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Abstract 

Gene families are groups of genes that have descended from a common ancestral gene 

present in the species under study. Current, widely used gene family building algorithms can 

produce family clusters that may be fragmented or missing true family sequences (under-

clustering). Here we present a classification method based on sequence pairs that, first, inspects 

given families for under-clustering and then predicts the missing sequences for the families using 

family-specific alignment score cutoffs. We have tested this method on a set of curated, gold-

standard (“true”) families from the Yeast Gene Order Browser (YGOB) database, including 20 

yeast species, as well as a test set of intentionally under-clustered (“deficient”) families derived 

from the YGOB families. For 83% of the modified yeast families, our pair-classification method 

was able to reliably detect under-clustering in “deficient” families that were missing 20% of 
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sequences relative to the full/” true” families. We also attempted to predict back the missing 

sequences using the family-specific alignment score cutoffs obtained during the detection phase. 

In the case of “pure” under-clustered families (under-clustered families with no 

“wrong”/unrelated sequences), for 78% of families the prediction precision and recall was ≥0.75, 

with mean precision = 0.928 and mean recall = 0.859. For “impure” under-clustered families, 

(under-clustered families containing closest sequences from outside the family, in addition to 

missing true family sequences), the prediction precision and recall was ≥0.75 for 63% of families 

with mean precision = 0.790 and mean recall = 0.869. To check if our method can detect and 

correct incomplete families obtained using existing family building methods, we attempted to 

correct 374 under-clustered yeast families produced using the OrthoFinder tool. We were able to 

predict missing sequences for at least 19 yeast families with mean precision of 0.9 and mean 

recall of 0.65. We also analyzed 14,663 legume families built using the OrthoFinder program, 

with 14 legume species. We were able to identify 1,665 OrthoFinder families that were missing 

one or more sequences - sequences which were previously un-clustered or clustered into 

unusually small families. Further, using a simple merging strategy, we were able to merge 2,216 

small families into 933 under-clustered families using the predicted missing sequences. Out of 

the 933 merged families, we could confirm correct mergings in at least 534 families using the 

maximum-likelihood phylogenies of the merged families. We also provide recommendations on 

different types of family-specific alignment score cutoffs that can be used for predicting the 

missing sequences based on the “purity” of under-clustered families and the chosen precision 

and recall for prediction. Finally, we provide the containerized version of the pair-classification 

method that can be applied on any given set of gene families. 
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Introduction 

Gene families, also known as orthologous groups, are groups of genes from a given set of 

species that have diverged from one another, from an ancestral gene in the most recent common 

ancestor of the species. Gene families may contain genes that have diverged due to speciation 

and/or duplication. Accordingly, genes within a family may be classified as orthologs (separated 

by speciation) or in-paralogs (duplicated after the common ancestral node) [1–3]. For a number 

of analysis purposes -- for example, identification of candidates for drug/vaccine development 

[4–6] or annotation of newly sequenced genomes by cross-referencing function information from 

multiple species [7–11] -- it is useful to identify families such that all member genes originated 

from a single ancestral gene that was present in the common ancestor of the species under study. 

Many popular clustering techniques use these basic evolutionary properties of gene families for 

building gene families from whole proteomes of the species. These clustering algorithms use 

some form of normalized similarity/alignment scores between sequences as an input to a 

clustering method such as Markov Clustering (MCL) [12, 13] to generate gene family clusters. 

Two of the most popular family building methods, OrthoFinder [14] and OrthoMCL [15], use 

normalized BLAST [16, 17] scores or E-values to cluster sequences into families using the 

chosen clustering algorithm. For Markov Clustering, which is widely used, the granularity of the 

MCL clusters is controlled by the inflation (I) parameter, with higher values of the parameter 

generally corresponding with a larger number of clusters. Both OrthoFinder and OrthoMCL use 

a single value of the Inflation parameter for building all families for a given clustering run. Since 

different gene families can evolve at different rates [18–21], using a single Inflation parameter 

value for MCL clustering may be over-stringent for some families (resulting in 

fragmented/under-clustered families) - and under-stringent for other families (resulting in 

merged/over-clustered families). 
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Here, we present a classification method based on machine learning that first inspects a 

given family for under-clustering in a training step, and subsequently attempts to predict missing 

sequences for the family using family-specific alignment score cutoffs obtained in the training 

step. The training step consists of repetitive model building and testing where, during each 

iteration, a combined set of sequences from the given family along with a selected set of closest 

non-family sequences is randomly split into training and testing parts. The training part of the 

family is used to build a HMM [22], which is then tested to recognize the correct family 

sequences from the testing part, containing both family and non-family sequences. Pairs of 

sequences were used as data points for training and testing the family models. Using pairs helps 

to create more data for training and testing, giving NC2 pairs (data points) for training and testing, 

from a family with N sequences. 

 

Methods 

Collecting Candidate Missing Sequences 

Sequences from a given family were searched against the database of proteomes from all 

the species under study. With each family sequence as query, all the hits that match the query 

better than the worst-matching family hit were collected into a list. Each query sequence can 

attract one or more non-family sequences along with the original family sequences. A combined 

list of sequences was prepared from the lists of hits collected from searching all the family 

sequences against the database (Fig 2.1). This combined list contains all of the original family 

sequences and can contain one or more non-family sequences. The non-family sequences in the 

list of retrieved sequences are candidates for sequences missing from the family. 
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The phmmer program from the HMMER package (version 3.1b2) [23] was used for searching 

families against the database of whole proteomes. E-values from phmmer output were used to 

rank the hits, in order to find the worst-matching family hit. 

 

Fig 2.1. Procedure for collecting candidate missing (non-family) sequences for a given 

family. Each sequence from a family was searched against the proteomes from target and 

outgroup species using the phmmer program. For every query sequence, all the hits that match 

the query with better scores than the worst-matching family sequence were added to a set of 

retrieved sequences containing all the original family sequences, plus the closest non-family 

sequences. The non-family sequences are candidates for sequences missing from the original 

family. 

Defining Sequence Pairs 

The list of retrieved sequences obtained in the previous step was used to define family 

and non-family sequence pairs (Fig 2.2). Family pairs are those exclusively between original 
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family members, and non-family pairs are those between family and non-family members. 

Family pairs were labeled as “positive” and non-family pairs were labeled as “negative”. 

 

Fig 2.2. Defining positive and negative pairs from the family and non-family sequences 

obtained in the previous step. Let ‘N’ be the total number of sequences in the list of retrieved 

sequences for a given family and let ‘n’ be the number of original family sequences. Then, (N-n) 

is the number of non-family sequences in the retrieved list of sequences that could be missing 

from the family. Pairs are only formed between the family members (positive pairs) and between 

the family members and non-family sequences (negative pairs). The number of pairs that can be 

formed from a set of retrieved sequences containing ‘N’ sequences with ‘n’ sequences from the 

original family is (NC2 - (N-n)C2). From these pairs, there are nC2 positive pairs and ((NC2 - (N-n)C2) 

- nC2) negative pairs. 

Training and Classification Statistics 

HMM-based pair-classification models were built to classify the positive (family) pairs 

from negative (non-family) pairs, for a given family, and 10 iterations of repeated test/train split 

strategy were used to assess the classification performance (Fig 2.3). For each iteration, the set of 
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positive pairs was randomly split into training (80%) and test (20%) sets. The HMM model was 

trained on consensus sequences of positive pairs from the training split, obtained using the “-c” 

option of hmmemit program (HMMER package:version 3.1b2). The MAFFT program (version 

v7.407) [24] was used for calculating the multiple sequence alignment used for building the 

HMMs. Subsequently, the trained HMM was tested on unseen positive pairs in the test split and 

the negative pairs by aligning individual sequences of the pairs to the HMM using the 

hmmsearch program. For each test pair, full sequence alignment scores for both the sequences 

were obtained. The test pair was predicted as positive if both the alignment scores were greater 

than or equal to a specified alignment score cutoff, else the test pair was predicted as negative. 

The alignment scores for test pairs from all the iterations were consolidated (Fig 2.3) and 

used for calculating precision (TP/TP+FP), recall (TP/TP+FN) and F-score (eq 1) values for 

specified alignment score cutoffs, where TP, FP and FN are the number True Positive, False 

Positive and False Negative pairs, respectively. The F-score is defined as 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = (1 + 𝛽)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
                           (1) 

where β controls the importance of importance of recall over precision with values 

greater than 1 favoring recall over precision [25] 

Precision and recall values were obtained for a range of alignment score cutoffs, ranging 

from most to least stringent. Precision values were plotted against the corresponding recall 

values to obtain the Precision-Recall curve (PR-curve) [26] and the area under the PR-curve (PR-

AUC) was calculated using the trapezoidal rule [27]. The PR-AUC value ranges from 0 to 1 and 

was used as a score indicating family completeness. Complete families with no missing 

sequences are expected to have PR-AUC values closer to 1, indicating good separation between 

the positive and negative pairs. An example of PR-curve plot for a hypothetical gene family is 
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shown in Fig 2.4. Each point on the curve corresponds to a recall value and the corresponding 

precision value (recall, precision) obtained using an alignment score cutoff with score cutoffs 

decreasing from left to right. The score cutoffs on the left produce pair classifications with high 

precision (low FP) but low recall (high FN). Conversely, low score cutoffs on the right produce 

pair classifications with low precision but high recall. An F-score can be calculated for each 

point (recall, precision) on the curve using the F-score function (eq 1). The point on the curve 

with the highest F-score is the point where optimal values of precision and recall exist (optimal 

trade-off between precision and recall). This point represents the best classification performance 

for the family and the corresponding score cutoff gives the best possible separation between the 

positive and negative pairs of the respective family. 

Classification metrics such as the precision and recall values observed at the best F-score 

and the alignment score cutoff which gives the best F-score were calculated. Two types of 

alignment score cutoffs were reported corresponding to the two values of the β parameter (β = 1 

and β = 2) in the F-score function. The F-score function with β = 1 is called the F1-score 

function and the F-score function with β = 2 is called the F2-score function. In addition, the 

lowest alignment score observed for the positive pairs was also reported as the lowest alignment 

score cutoff for the given family. 

Predicting Missing Sequences 

Missing sequences for every family were predicted using the negative pairs (Fig 2.5). A single 

HMM was built using the consensus sequences of all the positive pairs. Subsequently, all the 

negative pairs were aligned to this HMM and those negative pairs where the alignment scores for 

both the sequences of the pairs were greater than or equal to the chosen type of score cutoff 

(F1/F2/lowest) were re-classified as positive pairs. Unique sequences within these re-classified 

positive pairs were predicted and reported as the missing sequences for the family. The precision 
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and recall values for prediction of missing sequences were also calculated, as (TP/(TP+FP)) and 

(TP/(TP+FN)), respectively, where True Positive (TP) are those predicted missing sequences that 

were truly missing from the family, False Positive (FP) are those that were predicted as missing 

but do not actually belong to the family and False Negative (FN) are those that are truly missing 

but were not predicted as missing. 

 

Fig 2.3. Model training and testing for classifying the positive pairs from the negative pairs. 

For each iteration, the set of positive pairs was randomly split into training and testing sets, with 

the training set containing 80% of positive pairs and the testing set containing the remaining 

20%. Consensus sequences of positive pairs from the training set were used to build HMM and 

the positive pairs from the test set and all the negative pairs, were aligned to the HMM. 

Individual sequences of each test pair were aligned to the HMM and full sequence alignment 

scores for both sequences were recorded. Alignment score results obtained from aligning unseen 
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test pairs to trained HMMs, consolidated from all test-train split iterations performed on a given 

family, were used for calculating classification statistics for the family to analyze the separation 

between positive and negative pairs. The alignment scores of the individual sequences of the test 

pairs were used to predict the test pairs as positive or negative. Given a fixed score cutoff, a test 

pair was predicted as positive if both alignment scores corresponding to both the sequences of 

the pair were greater than or equal to a score cutoff, else the test pair was predicted as negative. 

Accordingly, for a fixed score cutoff, True Positive (TP) test pairs were those that were 

originally positive and were also predicted as positive, False Positive (FP) test pairs were those 

that were originally negative but were predicted as positive, and finally, False Negative (FN) test 

pairs were those that were originally positive but were predicted as negative. 

 

Fig 2.4. A typical Precision-Recall (PR) curve for a gene family. The precision and recall 

values obtained using different alignment score cutoffs were plotted against each other to obtain 

the Precision-Recall curve (PR-curve). The alignment score cutoffs vary from high value to low 
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value from left to right, with cutoffs on the left giving high precision but low recall and cutoffs 

on the left giving low precision and high recall, for classification between the positive and 

negative pairs of a given family. The area under the PR-curve (PR-AUC) was calculated using 

the trapezoidal rule. 

 

 Fig 2.5. Predicting missing sequences using the negative pairs and family-specific 

alignment score cutoff. For each family, consensus sequences of the positive pairs and the 

negative pairs were aligned to the trained HMM for the family. Negative pairs where alignment 

scores of both the sequences of the pair were greater than or equal to the family-specific 

alignment score cutoff were reclassified as positive pairs, and the constituent sequences were 

predicted as missing sequences. 

 

Results 

Behavior on “true” YGOB Families 

The pair-classification-based scoring was tested on 4,796 yeast families from the Yeast 

Gene Order Browser (YGOB) database [28]. Since the YGOB families are built through manual 

curation using synteny-based evidence, they were assumed to be correct or "true." To check if 

the pair-classification method is assigning high classification performance scores to all the true 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2020. ; https://doi.org/10.1101/2020.02.22.942557doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.22.942557
http://creativecommons.org/licenses/by-nc-nd/4.0/


families, the distribution of the PR-AUC values for all the 4,796 yeast families was obtained (Fig 

2.6A). As expected, the distribution is highly skewed towards PR-AUC value = 1.0, with 92% of 

family classifiers having values ≥0.75. This shows that the proposed method correctly recognizes 

complete families and assigns high classification performance scores to them. 

Results for correction of “pure” but under-clustered families 

Even though this under-clustering assessment method performs well in our tests on 

good/true families, it is important to study the behavior of the method on incomplete families. To 

check the behavior of the method on incomplete families, the “true” yeast families were 

modified so that each family is missing a random 20% of the family sequences. 

The distribution of PR-AUC values for 4,796 artificially manipulated families where 

every family is missing 20% of their sequences is shown in Fig 2.6B. The distribution indicates 

that the pair-classification performance of the families drops significantly, which shows the 

ability of proposed method to detect incomplete families. For 3,971 out of 4,796 families (83%), 

the PR-AUC value dropped significantly: PR-AUC ≥ 0.9 for true families and PR-AUC < 0.75 

after removing family sequences (Fig 2.6C).  

For each pure under-clustered family, the missing sequences were predicted back using 

lowest alignment score cutoff obtained during training. Since these incomplete families are 

“pure” i.e. they do not contain any non-family sequences, the lowest score cutoff can be regarded 

as a lower bound of the family. Any true family sequence/sequence pair is expected to align to 

the family HMM with a score greater than the lowest score cutoff.  The predicted missing 

sequences were compared to the true missing sequences, for each family, and precision and 

recall values were calculated to study the accuracy of prediction. Out of 4,796 families, the 

prediction performance for missing sequences was high (precision ≥ 0.75 and recall ≥ 0.75) for 

3760 (78.4%) families with overall mean precision = 0.928 and overall mean recall = 0.859. 
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Fig 2.6. (A) Distribution of PR-AUC values for “true” yeast families. (B) Distribution of 

PR-AUC values for “pure under-clustered” yeast families with 20% of family sequences 

removed. (C) Scatterplot comparing the PR-AUC values of true families vs. incomplete 

families with 20% of sequences deleted. The distribution for true families is heavily skewed 

towards 1.0 which shows that separation between the positive and negative pairs is good and in 

majority of the cases perfect, for true gene families. The perfect classification signifies that the 
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families are complete with no missing sequences.  The distribution for pure under-clustered 

families shows the drop in the PR-AUC values as compared to the distribution of PR-AUC 

values for true families. The scatterplot shows the drop in the PR-AUC value for each family 

after 20% of the sequences are removed from the family. Each point in the plot represents a 

family. 

Results for Correction of “impure” and Under-clustered Families 

Under-clustered families can also contain non-family or “wrong” sequences. To evaluate 

the behavior of our method on incomplete families contaminated with unrelated sequences, 2,391 

yeast families were modified so that each family contained an additional 20% of sequences, from 

a set of the closest non-family sequences - in addition to missing 20% of the original family 

sequences. These were called “impure, under-clustered families” and were analyzed using the 

pair-classification method. Since these under-clustered families contain unrelated sequences, it is 

possible that more unrelated sequences can be attracted while selecting the candidate missing 

sequences, in the first step of the workflow (See methods). To make sure only relevant missing 

candidates are selected, only those non-family sequences were retained in the first step that were 

attracted by at least 50% of family sequences. 

As observed in the case of pure under-clustered families, there was a significant reduction 

in the PR-AUC values for 83% of impure, under-clustered families, as compared to the true 

families, indicating that the pair-classification method is able to detect under-clustering even 

when there are wrong sequences present in the under-clustered family. Since these families 

already contain wrong/unrelated sequences, the lowest score cutoff that gives highest recall 

cannot be used for predicting missing sequences. Therefore, two different types of alignment 

score cutoffs - score cutoff obtained using the F1-score function and score cutoff obtained using 

the F2-score function, were used to predict the missing sequences for each of the 2,391 impure 
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under-clustered families. Table 2.1 shows the precision and recall results for prediction of 

missing sequences obtained using the two types of score cutoffs. 

Table 2.1. Precision and recall results for predicting missing sequences, for yeast families 

containing non-family sequences in addition to missing 20% of the sequences 

Function 
type 

% of families 
with 
prediction 
precision 
≥0.75 

% of families 
with 
prediction 
recall ≥ 0.75 

% of families 
with both 
prediction 
precision ≥ 0.75 
and prediction 
recall ≥ 0.75  

mean 
prediction 
precision 

mean 
prediction 
recall 

F1-score 1729/2391 
= 72.3 

1348/2391 = 
56.3 

1138/2391 = 47.5 0.766 0.666 

F2-score 1685/2391 = 
70.4 

1978/2391 = 
82.7 

1426/2391 = 63.1 0.790 0.868 

 

The prediction results show that the alignment score cutoffs obtained using the F1-score 

function predicts missing sequences with high precision for 72% of the families but fails to 

recognize true missing sequences for a majority of the families, with only 56% of the families 

having high recall. Consequently, the overall prediction performance is high (high precision with 

high recall) for only 47% of the families with mean precision = 0.766 and mean recall = 0.666. 

In order to increase the recall performance, score cutoffs obtained using F2-score were also used 

to predict missing sequences for same set of impure under-clustered families. The F2-score 

function is expected to give alignment score cutoffs that favor recall over precision. Accordingly, 

the alignment score cutoffs obtained using the F2-score function improved the recall for 

prediction of missing sequences with 82% families having high recall and with 70% families 

having high precision performance with mean precision = 0.790 and mean recall = 0.868. This 
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has also increased the overall prediction performance with 63% of families having high 

prediction precision and recall for predicting missing sequences. 

Comparison to Existing Family Building Methods 

To check if the pair-classification method can improve families built using existing 

family building methods, we analyzed 374 under-clustered yeast families obtained using the 

OrthoFinder tool. The OrthoFinder method has been shown to outperform many popular family 

building methods like OrthoMCL, TreeFam and OMA [15, 29, 30]. The pair-classification 

method was able to improve 5 to 19 under-clustered families by predicting missing sequences 

using the family-specific alignment score cutoffs obtained using F1-score and F2-score 

functions, respectively. Table 2.2 shows the results on improving the under-clustered 

OrthoFinder families using two types of alignment score cutoffs obtained using the two F-score 

functions. 

Table 2.2. Results on correcting under-clustered yeast families obtained using the 

OrthoFinder tool. 

Function 
Type 

No. of improved 
families 

mean prediction 
precision 

mean prediction 
recall 

F1-score 5 0.833 0.480 

F2-score 19 0.904 0.648 

 

As expected, the more conservative F1-score function is able to correct only 5 families with high 

precision of 0.833 and low recall of 0.48. In comparison, the F2-score function is able to improve 

19 incomplete families, with significantly more recall of 0.65. 
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Analyzing and Correcting OrthoFinder Legume Families 

We also analyzed 14,663 legume families built using the OrthoFinder (version 2.2.0) tool 

from 14 legume proteomes [31–42] (Table 2.2), using the pair-classification method. The 14 

legume species belong to subfamily Papilionoideae of family Fabaceae (the third largest family 

of flowering plants [43]). An ancient Whole Genome Duplication (WGD) occurred in the 

common ancestor of the Papilionoid sub-family, around 55 Ma [44–49]. In addition, some genera 

such as Glycine and Lupinus have also undergone independent, lineage specific WGDs [49, 50]. 

Table 2.2. Genome and annotation sources and versions. 
 

Species Genotype Assembly Annot. Publication Source 

Arachis duranensis V14167 1 1 
Bertioli et al. 
(2015) 

PeanutBase 

Arachis ipaensis K30076 1 1 
Bertioli et al. 
(2015) 

PeanutBase 

Arachis hypogaea    Bertioli et al. 
(2015) 

PeanutBase 

Cajanus cajan ICPL87119 1 1 
Varshney et al. 
(2012) 

LegumeInfo 

Cicer arietinum Frontier 1 1 
Varshney et al. 
(2013) 

LegumeInfo 

Glycine max Williams 82 2 1 
Schmutz et al. 
(2010) 

Phytozome 

Lotus japonicus MG20 3 1 Sato et al. (2008) Phytozome 
Lupinus 
angustifolius 

   Hane et al. (2016) LegumeInfo 

Medicago 
truncatula 

A17_HM341 4 2 Tang et al. (2014) Phytozome 

Phaseolus vulgaris G19833 2 1 
Schmutz et al. 
(2014) 

Phytozome 

Trifolium pratense    De Vega (2015) LegumeInfo 
Vigna angularis Va3.0 1 3 Kang et al. (2015) LegumeInfo 
Vigna radiata VC1973A 6 1 Kang et al. (2014) LegumeInfo 
Vigna unguiculata  IT97K 1 1 Phytozome Phytozome 

 

The distribution of family sizes up to size 100 is shown in Fig 2.8. Approximately 12% of 

sequences (64,047) were not clustered by OrthoFinder. Considering families with sizes <=8 as 
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unusually small and assuming the unclustered sequences as singleton families, there were 10,963 

+ 64,047 = 75,010 unusually small families with sizes ≤ 8 where the 10,963 families were those 

that contain 2 to 8 sequences. 

Our hypothesis is that these small families and the unclustered sequences could be 

produced as a result of over-fragmentation or under-clustering of larger families, due to stringent 

clustering parameters and can be merged into the larger families. Accordingly, 14,663 larger 

families with sizes between 9 and 36 were analyzed using the pair-classification method. The 

unclustered sequences together with sequences from smaller families with sizes between 2 to 8 

were compiled together to be used as the sequence database for phmmer search, for gathering 

candidate missing sequences for each of the 14,663 families, in the first step of the workflow 

(see methods). Only those non-family sequences were selected as candidate missing sequences 

that were attracted by at least 50% of family sequences. Out of the 14,663 families, for 9581 

families, no candidate missing sequences were found according to this selection criteria.  

For the rest of the 5082 families, for which one or more candidate missing sequences 

were detected, pair-classification models were built and tested to study the separation between 

the positive pairs formed within the family sequences and the negative pairs formed between the 

family and non-family sequences. The distribution of PR-AUC values for the 5082 legume 

families is shown in Fig 2.9. The distribution is skewed towards 1.0 which shows that the 

majority of these families show good separation between the positive and negative pairs. 

For 1,665 families out of 5,082, one or more missing sequences were predicted using the 

family-specific alignment score cutoffs obtained in training, using the F1-score function. The F1-

score function was used to obtain the optimal alignment score cutoffs as family precision was 

considered more important than recall, for predicting the missing sequences. In total, there were 
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3,588 sequences from the small families that were predicted as missing for these 1665 larger 

families. 

Next, we attempted to merge the smaller families into the larger families using the 

predicted missing sequences with the following merging rule. If, for a larger family, missing 

sequences were predicted from a smaller family that were more than 50% of the size of the 

smaller family, the corresponding smaller family was merged into the larger family. For small 

families that had potential to merge into more than one larger family, the hhsearch program 

(version 2.0.16) [51], from the hh-suite package, was used to select the best-matching larger 

family. In all, 2,216 small families were merged into 933 larger families using the pair-

classification method. 

We also used a tree-based method to check the correctness of the family mergings. For 

each of the 933 merged families, closest outgroup sequences with respect to the legumes were 

identified using the respective family HMMs. The family HMMs were searched against the 

database of outgroup sequences and up to 10 top-matching outgroup sequences, with e-value 

≤1e-5, were selected as the closest outgroup sequences. Phylogenetic trees were calculated for 

each of the merged families along with their respective outgroup sequences using RAxML [52], 

with the PROTGAMMAAUTO substitution model, and were rooted using the closest available 

outgroup species. Each family tree was then analyzed for presence of monophyletic clades 

containing all the legume sequences. The merging was considered correct if only one 

monophyletic legume clade was observed in the merged family tree. Out of the 933 trees, 478 

families were found to contain single legume monophyletic clade. Also, there were 56 families 

which contained more than one legume clades but the newly merged sequences were part of a 

major clade containing 70% or more sequences from the merged family, and the minor clades 
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contained 30% or less sequences that were part of the original unmerged family. For at least 534 

families, out of the 933 corrected families, family mergings predicted by the pair-classification 

method were consistent with expected phylogenetic relationships. 

We also attempted to predict missing sequences for the 14,633 legume families using a 

simple HMM searching strategy, to highlight the importance of family-specific alignment score 

cutoffs. Every family HMM was searched against the database of sequences from the small 

families and sequences that align to the family with e-value ≤ 1e-10 were predicted as missing 

sequences for the family. This resulted in unusually large family clusters with more than 1600 

clusters containing ≥ 100 sequences, and the largest clusters containing more than 1400 

sequences. This showed that the generic E-value cutoff is too relaxed for some families and is 

attracting a large number of sequences. For example, for family OG0001825 (size = 36), 6 

sequences were predicted as missing using the family-specific alignment score cutoff through the 

pair-classification method, as opposed to 227 sequences that were predicted as missing using the 

simple HMM searching strategy with a e-value cutoff of 1e-10. 

Discussion 

Under-clustering is a common problem in current family building methods. For example, at least 

374 incomplete yeast families were produced by the OrthoFinder tool.  Similarly, in the case of 

legume families, the OrthoFinder method could not assign about 12% of the genes to any family, 

and many small families were also produced - potentially indicating fragmentation of larger 

families. Here, we present a sequence-pair-based classification method that is not only able to 

detect whether a given family is under-clustered or not but can also predict the missing 

sequences for the incomplete families. 
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Fig 2.8. Family size distribution for legume families built using the OrthoFinder tool.  The 

size distribution is shown up to size 100. The families with sizes between 1 and 8 were 

considered unusually small. The families that fall between the vertical red lines (9 ≤ size ≤ 36) 

were analyzed using the pair-classification method. 
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Fig 2.9. Distribution of PR-AUC values for 5082 families analyzed using the under-

clustering detection and correction method. The distribution is skewed towards higher PR-

AUC values, signifying good classification performance for the majority of the families. 
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To check the effectiveness of the method, it was tested on “true” and modified yeast 

families. On the true yeast families, the method correctly identified complete families, assigning 

near-optimal or perfect PR-AUC values to the unmodified families, and also identifying under-

clustered families through low or sub-optimal values for the PR-AUC statistic. The results on 

prediction of missing sequences for the modified families showed that the family-specific 

alignment score cutoffs obtained during training the pair-classification models were able to 

recognize true missing sequences for the families even when unrelated sequences were present in 

the families. To check if the pair-classification method can improve families built using existing 

methods, we applied this method for correcting 374 incomplete family clusters produced by the 

OrthoFinder method. The pair-classification method was able to improve up to 19 families by 

predicting the correct missing sequences for these families with mean precision of 0.9 and mean 

recall of 0.65. Finally, we also applied this method for analyzing 14,633 legume families built 

using the OrthoFinder method. The pair-classification method was able to identify 3,588 missing 

sequences for 1,665 families which were subsequently used to merge 2,216 small families into 

933 larger families using a simple merging rule. Comparisons against phylogenies of the merged 

families provided confirmatory evidence for mergings in at least 534 of the 933 merged families. 

Different types of family-specific alignment score cutoffs can be used for predicting the 

missing sequences depending upon the nature of under-clustering and preference of family 

precision or family completeness. There is a tradeoff between the objectives of family accuracy 

and family completeness. If family precision is valued more highly than family completeness, 

then an alignment score cutoff with high value is recommended. Conversely, if family 

completeness (recall) is preferred over precision, then a low alignment score cutoff should be 

used for predicting missing sequences. The alignment score cutoff obtained using the F1-score 
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function appears to be predicting missing family sequences with high precision and low recall, as 

seen from the prediction results on impure under-clustered families. Therefore, the alignment 

score cutoff obtained using the F1-score function can be used to predict missing sequences for 

families with high precision. On the other hand, the alignment score cutoffs obtained using the 

F2-score function improves the recall for prediction at the expense of precision, favoring recall 

over precision. The high-recall alignment score cutoff obtained using the F2-score function can 

be used for predicting missing family sequences with more recall at the expense of precision. 

The lowest alignment score cutoff with the highest possible recall can be used in case of those 

under-clustered families that are not “contaminated” with unrelated sequences. 

Based on the results obtained from modified under-clustered yeast families, we can make 

the following recommendations on which type of alignment score cutoff to use for a given set of 

families. If the user/expert is confident that any family detected as under-clustered (has a low 

PR-AUC value) has a low probability of containing non-family/unrelated sequences, then the 

score cutoff obtained using the F2-score or the lowest possible score cutoff can be reliably used 

for predicting the missing family sequences. In contrast, if the user thinks that the under-

clustered family may contain up to 20% of unrelated sequences, then the more conservative 

score cutoff obtained using the F1-score function should be used for predicting the missing 

sequences. 

The method presented here can be used as a post-processing tool for independently 

assessing gene family sets built using existing family building methods. Every family can be 

analyzed using the pair-classification method for signs of under-clustering, using the PR-AUC 

value obtained during training the pair-classification models. Subsequently, for each under-

clustered family, the missing sequences can be reliably predicted using the family-specific 
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alignment score cutoffs obtained in training. We also provide the containerized version of the 

tool which can be downloaded from https://hub.docker.com/r/akshayayadav/undercl-detection-

correction. 
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