFs)	based	on	515	functional	annotations.	Assuming	that	causal	119 

variants	are	largely	shared	between	populations2,21,	we	hypothesized	that	restricting	PRS	120 

models	to	variants	within	trait-relevant	IMPACT	annotations,	which	are	more	likely	to	have	121 

regulatory	roles	and	less	likely	to	be	confounded	by	LD,	will	especially	improve	their	trans-122 

ethnic	portability.		123 

In	this	study,	we	identify	key	IMPACT	regulatory	annotations	that	capture	genome-wide	124 

polygenic	mechanisms	underlying	a	diverse	set	of	complex	traits,	supported	by	enrichments	of	125 

genetic	heritability,	multi-ethnic	marginal	effect	size	correlation	(a	mechanism	of	improved	126 

PRS),	and	improved	trans-ethnic	portability	of	PRS	models	(Figure	1D).	Here,	we	defined	and	127 

employed	our	compendium	of	707	IMPACT	regulatory	annotations	to	study	polygenic	traits	and	128 

diseases	from	111	GWAS	summary	datasets	of	European	(EUR)	and	East	Asian	(EAS)	origin.	129 

Assuming	shared	causal	variants	between	populations,	annotations	that	prioritize	shared	130 

regulatory	variants	must	(1)	capture	disproportionately	large	amounts	of	genetic	heritability	in	131 

both	populations,	(2)	be	enriched	for	multi-ethnic	marginal	effect	size	correlation,	and	(3)	132 

improve	the	trans-ethnic	applicability	of	population-specific	PRS	models.	Using	our	133 

compendium	of	regulatory	annotations,	we	identified	key	annotations	for	each	polygenic	trait	134 

and	demonstrated	their	utility	in	each	of	these	three	applications	toward	prioritization	of	135 

shared	regulatory	variants.	Overall,	this	work	improves	the	interpretation	and	trans-ethnic	136 

portability	of	genetic	data	and	provides	implications	for	future	clinical	implementations	of	risk	137 

prediction	models.	138 
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Figure	1

 
Figure	1	legend.	Study	design	to	identify	regulatory	annotations	that	prioritize	regulatory	variants	in	a	multi-ethnic	setting.	A)	

Population-specific	LD	confounding	and	subsequent	inflation	of	GWAS	associations	complicate	the	interpretation	of	summary	

statistics	and	transferability	to	other	populations;	functional	data	may	help	improve	trans-ethnic	genetic	portability.	B)	Prism	of	

functional	data	in	IMPACT	model:	707	genome-wide	TF	occupancy	profiles	(green),	5,345	genome-wide	epigenomic	feature	profiles	

(blue),	and	fitted	weights	for	these	features	(pink)	to	predict	TF	binding	by	logistic	regression.	Using	IMPACT	annotations,	we	

investigate	111	GWAS	summary	datasets	(yellow)	of	EUR	and	EAS	origin.	C)	Compendium	of	707	genome-wide	cell-type-specific	

IMPACT	regulatory	annotations.	D)	Annotations	that	prioritize	common	regulatory	variants	must	I)	capture	large	proportions	of	

heritability	in	both	populations,	II)	account	for	consistent	effect	size	estimations	between	populations	and	III)	improve	the	trans-

ethnic	application	of	PRS.		
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	139 

Results	140 

	141 

Building	a	compendium	of	in	silico	gene	regulatory	annotations	142 

	143 

To	capture	genetic	heritability	of	diverse	polygenic	diseases	and	quantitative	traits,	we	144 

constructed	a	comprehensive	compendium	of	707	cell	type	regulatory	annotation	tracks.	To	do	145 

this,	we	applied	the	IMPACT31	framework	to	707	unique	TF-cell	type	pairs	obtained	from	a	total	146 

of	3,181	TF	ChIP-seq	datasets	from	NCBI,	representing	245	cell	types	and	142	TFs	(Figure	1B,	147 

Online	Methods,	Web	Resources,	ST1,	SF1)32.	Briefly,	IMPACT	learns	an	epigenetic	signature	of	148 

active	TF	binding	evidenced	by	ChIP-seq,	differentiating	bound	from	unbound	TF	sequence	149 

motifs	using	logistic	regression.	We	derive	this	signature	from	5,345	epigenetic	and	sequence	150 

features,	predominantly	generated	by	ENCODE33	and	Roadmap34	(Online	Methods,	ST2);	these	151 

data	were	drawn	from	diverse	cell	types,	representing	the	biological	range	of	the	707	candidate	152 

models.	IMPACT	then	probabilistically	annotates	the	genome,	e.g.	on	a	scale	from	0	to	1,	153 

without	using	the	TF	motif,	identifying	regulatory	regions	that	are	similar	to	those	that	the	TF	154 

binds.				155 

To	assess	the	specificity	of	our	IMPACT	annotations,	we	test	whether	they	(1)	accurately	156 

predict	binding	of	the	modeled	TF,	(2)	share	cell-type-specific	characteristics	with	other	tracks	157 

of	the	same	cell	type,	and	(3)	score	cell-type-specifically	expressed	genes	higher	than	158 

nonspecific	genes.	The	707	models	that	we	defined	had	a	high	TF	binding	prediction	accuracy	159 

with	mean	AUPRC	=	0.74	(se	=	0.008,	SF2)	using	cross-validation.	Annotations	segregated	by	cell	160 

type	rather	than	by	TF,	excluding	CTCF,	suggesting	a	single	TF	may	bind	to	different	enhancers	161 
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in	different	cell	types	(Figure	2A).	Annotations	of	the	same	cell	types	were	more	strongly	162 

correlated	genome-wide	(Pearson	r	=	0.56,	se	=	0.06)	than	annotations	of	different	cell	types	163 

(Pearson	r	=	0.48,	se	=	0.003,	difference	of	means	P	<	0.03,	SF2).	Furthermore,	the	covariance	164 

structure	between	TF	ChIP-seq	training	datasets	is	similar	to	that	of	corresponding	IMPACT	165 

annotations,	indicating	that	the	IMPACT	model	does	not	introduce	spurious	correlations	among	166 

unrelated	ChIP-seq	datasets	(SF2).	Lastly,	for	nine	different	cell	types,	we	examined	cell-type-167 

specifically	expressed	genes	from	Finucane	et	al35	and	corresponding	differential	expression	t-168 

statistics.	We	observed	significantly	larger	IMPACT	probabilities	at	SNPs	in	and	near	these	genes	169 

(mean	=	0.062,	se	=	0.011)	compared	to	genes	that	were	generally	expressed	(mean	=	0.045,	se	170 

=	0.006;	difference	of	means	P	=	0.024,	Figure	2B,	SF2,	Online	Methods),	suggesting	that	171 

IMPACT	annotates	relevant	cell	type	regulatory	elements.				172 

	173 

Partitioning	common	SNP	heritability	of	111	GWAS	summary	statistics	in	EUR	and	EAS		174 

	175 

We	obtained	summary	statistics	from	111	publicly	available	GWAS	summary	statistics	176 

for	diverse	polygenic	traits	and	diseases.	Throughout	the	text,	we	use	five	randomly	selected	177 

traits	to	exemplify	our	results:	asthma,	RA,	prostate	cancer	(PrCa),	mean	corpuscular	volume	178 

(MCV),	and	body	height.	These	included	69	from	EUR	participants31,36	(average	N	=	180K,	179 

average	heritability	z-score	=	12.9,	41/69	from	UK	BioBank)6,37	and	42	from	EAS	participants	of	180 

BioBank	Japan3,38–40	(average	N	=	157K,	average	heritability	z-score	=	6.6)22	(ST3).	All	of	the	181 

summary	statistics	used	were	generated	from	studies	that	had	a	sample	size	greater	than	182 

10,000	individuals	and	also	had	a	significantly	non-zero	heritability	(z-score	>	1.97).	There	are	183 

29	phenotypes	for	which	we	obtained	summary	statistics	in	both	EUR	and	EAS.	Although	10/29	184 
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Figure	2 

 
Figure	2	legend.	IMPACT	annotates	relevant	cell	type	regulatory	elements.	A)	Low-dimensional	embedding	and	clustering	of	707	

IMPACT	annotations	using	uniform	manifold	approximation	projection	(UMAP).	Annotations	colored	by	cell	type	category;	TF	groups	

indicated	where	applicable.	B)	IMPACT	annotates	cell	type	specifically	expressed	genes	with	higher	scores	than	nonspecific	genes.	C)	

Biologically	distinct	regulatory	modules	revealed	by	cell	type-trait	associations	with	significantly	nonzero	!*	across	20	of	707	IMPACT	

regulatory	annotations	and	5	representative	EUR	complex	traits,	color	indicates	-log10	FDR	5%	adjusted	P	value	of	!*.	D)	Lead	
IMPACT	annotations	capture	more	heritability	than	lead	cell-type-specific	histone	modifications	across	60	of	69	EUR	summary	

statistics	for	which	a	lead	IMPACT	annotation	was	identified.	*	indicates	heritability	estimate	difference	of	means	P	<	0.05.		
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traits	have	a	multi-ethnic	genetic	correlation	(!#)	significantly	less	than	1	(P	<	0.05/29	tested	185 

traits),	overall	we	observed	high	!#	for	most	traits,	supporting	our	assumption	that	causal	186 

variants	are	generally	shared	across	populations	(Online	Methods,	SF3)41.	At	two	extremes,	187 

basophil	count	has	a	low	multi-ethnic	!#	of	0.32	(sd	=	0.10),	while	atrial	fibrillation	has	a	high	188 

multi-ethnic	!#	of	0.98	(sd	=	0.11),	consistent	with	previous	observations	made	using	Popcorn,	189 

but	using	different	parameter	estimation	strategies	(Online	Methods)3.	190 

We	then	partitioned	the	common	SNP	(minor	allele	frequency	(MAF)	>	5%)	heritability	191 

of	these	111	datasets	using	S-LDSC6	with	an	adapted	baseline-LD	model	excluding	cell-type-192 

specific	annotations31,36	(SF3,	Online	Methods).	Next,	we	tested	each	of	the	traits	against	each	193 

of	the	707	IMPACT	annotations,	assessing	the	significance	of	a	non-zero	%*,	which	is	defined	as	194 

the	proportionate	change	in	per-SNP	heritability	associated	with	a	one	standard	deviation	195 

increase	in	the	value	of	the	annotation	(Online	Methods)36.	We	observed	that	95	phenotypes	196 

had	at	least	one	significant	annotation-trait	association	(%*	>	0,	two-tailed	FDR	<	5%,	Ext.	Data	197 

1,	Online	Methods,	ST4-8).	Here,	we	highlight	associations	with	EUR	summary	statistics	for	the	198 

five	exemplary	phenotypes	mentioned	above:	asthma,	RA,	PrCa,	MCV,	and	height	(Figure	2C).	199 

Consistent	with	known	biology,	B	and	T	cells	were	strongly	associated	with	asthma42,	RA43,	and	200 

MCV44,45	while	other	blood	cell	regulatory	annotations	predominantly	derived	from	GATA	201 

factors	were	also	associated	with	MCV.	Prostate	cancer	cell	lines	were	associated	with	PrCa,	202 

while	many	cell	types	including	myoblasts46,	fibroblasts47,	and	adipocytes48,49,	lung	cells,	and	203 

endothelial	cells	were	associated	with	height,	perhaps	related	to	musculo-skeletal	204 

developmental	pathways.		205 

For	each	trait,	we	defined	the	lead	IMPACT	regulatory	annotation	as	the	annotation	206 

capturing	the	greatest	per-SNP	heritability,	e.g.	the	largest	while	significant	%*	estimate	(ST9).	207 
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With	their	top	5%	of	SNPs,	lead	IMPACT	annotations	captured	an	average	of	43.3%	heritability	208 

(se	=	13.8%)	across	these	95	polygenic	traits	(SF4,	Online	Methods),	with	more	than	25%	of	209 

heritability	captured	for	two-thirds	of	the	tested	summary	statistics	(73/111	traits)	and	more	210 

than	50%	captured	for	28%	(31/111).	Returning	to	our	five	exemplary	phenotypes,	with	the	top	211 

5%	of	EUR	SNPs,	IMPACT	captured	97.1%	(sd	=	17.6%)	of	asthma	heritability	with	the	T-bet	Th1	212 

annotation,	65.9%	(sd	=	12.1%)	of	RA	heritability	with	the	B	cell	TBP	annotation,	60.4%	(sd	=	213 

8.9%)	of	PrCa	heritability	with	the	prostate	cancer	cell	line	(LNCAP)	TFAP4	annotation,	72.4%	214 

(sd	=	6.0%)	of	MCV	heritability	with	the	GATA1	PBMC	annotation,	and	lastly	31.6%	(sd	=	3.0%)	215 

of	height	heritability	with	the	lung	MXI1	annotation	(Figure	2D).	While	the	observed	association	216 

between	lung	and	height	is	not	intuitive,	within	the	MXI1	gene	lies	a	genome-wide	significant	217 

variant	associated	with	height50.	Moreover,	we	captured	significantly	more	heritability	across	218 

EUR	traits	using	our	expanded	set	of	707	IMPACT	annotations	(mean	=	49.5%,	se	=	12.0%)	219 

compared	to	the	13	annotations	in	our	previous	study	(mean	=	32.3%,	se	=	1.3%,	difference	of	220 

means	P	=	0.02).				221 

To	demonstrate	the	value	of	IMPACT	tracks,	we	compared	them	to	annotations	derived	222 

from	single	experimental	assays.	For	example,	since	each	of	the	IMPACT	tracks	was	trained	on	223 

TF	ChIP-seq	data,	we	directly	compared	the	heritability	captured	by	both	data	types.	We	224 

observed	that	the	heritability	captured	by	lead	IMPACT	annotations	(mean	%*	=	3.53,	se	=	0.91)	225 

was	significantly	greater	than	by	the	analogous	TF	ChIP-seq	used	in	training	(mean	%*	=	1.71,	se	226 

=	0.94,	difference	of	means	P	=	0.02).	We	also	compared	IMPACT	tracks	to	histone	marks,	which	227 

are	commonly	used	to	quantify	cell	type	heritability6.	From	220	publicly	available	cell-type-228 

specific	histone	mark	ChIP-seq	annotations	of	EUR	SNPs6,	we	selected	the	lead	histone	mark	229 

track	for	each	of	69	EUR	summary	statistics.	Restricting	to	the	top	5%	of	SNPs,	we	observed	that	230 
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the	mean	EUR	heritability	captured	by	lead	IMPACT	annotations	(49.5%,	se	=	12.0%)	was	231 

significantly	greater	than	by	lead	histone	mark	annotations	(28.4%,	se	=	9.0%,	difference	of	232 

means	P	=	0.02)	(Figure	2D,	ST10).	For	example,	the	lead	IMPACT	annotation	for	asthma	233 

captured	1.5x	more	heritability	than	the	best	histone	mark	annotation	(H3K27ac	in	CD4+	Th2),	234 

capturing	64.2%	(sd	=	15.5%)	of	heritability.	Similarly,	IMPACT	captured	1.7x	more	RA	235 

heritability	than	H3K4me3	in	CD4+	Th17s;	IMPACT	captured	1.4x	more	MCV	heritability	than	236 

H3K4me3	in	CD34+	cells;	IMPACT	captured	2.3x	more	PrCa	heritability	than	H3K4me3	in	CD34+	237 

cells;	and	IMPACT	captured	3.1x	more	height	heritability	than	H3K4me3	in	lung	cells.	In	terms	238 

of	%*,	IMPACT	also	captured	more	per-SNP	heritability	than	histone	marks:	mean	%*	fold	239 

change	=	1.38x	(SF5).	240 

Since	some	of	our	IMPACT	annotations	are	similar	to	each	other	(SF2),	we	performed	241 

serial	conditional	analyses	in	order	to	identify	IMPACT	annotations	explaining	heritability	242 

independently	from	one	another	(Online	Methods).	This	strategy	might	identify	complex	traits	243 

for	which	several	distinct	biological	mechanisms	are	independently	regulated	by	genetic	244 

variation.	Indeed,	we	identified	30	EUR	phenotypes	and	8	EAS	phenotypes	with	multiple	245 

independent	IMPACT	associations	(SF6,	ST11-12).	For	example,	four	annotations	were	246 

independently	associated	with	EUR	PrCa:	prostate	(TFAP4),	prostate	(RUNX2),	mesendoderm	247 

(PDX1),	and	cervix	(NFYB).	Moreover,	for	seven	EUR	traits,	three	IMPACT	annotations	were	248 

independently	associated:	height	(adipocytes,	fibroblasts,	lung),	neutrophil	count	(monocytes,	249 

adipocytes,	B	cells),	osteoporosis	(myoblasts,	mesenchymal	stem	cells,	cervix),	IBD	(T	cells	and	250 

two	B	cell	annotations),	platelet	count	(PBMCs,	hematopoietic	progenitors,	muscle),	systolic	251 

blood	pressure	(endothelial,	mesenchymal	stem	cells,	fibroblasts),	and	white	blood	cell	count	(B	252 

cells,	adipocytes,	hematopoietic	progenitors).	We	found	that	the	heritability	z-score,	an	index	253 
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correlated	with	the	power	of	S-LDSC6,	is	strongly	predictive	of	the	number	of	independent	254 

regulatory	associations	(linear	regression	P	<	5.4e-9),	while	sample	size	is	not	(linear	regression	255 

P	=	0.19)	(SF7).	Our	findings	suggest	that	multiple	independent	regulatory	programs	can	256 

contribute	to	the	heritability	of	complex	traits,	and	we	can	detect	them	when	phenotypes	are	257 

sufficiently	heritable	and	the	GWAS	provide	accurate	effect	size	estimation.	258 

	259 

Concordance	of	polygenic	regulation	between	European	and	East	Asian	populations	260 

	261 

Previous	studies	have	shown	concordance	of	polygenic	effects	between	EUR	and	EAS	262 

individuals	in	RA1	and	between	EUR	and	African	American	individuals	in	PrCa51.	However,	to	our	263 

knowledge,	the	extent	of	these	shared	effects	has	not	yet	been	comprehensively	investigated	264 

across	many	functional	annotations	and	in	diverse	traits.	Here,	we	quantified	the	SNP	265 

heritability	(%*)	of	29	traits	in	EUR	and	EAS	captured	by	a	set	of	approximately	100	independent	266 

IMPACT	regulatory	annotations	(Figure	3B,	SF8,	Online	Methods).	Assuming	shared	causal	267 

variants	in	EUR	and	EAS,	IMPACT	annotations	that	best	prioritize	shared	genomic	regions	268 

regulating	a	phenotype	presumably	also	disproportionately	capture	similar	amounts	of	269 

heritability	in	both	EUR	and	EAS	(Figure	1D-I,	Figure	3A).	Briefly,	we	selected	independent	270 

annotations	using	an	iterative	pruning	approach:	for	each	trait,	we	ranked	all	annotations	by	%*	271 

and	removed	any	annotation	correlated	with	Pearson	r	>	0.5	to	the	lead	annotation	and	then	272 

repeated.	As	IMPACT	annotations	are	independent	of	population-specific	factors	including	LD	273 

and	allele	frequencies	(SF3),	they	are	poised	to	capture	the	genome-wide	distribution	of	274 

regulatory	variation	in	a	population-independent	manner.	We	observed	that	%*	estimates	275 

across	annotations	for	EUR	and	EAS	are	strikingly	similar,	with	a	regression	coefficient	that	is	276 
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Figure	3 

 
Figure	3	legend.	Multi-ethnic	concordance	of	regulatory	elements	defined	by	IMPACT.	A)	Illustrative	concept	of	concordance	versus	

discordance	of	!*	between	populations.	Concordance	implies	a	similar	distribution	of	causal	variants	and	effects	captured	by	the	

same	annotation.	The	implications	of	discordant	!*	are	not	as	straightforward.	B)	Common	per-SNP	heritability	(!*)	estimate	for	sets	

of	independent	IMPACT	annotations	across	29	traits	shared	between	EUR	and	EAS.	Left:	color	indicates	!*	significance	(!*	greater	
than	0	at	5%	FDR)	in	both	populations	(blue),	significant	in	only	EUR	(green),	significant	in	only	EAS	(red),	significant	in	neither	(gray).	

Line	of	best	fit	through	annotations	significant	in	both	populations	(dark	purple	line,	95%	CI	in	light	purple).	Black	dotted	line	is	the	

identity	line,	y	=	x.	Right:	color	indicates	association	to	one	of	five	exemplary	traits.	C)	Heterogeneity	test	at	5%	FDR	for	annotation-

trait	associations	between	EUR	and	EAS.	Color	indicates	significance	of	difference	of	means	P	value.	D)	Heterogeneity	test	reveals	
2.2%	of	all	annotation-trait	associations	with	significantly	discordant	!*	estimates	between	populations.	
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Test of Heterogeneity (FDR 5%)
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τ* concordance across 29 EUR/EAS traits
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τ* concordance highlighting five exemplary traits
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consistent	with	identity	(slope	=	0.98,	se	=	0.04).	For	example,	we	observed	a	strong	Pearson	277 

correlation	of	%*	between	EUR	and	EAS	for	asthma	(r	=	0.98),	RA	(r	=	0.87),	MCV	(r	=	0.96),	PrCa	278 

(r	=	0.90),	and	height	(r	=	0.96).	Furthermore,	we	found	that	97.8%	of	our	%*	estimates	have	no	279 

evidence	of	population	heterogeneity	(FDR	P	>	0.05)	(Figure	3C).	Among	our	five	representative	280 

traits,	we	observed	only	one	instance	of	heterogeneity,	in	which	the	B	cell	SRF	IMPACT	281 

annotation	captured	RA	heritability	significantly	more	in	EUR	than	in	EAS	(EUR	%*	=	1.20	(se	=	282 

0.40),	EAS	%*	=	-1.06	(se	=	0.46),	difference	of	means	P	<	2.0e-4).	Overall,	our	results	suggest	283 

that	regulatory	variants	in	EUR	and	EAS	populations	are	equally	enriched	within	the	same	284 

classes	of	regulatory	elements.	This	does	not	exclude	the	possibility	of	population-specific	285 

variants	or	causal	effect	sizes,	as	evidenced	by	10	traits	with	multi-ethnic	genetic	correlation	286 

significantly	less	than	1.	Rather,	these	results	suggest	that	causal	biology,	including	disease-287 

driving	cell	types	and	their	regulatory	elements,	underlying	polygenic	traits	and	diseases,	is	288 

largely	shared	between	these	populations.		289 

		290 

Models	incorporating	IMPACT	functional	annotations	improve	the	trans-ethnic	portability	of	291 

polygenic	risk	scores	292 

	293 

PRS	models	have	great	clinical	potential:	previous	studies	have	shown	that	individuals	294 

with	higher	PRS	have	increased	risk	for	disease8–12.	In	the	future,	polygenic	risk	assessment	may	295 

become	as	common	as	screening	for	known	mutations	of	monogenic	disease,	especially	as	it	296 

has	been	shown	that	individuals	with	severely	high	PRS	may	be	at	similar	risk	to	disease	as	are	297 

carriers	of	rare	monogenic	mutations12.	However,	since	PRS	heavily	rely	on	GWAS	with	large	298 

sample	sizes	to	accurately	estimate	effect	sizes,	there	is	specific	demand	for	the	transferability	299 
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of	PRS	from	populations	with	larger	GWAS	to	populations	underrepresented	by	300 

GWAS2,3,5,8,17,18,20.	As	we	would	like	to	investigate	the	ability	of	IMPACT	annotations	to	improve	301 

the	trans-ethnic	application	of	PRS,	we	chose	pruning	and	thresholding	(P+T)	as	our	model3,8.	302 

We	elected	to	use	P+T	rather	than	LDpred5,20	or	AnnoPred19,	which	compute	a	posterior	effect	303 

size	estimate	for	all	SNPs	genome-wide	based	on	membership	to	functional	categories.	With	304 

P+T,	we	can	partition	the	genome	by	IMPACT-prioritized	and	deprioritized	SNPs,	whereas	the	305 

assumptions	of	the	LDpred	and	AnnoPred	models	do	not	support	the	removal	of	variants,	306 

making	it	difficult	to	directly	assess	improvement	due	to	IMPACT	prioritization.	Moreover,	307 

these	models	have	not	been	explicitly	designed	or	tested	for	the	trans-ethnic	application	of	PRS	308 

and	thus	are	beyond	the	scope	of	our	work.	We	conventionally	define	PRS	as	the	product	of	309 

marginal	SNP	effect	size	estimates	and	imputed	allelic	dosage	(ranging	from	0	to	2),	summed	310 

over	M	SNPs	in	the	model.	Conventional	P+T	utilizes	marginal	effect	size	estimates	and	311 

therefore	is	susceptible	to	selecting	a	tagging	variant	over	the	causal	one	guided	by	GWAS	P	312 

values	that	are	inflated	by	LD.	Therefore,	we	hypothesized	that	any	observed	improvement	due	313 

to	incorporation	of	IMPACT	annotations	could	result	from	prioritization	of	variants	with	higher	314 

marginal	multi-ethnic	effect	size	correlation	(Figure	1D-II).		315 

Hence,	we	tested	this	hypothesis	before	assessing	PRS	performance.	We	selected	21	of	316 

29	summary	statistics	shared	between	EUR	and	EAS	with	an	identified	lead	IMPACT	association	317 

in	both	populations.	Then,	using	EUR	lead	IMPACT	annotations	for	each	trait	(ST9),	we	318 

partitioned	the	genome	three	ways:	(1)	the	SNPs	within	the	top	5%	of	the	IMPACT	annotation,	319 

(2)	the	SNPs	within	the	bottom	95%	of	the	IMPACT	annotation,	and	(3)	the	set	of	all	SNPs	320 

genome-wide	(with	no	IMPACT	prioritization).	We	then	performed	stringent	LD	pruning	(&2<	0.1	321 

from	EUR	individuals	of	phase	3	of	1000	Genomes52),	guided	by	the	EUR	GWAS	P	value,	to	322 
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acquire	sets	of	independent	SNPs	in	order	to	compute	a	EUR-EAS	marginal	effect	size	estimate	323 

correlation	(Online	Methods).		324 

For	example,	in	height,	EUR-EAS	effect	size	estimates	of	SNPs	in	the	top	5%	partition	325 

(Pearson	r	=	0.434,	Figure	4A)	are	11.4-fold	more	similar	than	those	in	the	bottom	95%	326 

partition	(r	=	0.038,	Figure	4B)	and	3.31-fold	more	similar	than	the	set	of	all	SNPs	(r	=	0.131).	327 

Meta-analyzed	across	the	21	traits,	the	marginal	multi-ethnic	effect	size	correlation	among	the	328 

top	5%	of	IMPACT	SNPs	was	significantly	greater	than	the	set	of	all	SNPs	genome-wide,	across	329 

the	10	most	lenient	of	17	GWAS	locus	P	value	thresholds	examined	(all	difference	of	means	P	<	330 

0.026)	(Figure	4C-D).	Furthermore,	this	observation	was	consistent	across	individual	traits	(SF9).	331 

For	comparison,	we	performed	the	same	analysis	using	alternative	annotations:	lead	332 

annotations	from	513	cell-type-specifically	expressed	gene	sets	(SEG)35	and	220	cell-type-333 

specific	histone	mark	annotations	(CTS)6	(SF10).	Marginal	effect	size	correlation	with	IMPACT	334 

was	comparable	to	CTS	when	comparing	the	top	5%	of	SNPs	to	the	set	of	all	SNPs	(difference	of	335 

means	P	value	>	0.05	at	14	of	17	P	value	thresholds,	SF11).	Compared	to	SEG,	IMPACT-selected	336 

SNPs	had	a	significantly	greater	correlation	at	7	of	17	P	value	thresholds	(all	difference	of	means	337 

P	value	<	0.02,	SF11).	Overall,	our	results	suggest	that	we	might	anticipate	improved	trans-338 

ethnic	portability	of	PRS	models	by	prioritizing	SNPs	in	key	IMPACT	annotations.	339 

	340 

Finally,	we	addressed	our	hypothesis	that	IMPACT	annotations	improve	the	trans-ethnic	341 

portability	of	PRS	(Figure	1D-III).	For	each	of	the	21	previously	analyzed	traits,	we	built	a	PRS	342 

using	effect	size	estimates	from	EUR	summary	statistics	and	applied	it	to	predict	phenotypes	of	343 

EAS	individuals	from	BioBank	Japan	(BBJ)	(Figure	5A).	Here,	we	compare	two	PRS	models,	both	344 

blind	to	any	EAS	genetic	or	functional	information	and	removing	SNPs	with	LD	&2>	0.2,	345 
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Figure	4 

 
Figure	4	legend.	Mechanism	by	which	IMPACT	prioritization	of	shared	regulatory	variants	might	improve	trans-ethnic	PRS	

performance.	A)	Estimated	effect	sizes	of	variants	from	genome-wide	EUR	and	EAS	height	summary	statistics	in	the	top	5%	of	the	

lead	IMPACT	annotation	for	EUR	height.	Proportions	of	variants	in	each	quadrant	indicated	in	light	blue.	B)	Estimated	effect	sizes	

from	genome-wide	EUR	and	EAS	height	summary	statistics	of	variants	in	the	bottom	95%	of	the	same	lead	IMPACT	annotation	for	

height;	mutually	exclusive	with	SNPs	in	A).	C)	Meta-analysis	of	multi-ethnic	marginal	effect	size	correlations	between	populations	

across	21	traits	shared	between	EUR	and	EAS	cohorts	over	17	GWAS	P	value	thresholds	(with	reference	to	the	EUR	GWAS).	D)	

Number	of	SNPs	(log10	scale)	at	each	P	value	threshold	for	each	partition	of	the	genome	corresponding	to	C). 
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according	to	European	individuals	from	phase	3	of	1000		Genomes52:	(i)	standard	P+T	PRS	and	346 

(ii)	functionally-informed	P+T	PRS	using	a	subset	of	SNPs	prioritized	by	the	lead	EUR	IMPACT	347 

annotation	(Online	Methods).	In	functionally-informed	PRS	models,	for	each	trait	separately,	348 

we	a	priori	selected	the	subset	of	top-ranked	IMPACT	SNPs	(top	1%,	5%,	10%,	or	50%)	which	349 

explained	the	closest	to	50%	of	total	trait	heritability	(Online	Methods).	For	all	PRS	models,	we	350 

report	results	from	the	most	accurate	model	across	nine	EUR	GWAS	P	value	thresholds.		351 

For	each	trait,	we	observed	that	functionally-informed	PRS	using	IMPACT	captured	more	352 

phenotypic	variance	than	standard	PRS	(49.9%	mean	relative	increase	in	!2,	Figure	5B,	SF12,	353 

ST13-15).	The	mean	phenotypic	variance	explained	across	traits	by	functionally-informed	PRS	354 

(!"	=	2.1%,	se	=	0.2%)	was	greater	than	by	standard	PRS	(!"	=	1.5%,	se	=	0.1%).	For	20	of	21	355 

traits,	e.g.	excluding	basophil	count,	IMPACT-informed	PRS	significantly	outperformed	standard	356 

PRS	(difference	of	means	P	<	0.01).	Using	10,000	bootstraps	of	the	PRS	sample	cohort,	we	357 

found	that	the	IMPACT-informed	PRS	!2	estimate	was	consistently	greater	than	the	standard	358 

PRS	estimate	for	the	same	20	traits	(all	bootstrap	P	<	0.004,	ST15).	We	observed	the	largest	359 

improvement	for	RA	from	!2	=	1.4%	(sd	=	0.33%)	in	the	standard	PRS	versus	!2	=	4.1%	(sd	=	360 

0.53%,	difference	of	means	P	<	7.7e-10)	in	the	functionally-informed	PRS	using	the	B	cell	TBP	361 

IMPACT	annotation.	For	asthma,	!2	=	0.37%	(sd	=	0.10%)	in	the	standard	PRS	versus	!2	=	0.75%	362 

(sd	=	0.14%,	P	<	8.5e-4)	in	the	functionally-informed	PRS.	For	MCV,	!2	=	3.0%	(sd	=	0.10%)	in	363 

the	standard	PRS	versus	!2	=	4.1%	(sd	=	0.12%,	P	<	1.9e-25)	in	the	functionally-informed	PRS.	364 

For	PrCa,	!2	=	4.5%	(sd	=	0.36%)	in	the	standard	PRS	versus	!2	=	6.4%	(sd	=	0.45%,	P	<	2.4e-6)	in	365 

the	functionally-informed	PRS.	For	height,	!2	=	4.2%	(sd	=	0.10%)	in	the	standard	PRS	versus	!2	366 

=	5.6%	(sd	=	0.12%,	P	<	1.2e-37)	in	the	functionally-informed	PRS.		367 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
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For	our	five	representative	traits	asthma,	RA,	MCV,	PrCa,	and	height,	we	further	368 

compared	functionally-informed	PRSEUR	using	IMPACT	to	models	using	cell-type-specifically	369 

expressed	genes	(SEG)	and	cell-type-specific	histone	modification	tracks	(CTS)6,35	(Figure	5C,	370 

ST16).	Across	all	of	the	five	traits,	models	using	IMPACT	explained	significantly	greater	371 

phenotypic	variance	(mean	!2=	4.2%,	se	=	0.3%)	than	SEG	(0.9%,	se	=	0.1%,	all	difference	of	372 

means	P	<	9.9e-11).	While	IMPACT	generally	outperformed	CTS	(!2=	2.6%,	se	=	0.2%,	difference	373 

of	means	meta	P	<	1.2e-8),	this	observation	was	only	individually	consistent	with	3	of	5	traits	374 

(difference	of	means	P	<	9.3e-8).	We	performed	a	similar	bootstrap	analysis	as	above,	yielding	375 

similar	results;	for	only	RA	and	asthma	did	IMPACT-PRS	not	produce	consistently	greater	376 

!2estimates	than	CTS-PRS	(ST16).		377 

Functionally-informed	PRS	might	to	some	extent	compensate	for	population-specific	LD	378 

differences	between	populations.	Hence,	we	hypothesized	that	IMPACT-informed	PRS	would	379 

improve	standard	PRS	moreso	in	the	trans-ethnic	prediction	framework,	in	which	EUR	PRS	380 

models	predict	EAS	phenotypes,	than	in	a	within-population	framework,	in	which	EAS	PRS	381 

models	predict	EAS	phenotypes.	Here,	we	define	within-population	PRS	as	PRSEAS	and	trans-382 

ethnic	PRS	as	PRSEUR	to	avoid	confusion.	In	order	to	directly	compare	PRS	model	improvements	383 

between	PRSEAS	and	PRSEUR,	we	evaluated	prediction	accuracy	on	the	same	individuals.	Briefly,	384 

we	partitioned	the	BBJ	cohort	to	reserve	5,000	individuals	for	PRS	testing,	derived	GWAS	385 

summary	statistics	from	the	remaining	individuals,	and	performed	P+T	PRS	modeling	and	386 

prediction	as	done	above	(Figure	5D,	SF13-15,	ST17-18,	Online	Methods).	For	functionally-387 

informed	PRSEAS,	we	selected	lead	IMPACT	annotations	from	S-LDSC	results	using	GWAS	388 

summary	statistics,	as	done	above,	on	the	partition	of	the	BBJ	cohort	excluding	the	5,000	PRS	389 

test	individuals.	We	defined	improvement	as	the	percent	increase	in	!2	from	standard	to	390 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
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functionally-informed	PRS;	therefore,	differences	in	PRS	performance	due	to	intrinsic	factors,	391 

such	as	GWAS	power	or	genotyping	platform,	cancel	out.	In	both	scenarios,	we	observed	392 

significant	non-zero	improvements:	averaged	across	the	21	traits	in	the	trans-ethnic	setting	393 

(mean	percent	increase	in	!2=	47.3%,	se	=	8.1%,	P	<	2.7e-9)	and	in	the	within-population	394 

setting	(mean	percent	increase	in	!2=	20.9%,	se	=	6.6%,	P	<	7.5e-4).	Indeed,	this	revealed	a	395 

significantly	greater	improvement	in	the	trans-ethnic	than	in	the	within-population	application	396 

(difference	of	means	P	<	1.7e-4,	Figure	5E).	397 

Overall,	our	results	reveal	that	functional	prioritization	of	SNPs	using	IMPACT	398 

significantly	improves	both	trans-ethnic	and	within-population	PRS	models,	but	is	especially	399 

advantageous	for	the	trans-ethnic	application	of	PRS.	In	conclusion,	our	results	nominate	the	400 

prioritization	of	SNPs	according	to	functional	annotations,	especially	using	IMPACT,	as	a	401 

potential	tentative	solution	for	the	lack	of	trans-ethnic	portability	of	PRS	models.	While	402 

individuals	of	European	ancestry	dominate	current	genetic	studies,	population-nonspecific	cell-403 

type-specific	IMPACT	annotations	can	help	transfer	highly	powered	EUR	genetic	data	to	study	404 

still	underserved	populations.			405 

	406 

Discussion	407 

	408 

In	this	study,	we	created	a	compendium	of	707	cell-type-specific	regulatory	annotations	409 

(Web	Resources)	capturing	disproportionately	large	amounts	of	polygenic	heritability	in	95	410 

complex	traits	and	diseases	in	EUR	and	EAS	populations.	We	then	proposed	a	three-step	411 

framework	to	assess	how	well	prioritization	of	regulatory	variants	with	functional	data	can	412 

improve	multi-ethnic	genetic	comparisons.	First,	we	showed	that	heritability-enriched	413 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
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Figure	5	

 
Figure	5	legend.	Identifying	shared	regulatory	variants	with	IMPACT	annotations	to	improve	the	trans-ethnic	portability	of	PRS.	A)	

Study	design	applying	EUR	summary	statistics-based	PRS	models	to	all	individuals	in	the	BBJ	cohort.	(B)	Phenotypic	variance	(R
2
)	of	

BBJ	individuals	explained	by	EUR	PRS	using	two	methods:	functionally-informed	PRS	with	IMPACT	(pink)	and	standard	PRS	(blue).	

Error	bars	indicate	95%	CI	calculated	via	1,000	bootstraps.	C)	Phenotypic	variance	(R
2
)	of	BBJ	individuals	across	5	exemplary	traits	

explained	by	EUR	IMPACT	annotations	relative	to	lead	cell-type-specific	histone	modification	annotations	(CTS)	and	lead	cell-type-

specifically	expressed	gene	sets	(SEG).	Error	bars	indicate	95%	CI	calculated	via	1,000	bootstraps.	D)	Study	design	to	compare	trans-

ethnic	(EUR	to	EAS)	to	within-population	(EAS	to	EAS)	improvement	afforded	by	functionally-informed	PRS	models.	For	each	trait,	

5,000	randomly	selected	individuals	from	BBJ	designated	as	PRS	samples.	Remaining	BBJ	individuals	used	for	GWAS	to	derive	EAS	

summary	statistics-based	PRS;	no	shared	individuals	between	GWAS	samples	and	PRS	samples.	E)	Improvement	from	standard	PRS	

to	functionally-informed	PRS	compared	between	trans-ethnic	(EUR	to	EAS)	and	within-population	models	(EAS	to	EAS)	using	the	

study	design	in	D). 
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regulatory	elements	between	EUR	and	EAS	populations	capture	indistinguishable	proportions	414 

of	heritability	across	29	complex	traits.	Second,	we	showed	that	functional	prioritization	of	415 

variants	selects	those	with	more	highly	correlated	marginal	effect	sizes	between	populations;	416 

this	might	explain	the	improvement	driven	by	functional	prioritization	in	P+T	PRS	models	which	417 

use	marginal	effect	sizes.	Third,	we	showed	that	variant	prioritization	with	IMPACT	annotations	418 

results	in	consistently	improved	PRS	prediction	accuracy,	especially	for	the	trans-ethnic	419 

application;	potentially	due	to	overcoming	large	population-specific	influences	such	as	LD,	an	420 

important	challenge	of	multi-population	models.		421 

Designing	genetic	models	for	each	complex	trait	or	disease	that	capture	risk	for	the	full	422 

diversity	of	the	human	population	will	be	challenging.	This	necessitates	approaches	that	423 

effectively	transfer	predictive	genetic	information	from	well	studied	populations	to	less	well	424 

studied	populations.	Our	work	provides	insight	into	the	potential	clinical	implementation	of	PRS	425 

and	broader	genetic	applications	that	aim	to	integrate	multi-ethnic	data.	We	argue	for	the	use	426 

of	biologically	diverse	IMPACT	annotations	to	capture	relevant	genetic	signal	and	compensate,	427 

to	some	extent,	for	differences	in	LD	across	populations.	While	we	did	not	assess	a	PRS	model	428 

using	meta-analyzed	summary	statistics	from	two	or	more	populations	in	this	study,	we	believe	429 

that	this	approach	could	be	effective,	especially	for	populations	with	limited	GWAS	sample	size.	430 

We	believe	that	IMPACT	may	prioritize	phenotype-driving	regulatory	variation.	We	have	431 

shown	IMPACT	to	be	more	effective	at	capturing	genetic	variation	of	complex	traits	than	432 

commonly	used	functional	annotations	such	as	experimentally-derived	cell-type-specific	433 

histone	marks	or	gene	sets.	We	hypothesize	the	utility	of	IMPACT	comes	from	1)	cell-type-434 

specificity	of	TF	binding	models	which	locate	key	classes	of	regulatory	elements	and	2)	the	435 

integration	of	thousands	of	experimentally-derived	annotations,	which	presumably	removes	436 
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noise	and	enriches	for	biological	signal	present	in	each	individual	annotation.	Here,	we	did	not	437 

demonstrate	the	potential	utility	of	IMPACT	to	perform	functional	fine-mapping	to	reduce	438 

credible	sets	beyond	our	previous	work31,	due	to	lack	of	sufficient	gold	standards	with	causal	439 

experimental	validation	and	the	limitation	to	genome-wide	significant	variants.	The	specific	440 

application	of	IMPACT	in	multi-ethnic	fine-mapping	needs	to	be	further	investigated.	441 

We	must	consider	several	important	limitations	of	our	work.	First,	our	functional	442 

insights	are	limited	to	cell	types	with	publicly	available	TF	ChIP-seq	data,	lacking	ones	that	are	443 

rarer	or	more	difficult	to	assay.	In	the	future,	the	cell-type-specific	functional	training	data	for	444 

IMPACT	may	be	replaced	by	newer	experimental	strategies	to	map	enhancers.	For	example,	445 

high-throughput	CRISPR	screens	paired	with	assays	for	open	chromatin	could	be	used	to	446 

precisely	redefine	the	regulatory	landscape.	Second,	we	used	multi-ethnic	data	to	argue	for	the	447 

utility	of	our	approach.	However,	the	robustness	of	multi-ethnic	comparisons	for	a	given	448 

phenotype	rely	on	properties	surrounding	the	recruitment	of	individuals	or	the	exact	449 

genotyping	platform	used	in	various	biobanks,	which	may	result	in	cohort-bias	that	inflates	450 

within-population	PRS	prediction	accuracy.	For	example,	BBJ	is	a	disease	ascertainment	cohort,	451 

in	which	each	individual	has	any	one	of	47	common	diseases53,54;	therefore,	BBJ	control	452 

samples	are	not	comparable	to	healthy	controls	of	UKBB.	Other	biases	may	arise	from	clinical	453 

differences	in	phenotyping.	Also,	we	only	considered	a	single	non-EUR	population	in	this	study,	454 

while	the	disparity	in	trans-ethnic	portability	and	hence	resulting	benefit	from	functional	455 

annotations	may	be	greater	in	other	non-EUR	populations.		456 

In	conclusion,	we	demonstrated	that	IMPACT	annotations	improve	the	comparison	of	457 

genetic	data	between	populations	and	trans-ethnic	portability	of	PRS	models	using	ancestrally	458 

unmatched	data.	While	a	long-term	goal	of	the	field	must	be	to	diversify	GWAS	and	other	459 
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genetic	studies	in	non-European	populations,	it	is	imperative	that	genetic	models	be	developed	460 

that	work	in	multiple	populations.	Such	initiatives	will	necessitate	the	use	of	population-461 

independent	functional	annotations,	such	as	IMPACT,	in	order	to	capture	shared	biological	462 

mechanisms	regulated	by	complex	genetic	variation.		463 
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Online	Methods	1 

	2 

Data	3 

TF	ChIP-seq	data.	We	previously	collected	3,181	publicly	available	transcription	factor	(TF)	4 

chromatin	immunoprecipitation	(ChIP)	datasets	derived	from	human	primary	cells	or	cell	lines.	5 

We	downloaded	raw	sequencing	data	in	SRA	format	from	NCBI	GEO,	then	converted	the	data	to	6 

FASTQ	format	using	the	SRA	Toolkit	function	fastq-dump,	used	FastQC	for	quality	assessment	of	7 

sequencing	reads,	and	finally	mapped	reads	to	the	human	genome	(hg19/GRCh37)	with	8 

Bowtie2	[v2.2.5]	using	default	parameters.	All	ChIP-seq	datasets	were	matched	to	9 

corresponding	control	data	from	which	peaks	were	called	with	macs	[v2.1]	with	q	value	<	0.01	10 

under	a	bimodal	model,	producing	3,181	bed	file-formatted	files
1,2
.	The	1,542	datasets	selected	11 

for	use	with	our	IMPACT	model	framework	(see	below)	are	listed	with	accession	codes	in	ST1.		12 

	13 

Genome-wide	annotation	data.	We	augmented	our	set	of	515	publicly	available	epigenomic	14 

and	sequence	feature	annotations	from	our	previous	study
3
	with	116	personally	curated	15 

datasets	from	NCBI,	2,593	ENCODE	histone	ChIP-seq	datasets	and	2,121	ENCODE	open	16 

chromatin	DNase-seq	datasets
4
,	all	publicly	available	at	the	accessions	provided	in	ST2.	All	files	17 

were	collected	in	6-column	standard	bed	file	format.	This	augmentation	brought	the	total	18 

number	of	features	to	5,345.	19 

	20 

Genome-wide	association	data.	We	collected	publicly	available	summary	statistics	data	for	111	21 

genome-wide	association	studies	(GWAS)	across	separate	cohorts	of	East	Asian	and	European	22 



individuals
5–7
.	East	Asian	GWAS	data	were	collected	from	Biobank	Japan	(BBJ)	while	European	23 

GWAS	data	were	collected	from	either	UKBioBank	(UKBB)	or	the	GWAS	catalog,	referred	to	as	24 

PASS	(publicly	available	summary	statistics)	(ST3).	All	GWAS	summary	statistics	were	25 

reformatted	to	be	compatible	with	S-LDSC	(see	below)	and	thus	contained	the	following	26 

information	for	each	SNP	(per	row):	rsID,	A1	(reference	allele),	A2	(alternative	allele),	GWAS	27 

sample	size	(effective	sample	size	per	SNP,	may	vary	with	genotyping),	chi-square	statistic,	z-28 

score.	For	multi-ethnic	genetic	correlation	and	polygenic	risk	score	prediction,	all	GWAS	29 

summary	statistics	were	reformatted	to	contain	the	SNP	ID	(chr_position_A1_A2),	30 

chromosome,	base	pair,	A1,	A2,	effect	size	estimate,	effect	size	estimate	standard	error,	and	P-31 

value.			32 

	33 

Cell-type-specifically	expressed	gene	set	(SEG)	and	cell-type-specific	histone	modification	34 

(CTS)	annotations.	We	downloaded	513	publicly	available	SEG	annotations	for	European	SNPs	35 

from	phase	3	of	1000	Genomes	accompanied	by	pre-computed	LD	scores	(see	Web	36 

Resources)8.	SEG	annotations	are	binary	and	thus	each	SNP	is	designated	a	1	or	a	0,	indicating	37 

that	the	SNP	does	or	does	not	lie,	respectively,	within	100	kb	of	the	gene	body	of	the	38 

corresponding	gene	set
8
.	We	downloaded	220	publicly	available	CTS	annotations	of	peak	data	39 

in	bed	file	format,	from	which	we	annotated	European	SNPs	from	phase	3	of	1000	Genomes
9
	40 

and	used	S-LDSC	to	compute	LD	scores	(see	Web	Resources)7.	These	annotations	are	also	41 

binary,	in	which	case	each	SNP	is	designated	a	1	or	a	0,	indicating	that	the	SNP	does	or	does	not	42 

like,	respectively,	within	the	peak	of	histone	modification.		43 

	44 



BioBank	Japan	data.	For	PRS	analysis,	we	utilized	phenotype	and	genotype	data	of	the	BioBank	45 

Japan	Project	(BBJ)
10,11

.	All	of	the	calculations	related	to	PRS	were	conducted	on	the	RIKEN	46 

computing	server.	BBJ	is	a	biobank	that	collaboratively	collects	DNA	and	serum	samples	from	47 

12	medical	institutions	in	Japan.	This	project	recruited	approximately	200,000	patients	with	the	48 

diagnosis	of	at	least	one	of	47	diseases.	Informed	consent	was	obtained	from	all	participants	by	49 

following	the	protocols	approved	by	their	institutional	ethical	committees.	We	obtained	50 

approval	from	the	ethics	committees	of	the	RIKEN	Center	for	Integrative	Medical	Sciences	and	51 

the	Institute	of	Medical	Sciences	at	the	University	of	Tokyo.	52 

	53 

Statistical	Methods	54 

	55 

IMPACT	Model.	We	implemented	our	previously	defined	model	to	predict	TF	binding	on	a	motif	56 

site.	This	model	regresses	the	likelihood	(p)	of	a	binding	event	on	the	epigenomic	profile	of	the	57 

motif	site,	in	a	logistic	regression	framework	over	j	epigenomic	features	as	follows:		58 

!"#	( &
1− &) 	= 	*0 + *1,1 + *2,2+. . . +*.,..		59 

We	use	a	weighted	average	of	ridge	and	lasso	regularization	terms	in	the	objective	function	to	60 

restrict	the	magnitude	of	fit	coefficients	and	enforce	sparsity	to	reduce	overfitting,	respectively,	61 

as	follows:		62 

	63 

/0#123* 	= 	 (||5	 − 	,*||2 	+ 	
1
2
(1	 − 	6)||*||2 	+ 6	||*||).				64 

	65 



Training	IMPACT.	We	trained	an	IMPACT	model	for	each	unique	cell	type-TF	pair	present	in	our	66 

data	collection.	Our	collection	consists	of	3,181	TF	ChIP-seq	profiles,	representing	442	TFs,	296	67 

cell	types,	and	24	tissues.	The	IMPACT	model	requires	that	the	assayed	TF	has	a	distinct	binding	68 

motif	and	so	we	removed	all	ChIP-seq	datasets	corresponding	to	a	TF	that	did	not	have	a	known	69 

sequence	motif	in	MEME,	Jaspar,	or	Transfac	databases.	This	resulted	in	1,542	TF	ChIP-seq	70 

profiles	across	142	TFs,	245	cell	types,	23	tissues,	and	728	unique	combinations	of	TFs	and	cell	71 

types.	As	we	did	in	our	previous	study
3
,	we	merged	experiments	of	the	same	TF-cell	type	72 

combination	by	taking	the	union	of	the	peaks.	We	next	identified	motif	sites	bound	by	a	TF	by	73 

using	HOMER	[v4.8.3]
12
	to	scan	ChIP-seq	peaks	for	motif	matches	exceeding	the	empirically	74 

determined	motif	detection	threshold.	Similarly,	we	identified	motif	sites	not	bound	by	a	TF	by	75 

using	HOMER	to	scan	the	entire	genome	for	sequence	matches.	21	of	these	models	did	not	76 

contain	sufficient	overlap	between	TF	sequence	motifs	and	ChIP-seq	peaks	which	would	lead	to	77 

underfitting	in	the	logistic	regression	(fewer	than	7),	thereby	resulting	in	707	total	possible	78 

IMPACT	annotations.	We	then	trained	707	IMPACT	models	using	up	to	1,000	TF-bound	79 

sequence	motifs	(evidenced	by	ChIP-seq)	and	10,000	unbound	sequence	motifs.	For	each	of	80 

707	TF-cell	type	pairs,	we	learned	a	predictive	model	of	TF	binding	and	annotated	SNPs	81 

genome-wide	for	both	EUR	and	EAS	populations,	with	a	mean	regulatory	probability	per	82 

nucleotide	of	0.02	(se	=	7.5e-4).	83 

	84 

Assessing	cell	type	specificity	of	IMPACT	tracks.	We	acquired	lists	of	specifically	expressed	85 

genes	in	9	different	cell	types:	T	cells,	B	cells,	fibroblasts,	monocytes,	brain,	liver,	colon,	86 

prostate,	and	breast	according	to	differential	gene	expression	t-statistics	from	previous	work
8
,	87 



specifically	labeled	as	T.4+8int.Th,	B.Fo.LN,	Cells_Transformed_fibroblasts,	Mo.6C+II-.LN,	88 

Brain_Cortex,	Liver,	Colon_Transverse,	Prostate,	Breast_Mammary_Tissue,	respectively	from	89 

either	ImmGen	or	GTEx	databases.	Large	and	positive	t-statistics	represent	greater	specificity	of	90 

gene	expression	in	the	target	cell	type,	large	but	negative	t-statistics	represent	specifically	91 

repressed	genes,	and	t-statistics	near	0	represent	nonspecific	gene	expression,	representing	92 

commonly	expressed	genes.	For	each	cell	type,	we	selected	the	100	genes	with	highest	t-93 

statistics,	e.g.	specifically	expressed	(SE)	genes,	and	100	genes	such	that	-0.5	<	t-statistic	<	0.5,	94 

e.g.	not	specifically	expressed	genes	(NS).	For	each	cell	type	separately,	we	collected	all	related	95 

IMPACT	annotations	from	the	compendium	of	707	total	annotations.	Then	for	each	annotation	96 

separately,	we	computed	the	average	IMPACT	score	over	all	EUR	SNPs	from	phase	3	of	1000	97 

Genomes	within	2kb	of	each	SE	or	NS	gene	body.	Finally,	we	computed	the	average	across	all	98 

100	SE	and	100	NS	genes,	separately.				99 

	100 

Partitioning	heritability	with	S-LDSC.	We	applied	S-LDSC	[v1.0.0]
7
	to	partition	the	common	101 

(MAF	>	5%)	SNP	heritability	of	111	polygenic	traits	and	diseases,	with	significantly	non-zero	102 

heritability	estimates	(P	<	0.05).	We	partitioned	heritability	using	a	customized	version	of	the	103 

baselineLD	model,	in	which	we	excluded	cell-type-specific	regulatory	annotations	(as	we	would	104 

be	testing	the	enrichment	of	such	annotations	from	IMPACT).	In	total,	we	used	69	cell-type-105 

nonspecific	baselineLD	annotations	and	added	one	or	more	IMPACT	annotations	to	the	model	106 

to	test	for	cell-type-specific	enrichment.	We	use	three	metrics	to	evaluate	how	well	our	107 

IMPACT	annotations	capture	polygenic	heritability:	enrichment
7
,	the	proportion	of	heritability	108 

explained	by	the	top	5%	of	SNPs
7
,	and	per-annotation	standardized	effect	size,	7*6.	Briefly,	109 



enrichment	is	defined	as	the	proportion	of	common	SNP	heritability	divided	by	the	genome-110 

wide	proportion	of	SNPs	in	the	annotation,	for	continuous	annotations	this	is	the	average	111 

annotation	value	across	SNPs.	7*	represents	the	average	per-SNP	heritability	of	a	category	of	112 

SNPs,	where	a	single	SNP	may	claim	membership	to	one	or	more	categories.	7*	is	defined	as	the	113 

proportionate	change	in	per-SNP	heritability	associated	with	a	one	standard	deviation	increase	114 

in	the	value	of	the	annotation.	The	sum	of	the	7*	over	categories	of	SNPs	equals	the	total	115 

estimated	heritability	of	the	trait.	7*	has	units	of	heritability	and	is	comparable	between	traits,	116 

annotations,	and	populations,	because	it	is	normalized	for	the	total	heritability	(indicative	of	117 

the	power	of	the	GWAS),	the	dispersion	of	the	annotation	values	(annotation	size),	and	the	118 

number	of	common	SNPs	(population-specific)	considered	in	the	model,	respectively.	7,	the	119 

precursor	of	7*,	is	the	coefficient	estimated	in	the	S-LDSC	regression.	7	and	7*	are	conditionally	120 

dependent	on	the	provided	baselineLD	annotations.	Therefore,	the	7*	estimate	for	an	IMPACT	121 

annotation	is	considered	a	measure	of	cell-type-specific	or	annotation-specific	SNP	heritability,	122 

as	the	remaining	annotations	in	the	model	(baselineLD)	are	not	cell-type-specific.	Significance	123 

of	7*	is	computed	using	a	z-test	of	how	different	the	7*	estimate	is	from	0;	the	significance	of	124 

strictly	positive	7*	estimates	are	reported	in	our	study.	125 

	126 

Measuring	heritability	in	top	X%	of	SNPs	of	a	continuous	annotation.	To	partition	the	127 

heritability	captured	by	various	top	echelons	of	SNPs	of	a	given	continuous	annotation,	we	used	128 

the	same	strategy	as	in	a	previous	study
6
.	By	this	strategy,	the	proportion	of	heritability	129 

explained	by	a	set	of	SNPs	is	the	sum	over	all	SNPs	of	the	product	of	the	7*	of	each	category	in	130 

the	S-LDSC	model,	e.g.	baselineLD	plus	IMPACT	annotation,	and	the	SNP	membership	to	that	131 



category	(1	or	0	in	the	case	of	binary	annotations,	continuous	values	in	the	case	of	continuous	132 

annotations)	divided	by	the	same	metric	for	all	SNPs	genome-wide.				133 

	134 

Conditional	S-LDSC	analysis	to	identify	independent	annotation-trait	associations.	Due	to	the	135 

redundancy	in	modeled	cell	type	programs	and	inherent	covariance	of	IMPACT	annotations	136 

(SF2),	the	7*	associations	we	find	with	S-LDSC	cannot	be	independent.	To	this	end,	for	each	of	137 

95	traits	across	EUR	and	EAS	for	which	we	identified	a	lead	IMPACT	annotation,	reported	in	138 

ST9,	we	performed	a	series	of	conditional	analyses	using	S-LDSC.	For	each	trait	with	more	than	139 

one	significant	7*	association,	we	created	S-LDSC	models	consisting	of	the	69	baselineLD	140 

annotations,	the	lead	annotation	for	that	trait,	and	separately,	each	remaining	significant	141 

IMPACT	annotation.	We	kept	annotations	that	retained	their	7*	significance	when	conditioned	142 

on	the	lead	annotation(s),	which	we	also	required	to	retain	significance.	We	iteratively	143 

performed	these	conditional	analyses	until	we	were	no	longer	able	to	identify	independent	7*	144 

associations.		145 

	146 

Deming	regression	of	EUR	7*	on	EAS	7*.	As	there	is	significant	correlation	among	IMPACT	147 

annotations,	due	to	redundancy	in	cell	type	regulatory	elements,	we	used	an	iterative	pruning	148 

approach,	similar	to	LD-pruning,	to	identify	independent	IMPACT	annotations.	For	each	trait,	149 

we	ranked	all	707	IMPACT	annotations	by	their	7*	significance	values.	Then,	we	selected	the	150 

lead	annotation,	removed	all	annotations	correlated	with	Pearson	r	>	0.5,	and	selected	the	next	151 

lead	annotation,	and	so	on.	This	approach	produced	a	set	of	relatively	independent	152 

annotations,	for	which	the	assumptions	of	Deming,	or	any,	regression	would	not	be	violated.	153 



For	each	trait,	we	ran	Deming	regression	over	approximately	100	independent	IMPACT	154 

annotations	using	the	R	function	deming	within	the	package	deming.	Across	independent	155 

observations	for	all	traits,	we	tested	the	null	hypothesis	that	the	slope	of	the	Deming	156 

regression,	which	considers	standard	errors	on	both	the	predictor	(EUR	7*)	and	response	157 

variables	(EAS	7*),	is	equal	to	1.		158 

	 	 	 	159 

Multi-ethnic	and	within-population	genetic	correlation.	We	computed	the	genetic	correlation	160 

(8#)	between	pairs	of	29	traits	for	which	we	acquired	EUR	and	EAS	GWAS	using	Popcorn	161 

[v.0.9.6]
13
	with	default	parameters,	including	maximum	likelihood	estimation	as	opposed	to	162 

regression
14
.	First,	we	computed	cross-population	scores	between	the	two	populations	using	163 

the	compute	flag	with	the	popcorn	executable,	indicating	approximately	the	correlation	164 

between	LD	at	each	SNP	using	EUR	and	EAS	reference	LD	panels	from	phase	3	of	1000	165 

Genomes.	Then,	we	used	the	fit	flag	with	the	popcorn	executable	to	compute	the	multi-ethnic	166 

genetic	correlation	of	these	29	traits.	8#	estimates	computed	after	restricting	to	MAF	>	5%	did	167 

not	significantly	differ	from	no	MAF	restriction.	Popcorn	computes	8#	using	either	“genetic	168 

impact”	(effect	sizes	normalized	by	allele	frequency)	or	“genetic	effect”	(unmodified	effect	169 

sizes).	We	observed	no	significant	heterogeneity	between	the	8#	computed	using	“genetic	170 

impact”	and	“effect”,	although	“genetic	effect”	estimates	were	consistently	but	not	significantly	171 

larger.		172 

	We	then	computed	cross-trait	cross-population	genetic	correlations	across	21	traits	for	173 

which	we	observed	at	least	one	significant	IMPACT	annotation	association	in	both	EUR	and	EAS.	174 

Therefore,	in	total	we	computed	the	genetic	correlation	among	42	traits	(21	phenotypes	x	2	175 



populations).	For	pairs	of	traits	with	one	from	EUR	and	one	from	EAS,	we	used	Popcorn	as	176 

described	above	with	MAF	threshold	of	5%	and	“genetic	impact”.	For	pairs	of	traits	from	the	177 

same	population	we	used	LDSC	[v.1.0.0].	First	we	used	the	munge_sumstats.py	script	to	make	178 

the	direction	of	allelic	effect	consistent	in	the	GWAS	summary	statistics	while	also	restricting	to	179 

well-imputed	Hapmap3	SNPs.	Then,	we	used	the	ldsc.py	script	with	the	-rg	flag	to	compute	the	180 

genetic	correlation	using	EUR	and	EAS	reference	LD	panels	from	phase	3	of	1000	Genomes	181 

where	appropriate.		182 

	183 

Multi-ethnic	marginal	effect	size	correlation.	We	acquired	GWAS	summary	statistics	for	each	184 

of	21	shared	traits	between	EUR	and	EAS	for	which	there	was	at	least	one	significant	IMPACT	185 

association	in	each	population.	Then,	we	restricted	to	SNPs	shared	between	EUR	and	EAS	186 

GWAS	summary	statistics.	Next,	we	performed	stringent	iterative	LD	clumping	with	PLINK	187 

[v1.90b3]
15
	using	EUR	summary	statistics	(selecting	the	most	significant	SNP,	then	removing	all	188 

SNPs	in	LD	with	02	>	0.1	within	1	Mb,	then	selecting	the	next	most	significant	SNP,	and	so	on).	189 

This	step	satisfies	the	assumption	of	independence	in	the	Pearson	correlation	that	we	will	190 

compute	among	marginal	effect	sizes.	We	selected	our	initial	set	of	SNPs	under	three	scenarios:	191 

(1)	using	no	functional	inference,	(2)	using	the	top	5%	of	SNPs	according	to	the	trait’s	lead	EUR	192 

IMPACT	annotation,	and	(3)	using	the	bottom	95%	of	SNPs	according	to	the	trait’s	lead	EUR	193 

IMPACT	annotation	(mutually	exclusive	with	scenario	2).	With	our	set	of	independent	SNPs	for	194 

each	trait	and	under	each	of	three	scenarios,	we	compute	a	Pearson	correlation	between	the	195 

estimated	effect	sizes,	while	further	stratifying	loci	on	17	EUR	P-values	(1,	0.3,	0.1,	0.03,	0.01,	196 



3e-3,	1e-3,	3e-4,	1e-4,	3e-5,	1e-5,	3e-6,	1e-6,	3e-7,	1e-7,	3e-8,	1e-8).	For	example,	stratum	with	197 

P	=	0.1	includes	all	SNPs	with	EUR	GWAS	P	<	0.1.		198 

	199 

Polygenic	risk	score	calculation.	In	this	study,	we	utilized	pruning	and	thresholding	(P+T)	for	the	200 

calculation	of	PRS.	We	constructed	PRS	models	from	either	EUR	summary	statistics	or	EAS	201 

summary	statistics	and	evaluated	their	predictive	performance	on	individual	EAS	phenotypes.	202 

Here,	we	define	within-population	PRS	as	PRSEAS	and	trans-ethnic	PRS	as	PRSEUR	to	avoid	203 

confusion.	For	PRSEUR,	we	utilized	genome-wide	summary	statistics	from	EUR	as	reported	in	204 

their	publicly	available	version.	For	PRSEAS,	we	held	out	5,000	individuals	for	PRS	analysis	and	205 

conducted	GWAS	using	the	remaining	individuals	to	avoid	overfitting	(see	next	section).	For	206 

each	trait	separately,	we	restricted	our	analysis	to	variants	that	exist	in	both	GWAS	summary	207 

statistics	and	post-imputation	genotype	data	of	EAS	individuals	used	for	PRS	analysis	208 

(imputation	quality	of	02	>	0.3	in	minimac3).	A	detailed	description	related	to	the	genotyping	209 

platform	and	imputation	strategy	is	provided	in	a	previous	report
2
.	We	excluded	the	MHC	210 

region	in	this	analysis.		211 

We	designed	PRS	models	using	two	strategies:	standard	PRS	and	functionally-informed	212 

PRS.	For	standard	PRSEUR,	we	performed	conventional	LD	clumping	to	acquire	sets	of	213 

independent	SNPs	using	EUR	LD	reference	panels	from	phase3	of	1000	Genomes.	Similarly	for	214 

PRSEAS,	we	utilized	EAS	LD	reference	panels	from	phase3	of	1000	Genomes.	We	used	PLINK	215 

[v1.90b3]
15
	to	remove	variants	in	LD	with	02	>	0.2	with	a	significance	threshold	for	index	SNPs	216 

of	P	=	0.5.	For	functionally-informed	PRS,	we	restricted	the	analysis	to	variants	with	high	217 

IMPACT	score	according	to	the	lead	IMPACT	annotation	before	conducting	LD	clumping.	As	218 



before,	we	define	the	lead	annotation	as	the	one	with	the	largest	7*	estimate	that	was	219 

significantly	greater	than	0.	When	we	designed	PRSEUR,	we	utilized	the	lead	IMPACT	annotation	220 

in	EUR	GWAS	summary	statistics	(EAS	summary	statistics	were	not	taken	into	account	to	avoid	221 

overfitting).	Similarly,	when	we	design	PRSEAS,	we	utilized	the	lead	IMPACT	annotation	in	EAS	222 

GWAS	summary	statistics	for	which	5,000	EAS	individuals	for	PRS	analysis	were	removed	to	223 

avoid	overfitting.	We	performed	LD	clumping	using	variants	within	a	predefined	top	percentage	224 

of	IMPACT	scores.	This	was	determined	by	the	percentage	that	captured	the	closest	to	50%	of	225 

total	trait	heritability;	considered	percentages	included	the	top	1%,	5%,	10%,	and	50%.		226 

We	evaluated	PRS	performance	using	EAS	individuals.	First,	we	used	all	individuals	in	the	227 

BBJ	cohort	for	PRSEUR	testing.	Second,	we	compared	the	improvement	afforded	by	IMPACT	in	228 

PRSEUR	relative	to	PRSEAS	models	using	5,000	randomly	selected	individuals	in	BBJ;	specifically	229 

for	case-control	GWAS,	we	randomly	selected	1,000	cases	and	4,000	controls.		230 

For	all	models,	we	built	a	PRS	for	each	individual	j	in	our	test	set	(in	all	cases,	there	is	no	231 

overlap	between	GWAS	samples	and	PRS	samples)	using	variant	effect	size	estimates	from	232 

GWAS	as	follows:		233 

98:.	=	 ;2	 ∗ 	*2=
2 ,							 																	(Equation	1)	234 

	235 

Where	M	is	the	total	number	of	SNPs	shared	between	GWAS	summary	statistics	and	post-236 

imputation	genotype	data	of	EAS	individuals,	i	is	the	2>ℎ	SNP	in	the	model,	;2	is	the	allele	dosage	237 

of	the	trait-increasing	allele	i,	and	*2	is	the	estimated	effect	size	of	allele	i	from	the	GWAS.	We	238 

calculated	PRS	using	PLINK2.	239 



	 For	QC	of	quantitative	phenotypes,	we	excluded	(1)	related	samples	(PI_HAT	>		0.187	240 

estimated	by	PLINK),	(2)	samples	with	age	<	18	and	age	>	85,	and	(3)	samples	with	measured	241 

values	outside	three	interquartile	ranges	(IQR)	of	the	upper	or	lower	quartiles.	The	effect	of	sex,	242 

age,	/#@2,	the	top	10	PCs,	and	affection	status	of	47	diseases	were	removed	by	linear	243 

regression,	and	the	residuals	were	further	normalized	by	the	rank-based	inverse	normal	244 

transformation	(see	Equation	3	below).	For	QC	of	case/control	phenotypes,	we	excluded	(1)	245 

related	samples	(PI_HAT	>		0.187	estimated	by	PLINK)	and	(2)	samples	with	age	<	18	and	age	>	246 

85.		247 

We	then	regressed	our	phenotype	of	interest	(Y),	a	measured	quantitative	trait	or	a	248 

diagnosed	disease	among	the	PRS	samples,	on	the	per-individual	PRS	as	follows:		249 

	250 

For	diseases,		251 

													5.	~	98:. + A@B + /#@	 + 	C@3"	9D1	+	. . . +	C@3"	9D10.		 	 															(Equation	2)	252 

For	quantitative	traits,		253 

E"01/!2F@G	5.	~	98:..	 	 	 	 			 	 	 		(Equation	3)	254 

	255 

We	then	report	the	variance	explained;	for	quantitative	traits,	this	is	the	variance	256 

explained	by	a	linear	model	and	for	diseases,	the	variance	explained	is	from	a	logistic	model	257 

(Nagelkerke	82)
14,16,17

	which	we	convert	to	liability	scale	pseudo	82	such	that	82	values	are	258 

comparable	among	both	quantitative	and	case/control	phenotypes.	We	used	various	GWAS	P	259 

value	thresholds	(0.1,	0.03,	0.01,	0.003,	0.001,	3e-4,	1e-4,	3e-5,	1e-5)	to	assess	the	predictive	260 



performance	of	our	PRS.	For	each	model,	we	reported	in	the	text	the	largest	82achieved	across	261 

the	nine	P	value	thresholds.	262 

To	estimate	confidence	intervals	of	PRS	performance	(82,	as	explained	above),	we	263 

conducted	1,000	bootstraps	using	the	R	package	boot.	We	also	conducted	10,000	bootstraps	to	264 

evaluate	whether	the	82difference	between	two	PRS	models	(functionally-informed	-	standard)	265 

is	significantly	greater	than	0;	we	calculated	the	82difference	between	two	PRS	models	in	each	266 

round	of	bootstrapping	(delta	82),	and	assess	its	distribution	in	10,000	bootstraps.	If	we	let	N	267 

be	the	frequency	of	delta	82<	0,	we	define	one-sided	P	values	for	delta	82>	0	as	(N	+		268 

1)/10,000.	269 

				270 

Genome-wide	association	studies	in	BBJ.	As	described	in	the	previous	section,	we	held	out	271 

5,000	randomly	selected	individuals	for	the	PRS	analysis	and	performed	GWAS	on	the	272 

remaining	individuals	(sample	sizes	are	provided	in	ST13-14).	GWAS	was	conducted	with	PLINK2	273 

using	the	same	imputed	dosages	as	used	in	the	PRS	analysis.	For	quantitative	traits,	normalized	274 

residuals	were	analyzed	by	a	linear	regression	model.	For	diseases,	affection	status	was	275 

analyzed	by	a	logistic	regression	model	using	age,	sex,	and	the	top	10	genotype	PCs	as	276 

covariates.	277 
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