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 2 

Abstract 23 

Coronavirus disease 2019 (COVID-19) is a new emerging human infectious disease caused by Severe Acute 24 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, also previously known as 2019-nCoV), originated in 25 

Wuhan seafood and animal market, China. Since December 2019, more than 69,000 cases of COVID-19 have 26 

been confirmed in China and quickly spreads to other counties. Currently, researchers put their best efforts to 27 

identify effective drugs for COVID-19. The neutralizing antibody, which binds to viral capsid in a manner that 28 

inhibits cellular entry of virus and uncoating of the genome, is the specific defense against viral invaders. In this 29 

study, we investigate to identify neutralizing antibodies that can bind to SARS-CoV-2 Sipke (S) protein and 30 

interfere with the interaction between viral S protein and a host receptor by bioinformatic methods. The 31 

sequence analysis of S protein showed two major differences in the RBD region of the SARS-CoV-2 S protein 32 

compared to SARS-CoV and SARS-CoV related bat viruses (btSARS-CoV). The insertion regions were close to 33 

interacting residues with the human ACE2 receptor. Epitope analysis of neutralizing antibodies revealed that 34 

SARS-CoV neutralizing antibodies used conformational epitopes, whereas MERS-CoV neutralizing antibodies 35 

used a common linear epitope region, which contributes to form the β-sheet structure in MERS-CoV S protein 36 

and deleted in SARS-CoV-2 S protein. To identify effective neutralizing antibodies for SARS-CoV-2, the 37 

binding affinities of neutralizing antibodies with SARS-CoV-2 S protein were predicted and compared by 38 

antibody-antigen docking simulation. The result showed that CR3022 neutralizing antibody from human may 39 

have higher binding affinity with SARS-CoV-2 S protein than SARS-CoV S protein. We also found that 40 

F26G19 and D12 mouse antibodies could bind to SARS-CoV S protein with high affinity. Our findings provide 41 

crucial clues towards the development of antigen diagnosis, therapeutic antibody, and the vaccine against SARS-42 

CoV-2. 43 

 44 
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 3 

Introduction 48 

Coronaviridae is a family of enveloped viruses which have a single strand, positive-stranded RNA genome and 49 

classified into four genera: ɑ, β, γ, and δ. Coronavirus (CoV) has been identified in human and animals including 50 

bats, camels, zpigs, cats, and mice. The viruses usually cause mild to moderate upper-respiratory tract illnesses 51 

in human [1]. Two of betacoronaviruses, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) 52 

and Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV), caused severe epidemics during the 53 

last two decades. SARS-CoV emerged in November 2002 in Guangdong province, China and affected 29 54 

countries. The epidemic of SARS-CoV resulted in 8,096 human infections and 774 deaths (9.6% fatality rate) by 55 

July 2003 [2]. MERS-CoV was first reported in Saudi Arabia in September 2012 and spread to 28 countries. The 56 

epidemic of MERS-CoV resulted in 2,494 human infections and 858 deaths (34.4% fatality rate) by November 57 

2019 [3]. 58 

Coronavirus disease 2019 (COVID-19) is newly emerging human infectious disease caused by Severe 59 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, also previous known as 2019-nCoV) originated in 60 

Wuhan seafood and animal market. In December 2019, a series of pneumonia cases of unknown cause have been 61 

reported in Wuhan, Hubei province, China [4]. Later, on January 7, a novel CoV was identified from the 62 

bronchoalveolar lavage fluid of a patient [5], and named SARS-CoV-2 by International Committee on 63 

Taxonomy of Viruses [6]. The early COVID-19 patients show symptoms of severe acute respiratory infection, 64 

such as fever, cough, sore throat, nasal congestion, headache, muscle pain or malaise, and severe patients 65 

develop to acute respiratory distress syndrome, sepsis or septic shock [7-9]. As of February 16, 2020, more than 66 

69,200 cases of COVID-19 have been confirmed in China and quickly spreads to other counties [10]. 67 

The SARS-CoV-2 is a member of betacoronavirus and shows 79% and 50% sequence identity with 68 

SARS-CoV and MERS-CoV, respectively. Phylogenetic analysis revealed that SARS-CoV-2 is most similar 69 

(88% sequence identity) to SARS-like CoVs previously collected from bats in China [5, 11, 12]. Although the 70 

viral pathogenesis of SARS-CoV-2 is unknown, most recent reports suggest that SARS-CoV-2 may use 71 

angiotensin-converting enzyme II (ACE2) as a cellular entry receptor. ACE2 is a well known host cell receptor 72 
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for SARS-CoV [12]. Shi and colleges showed that SARS-CoV-2 uses ACE2 as a cellular entry receptor but not 73 

other CoV receptors, aminopeptidase N (APN) and dipeptidyl peptidase 4 (DPP4) [13]. Ying and colleges 74 

showed the receptor-binding domain (RBD) of SARS-CoV-2 spike glycoprotein (S protein) interacts with ACE2 75 

[14]. McLaellen and colleges showed that ACE2 binds to SARS-CoV-2 S protein with much higher affinity than 76 

to SARS-CoV S protein [15]. In addition, bioinformatic analysis proposed binding structure of RBD of S protein 77 

(S-RBD) and ACE2 [16]. Thus, it is of great interest to identify neutralizing antibodies that can interact with 78 

SARS-CoV-2 S-RBD and interfere with the binding between viral S protein and host receptor ACE2. 79 

After the severe epidemic events of SARS and MERS, researchers have been made great efforts to 80 

discover neutralizing antibodies for CoVs [17, 18]. The neutralizing antibodies for CoVs mainly targeted to S-81 

RBD. S protein of SARS-CoV-2 shows 76.2% and 34.1% amino acid sequence identity to those of SARS-CoV 82 

and MERS-CoV, respectively. Therefore, the neutralizing antibodies of SARS-CoV and MERS-CoV S proteins 83 

may have a possibility to interact with SARS-CoV-2 S protein and show similar viral neutralization effect. In the 84 

present study, we employed a antibody-antigen docking approach to predict the interaction between SARS-CoV-85 

2 S-RBD and previously reported neutralization antibodies for SARS-CoV and MERS-CoV. 86 

 87 

Methods 88 

Phylogenetic analysis of SARS-CoV-2 S protein 89 

To comparing of S gene containing S protein among SARS-CoV-2, SARS-CoV, and MERS-CoV strains, the 90 

nucleotide sequences of S gene were retrieved from GISAID [19] and ViPR [20]. The S genes of SARS-CoV-2 91 

were retrieved from initially sequenced 62 genomes of SARS-CoV-2 strains. After removal of identical S gene 92 

sequences, 16 genes of S protein were used in the study. The sequence from SARS-CoV-2 Wuhan-Hu-1 93 

(Genbank  MN908947.3 or GISAID EPI ISL 402125) was used as a representative sequence of SARS-CoV-2 94 

strains throughout this study. The closely related strains of SARS-CoV-2 were selected from preliminary and 95 

extensive phylogenetic analaysis of  SARS-CoV  related strains including btSARS-CoV, SARS-CoV and a 96 

MERS-CoV strain. More detail information of the sequences used in this study were listed in Supplementary 97 
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Table S1. The sequence alignments and phylogenetic analysis were done using MEGA X [21]. The nucleotide 98 

sequence were codon aligned using ClustalW with default parameters and the phylogenetic tree was inferred 99 

using neighbor-joining  [22], maximum-likelihood [23], and maximum-parsimony methods [24]. The distance 100 

matrix was calculated based on the Jukes-Cantor methods [25]. The bootstrap values of the phylogenetic tree 101 

were derived from 1,000 replicates [26].  102 

 103 

Conservation score and epitope mapping of SARS-CoV-2 S protein  104 

The conservation score of amino acid positions on S protein in SARS-CoV-2 was calculated by ConSurf 105 

program [27]. The multiple sequence alignment of SARS-CoV-2 strain Wuhan-Hu-1and 12 related strains 106 

(Supplementary Table S1) was used as an input for ConSurf. In ConSurf, conservation scores and confidence 107 

intervals for the conservation scores were calculated using the empirical Bayesian method. The scores were 108 

normalized using the number of inputted sequences. Also, the highest score of ConSurf program means the most 109 

conserved position among sequences. We additionally checked the epitope positions on the SARS-CoV-2 S 110 

protein based on the known epitope information of 11 neutralizing antibodies developing for SARS-CoV and 111 

MERS-CoV. Each information of epitope positions was acquired from literatures (Table 1). 112 

 113 

Structure of SARS-CoV-2 S protein 114 

S-RBD protein structure was used cryo-EM structure (Protein Data Bank ID : 6VSB) [15]. To predict the 115 

missing region of cryo-EM structure in SARS-CoV-2 S-RBD, we performed homology modeling based on 116 

known the three dimensional structure of SARS-CoV (PDB ID: 6NB7) using SWISS-MODEL 117 

(https://swissmodel.expasy.org/) [28]. Then, the best homology models were selected according to Qualitative 118 

Model Energy ANalysis (QMEAN) statistical parameter. The structures were visualized with UCSF’s Chimera 119 

(https://www.cgl.ucsf.edu/chimera/). 120 

 121 

Neutralizing antibody candidates 122 

As neutralizing antibody candidates of SARS-CoV-2, the five antibodies against SARS-CoV and the six 123 
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antibodies to prevent MERS-CoV were selected in the study (Table 1). The complex structure of RBD and ten 124 

neutralizing antibodies was retrieved from PDB. The complex structures were superimposed to the RBD 125 

structure of SARS-CoV-2 which were built by homology modeling. The procedures were performed that the 126 

RBD structures of SARS-CoV2 and SARS-CoV were aligned by pairwise sequence alignment. And then the 127 

structures were superimposed according to those pairwise alignments using MatchMaker program [29]. Finally, 128 

we suceesfully predicted the complex structures of neutralizaing antibody candidates and RBD of SARS-CoV-2. 129 

About the antibody such as CR3022 [30] that the structure was not revealed, we performed the antibody strcture 130 

modeling with Rosetta program [31]. 131 

 132 

Antibody-antigen docking simulation 133 

Docking simlutation between the RBD of SARS-CoV-2 and certain SARS-CoV and MERS-CoV antibodies 134 

were implemented with Rosetta antibody-antigen docking protocols [32]. Rosetta SnugDock program can refine 135 

homology models with the flexible and uncertain region, because the program simulates most of conformation 136 

space available to antibody paratopes [33]. With the complex structures of RBD and antibody candidates, all-137 

atom relax protocol, docking prepack protocol, and antibody-antigen docking simulation were carried out to 138 

calculate the free energy of low-energy binding conformations. The distiribution of docking scores displayed as 139 

funnel plots using interface RMD (interface RMS) versus the binding score (dG binding) between antibody and 140 

antigen (Fig. 4). The binding score was used Rosetta’s docking interface score (based on the Talaris2013 force 141 

field) to rank the complexes. Rosetta interface score is defined as Isc = Ebound − Eunbound, where Ebound is 142 

the score of the bound complex and Eunbound is the sum of the scores of the individual protein partners in 143 

isolation.  In addition, 1000 independent docking runs were performed to generate the antibody-antigen models. 144 

To predict possible neutralizing antibody candidates of SARS-CoV-2, the docking results were compared 145 

between interface binding scores of SARS-CoV-2 S-RBD (homology modeling) and interface binding scores of 146 

SARS-CoV or MERS-CoV S-RBD (crystal structure) with 11 antibodies for SARS-CoV and MERS-CoV have 147 

been developed. The statistical significance was tested using student’s t-test.  148 

 149 
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Results and Discussion 150 

Phylogenetic analysis and amino acid variation of S protein  151 

The phylogenetic tree showed that the protein gene sequences were clearly clustered into three groups; SARS-152 

CoV-2 related, SARS-CoV related and HKU3 related groups (Fig. 1A). SARS-CoV and SARS-CoV-2 groups 153 

formed a rigid monophyletic group with their own closest bat SARS-CoV related strains, respectively. The result 154 

suggested that these two human-pathogenic CoV strains were derived from common ancestral bat CoV. The 155 

sequence alignments showed that there were insertions and deletion during the divergence among the strains 156 

(Fig. 1B and 1C). Various deletions were observed in SARS-CoV related group. The NTD region (position 71-157 

77, GTNGTKR) of S protein in the strain Wuhan-Hu-1 was mostly conserved in SARS-CoV-2 group but not in 158 

SARS-CoV related group. The NTD region was also conserved in other btSARS-CoV strains but the sequence 159 

similarity was low.  160 

Interestingly, human pathogenic strains and their closest strains had two insertion sequences in RBD 161 

region of SARS-CoV-2. The amino acid position 445-449 (VGGNY) and 470-486 (TEIYQAGSTPCNGVEGF) 162 

were conserved in SARS-CoV-2 related group except bat-SL-CoVZC45 strain and the corresponding sequences 163 

in SARS-related groups were ‘STGNY’ and ‘NVPFSPDGKPCTPPAL’ (Fig. 1C). The results could not give 164 

clear answers that these insertion sequences had directly diverged from the common ancestor of SARS-CoV and 165 

SARS-CoV-2 or that the sequences in SARS-CoV-2 were derived from SARS-CoV related group by mobile 166 

genetic elements [34]. Nevertheless, the insertion sequences have several antibody epitope regions (Fig. 2) and 167 

the two key residues (amino acid position 455 and 486) interacting with human ACE2 [35] which is used  as a 168 

cellular receptor of btSARS-CoV strain WIV1 [36]. This suggested that these sequence were might be related 169 

with human susceptibility and virulence. 170 

 171 

Identification and analysis of the neutralizing antibody epitopes 172 

Previously, numbers of neutralizing antibodies for SARS-CoV and MERS-CoV have been developed [17, 18]. 173 

To suggest possible SARS-CoV-2 neutralizing antibodies, monoclonal antibodies were selected from the 174 
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literature and PDB (Table 1). Epitope map showed that the antibody-binding residues of S protein are located 175 

within RDB region (Fig. 2). Four SARS-CoV neutralizing antibodies had the epitopes about 5 to 14 residues 176 

(total 34 residues, average 9.5 residues) of S-RBD and six MERS-CoV neutralizing antibodies bound to 22 to 33 177 

(total 52 residues, average 25 residues) residues. Distribution of the antibody-binding residues indicates that 178 

SARS-CoV neutralizing antibodies might be bind to mainly conformational epitopes of S-RDB, whereas MERS-179 

CoV neutralizing antibodies bound to linear epitopes of S-RBD (Fig. 2). Interestingly, the major linear epitope 180 

region (EDGDYYRKQL) for MERS-CoV neutralizing antibodies was specific insertion of MERS-CoV S 181 

protein. MERS-CoV neutralizing antibodies interacted with three receptor binding residues (E536, D537, D539) 182 

in the linear epitope region, which results in the neutralizing activity of antibodies by directly interferes the 183 

binding between S protein and dipeptidyl peptidase 4 of human . In addition, the difference of binding aspect of 184 

neutralizing antibodies might be caused by the difference of subdomain structure of receptor binding motif 185 

(RBM). The RBM of SARS-CoV S protein is made of mainly coiled structure with two short β-sheets, whereas 186 

the RBM of MERS-CoV S protein consists of four long β-sheets [37]. Sequence alignment revealed that RBD of 187 

SARS-CoV-2 was more similar to that of SARS-CoV than MERS-CoV (Fig. 2). Therefore, this suggested that 188 

SARS-CoV neutralizing antibodies could be effective for SARS-CoV-2. 189 

 190 

S-RBD structure modeling and superimposition of neutralizing antibodies  191 

Human infection of SARS-CoV-2 was firstly reported in Wuhan, Hubei province, China last December [4]. 192 

Previous studies have reported several results for the interaction between S protein of SARS-CoV-2 and ACE2 193 

as a receptor [13, 14, 16, 38]. However, any interaction of SARS-CoV-2 S protein with developed neutralizing 194 

antibodies for SARS-CoV and MERS-CoV has not been reported yet. The structure of SARS-CoV-2 S protein 195 

was used S protein which revealed  by cryo electron microscopy structure.  Subsequently, the missing region of 196 

SARS-CoV-2 S-RBD region comprising of 181 amino acids were built from SARS-CoV S proteins (PDB ID: 197 

6NB7) which were good structural templates (Fig. 3 box). In the S-RBD structure, we also displayed 198 

experimentally defined epitope information based on position specific aligment with SARS-CoV or MERS-CoV 199 

antibody binding epitopes.  200 
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To visualize the overall antibody binding region to SARS-CoV-2, we superimposed the predicted 201 

structure of SARS-CoV-2  RBD protein at the X-ray crystal structure of known antibody-antigen complex from 202 

SARS and  MERS (Fig. 3). The structures of five antibodies including m396, 80R, F26G19, S230, and CR3022 203 

developing to prevent SARS-CoV were aligned on SARS-CoV-2 S-RBD successfully (Fig. 3A). The six MERS-204 

CoV antibodies such as  MERS-27, CDC2-C2, m336, 4C2, D12, and MCA1 were also aligned on SARS-CoV-2 205 

S-RBD (Fig. 3B). Because the X-ray crystal structure of CR3022 was not revealed, the optimized structure was 206 

predicted using antibody homology modeling by 1000 structures generated using Rosetta program. As a results, 207 

two SARS-CoV antibodies including CR3022 (-13.91 dG score) and F26G19 (-15.98 dG score) and MERS-CoV 208 

D12 (-14.01 dG score) antibody had higher binding score than other antibodies with SARS-CoV-2 S-RBD 209 

region. However, various MERS-CoV antibodies did not match SARS-CoV-2 because MERS-CoV antibodies 210 

were interacted with the outter regon of S-RBD which was located in major linear epitope region 211 

(EDGDYYRKQL) (Fig. 2).  212 

 213 

Comparison of Antibody-RBD protein binding interaction  214 

Based on antibody-antigen docking simulation, we calculated the binding scores between 11 antibodies and S-215 

RBD structures. The antibody-antigen docking simulation generated not only the crystal structures of SARS-216 

CoV and MERS-CoV S-RBD proteins, but also the high-quaility homology models with SARS-CoV-2 S-RBD.  217 

To suggest S-RBD binding antibody, antibody-RBD docking comparisons were performed using the mean value 218 

of caculated scores from the generated models. The mean scores of the docking simulation are shown in Table 2.  219 

Among the SARS-CoV antibodies, only CR3022 showed that the binding affinity of SARS-CoV-2 was 220 

higher than SARS-CoV. In addition, the docking score distribution of CR3022 was significantly changed 221 

between SARS-CoV-2 and SARS-CoV-2 (Fig. 4). For the CR3022 antibody, the mean score of binding affinity 222 

was increased from -11.21 dG score (SARS-CoV, crystal structure) to -13.91 dG score (SARS-CoV-2, cryo-EM 223 

structure) with a p-value of 0.00367. The binding affinity of all antibody-antibgen docking was tested using 224 

1000 generated structures. Interestingly, the CR3022 was experimentally performed for the binding effect of 225 

SARS-CoV-2 S-RBD [14]. The researchers found that the CR3022 had the binding effect anainst SARS-CoV-2 226 
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S-RBD and that m396 and m336 antibodies did not bind to SARS-CoV-2 S-RBD. The researchers also reported 227 

that the binding affinity of CR3022 was increased to 6.28nM with SARS-CoV-2 from 0.125nM with SARS-228 

CoV, The results of the docking simulation were consistent with the evidence although more research was 229 

needed to prevent effects, including an experiment using live viruses. 230 

 231 

Conclusions 232 

The fact that CoVs similar to SARS in Chinese bats is most identical to SARS-CoV-2 suggests that SARS-CoV 233 

may have been originated from a common ancestral bat CoV. Comparing the sequences among the three groups, 234 

various deletions were observed in the SARS-CoV related group. Especially, amino acid positions 71-77 235 

(GTNGTKR) in the NTD region of the S protein, 445-449 (VGGNY) and 470-486 (TEIYQAGSTPCNGVEGF) 236 

were noteworthy. The regions were highly conserved in SARS-CoV-2, unlike other SARS-CoVs.  237 

Among the neutralizing antibodies for SARS-CoV and MERS-CoV, CR3022 was predicted to have 238 

better binding affinity to the S-RBD region of SARS-CoV-2 than other antibodies. The comparison of antibody 239 

binding region between SARS-CoV-2 and other coronaviruses, such as SARS-CoV and MERS-CoV, was 240 

conducted to apply the suitable diagnostic or therapeutic antibodies and vaccines that are mimetics of extremely 241 

infectious SARS-CoV-2. 242 
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Figure 1. (A) Neighbor-joining tree based on spike protein gene sequences showing the relationship between 383 

2019-nCoV and related SARS-related viruses. The bootstrap value greater than 50 are shown at the branch nodes. 384 

The filled circles indicated that the corresponding nodes are conserved in all tree-drawing methods. MERS-CoV 385 

KNIH002/05/2015 is used as the outgroup. Bar, 0.1 substitutions per nucleotide position. (B) The upper panel is 386 

structure of spike gene of SARS-CoV-2. The middle panel is the result of the Sim plot analysis. The sequence 387 

similarity of NTD domain region was the lowest among spike genes. Nevertheless, SARS-CoV-2_bat-RaTG13 388 

had highly conserved in NTD domain than other SARS-CoVs.  On the other hand, in the RBD region, not only 389 

SARS-CoV but also SARS-CoV-2_bat-RaTG13 showed low sequence similarity. The lower panel indicates the 390 

conservation score of the protein sequences of 27 SARS-CoV species. (C) Intersertional regions in SARS-CoV-2 391 

S protein. The amino acid position 445-449 (VGGNY) and 470-486 (TEIYQAGSTPCNGVEGF) were conserved 392 

in SARS-CoV-2 related group except bat-SL-CoVZC45 strains (red color), and the corresponding sequences in 393 

SARS-related groups were ‘STGNY’ and ‘NVPFSPDGKPCTPPAL’ (blue color). 394 
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 396 

 397 

Figure 2. Epitope map and conversation score of the RBD region in SARS-CoV and MERS-CoV S protein. The 398 

blue bar chart shows the conservation score. The numbers are the amino acid positions in the S protein. Color 399 

boxes indicate binding epitopes for SARS-CoV (red color) and MERS-CoV (green color) antibodies. The amino 400 

acid residues in red color indicate binding epitopes for host receptors. 401 
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 403 

Figure 3. The three dimensional structure of SARS-CoV-2 S protein. (A) The three dimensional structure of 404 

RBD domain in S protein was colored gray. The RBD structure shown from various sides. On the surface 405 

representation, the SARS-CoV antibodies, MERS-CoV antibodies, and both SARS-CoV and MERS-CoV 406 

antibodies binding epitopes are colored red, green, and purple, respectively. The sky blue color represents 407 

SARS-CoV-2 S protein and the RBD domain were highlighted with orange color. The red box indicates the 408 

RBD region, which is containing SARS-CoV or MERS-CoV antibody binding epitope. The predicted RBD 409 

structure of SARS-CoV-2 S protein in complex with five SARS-CoV antibodies (B) and six MERS-CoV 410 

antibodies (C). The complex structure was predicted by integrating the previously known complex structures of 411 

SARS-CoV or MERS-CoV with antibodies using the superimposition of structures. Each colored structure in 412 

surface representation indicates antibody labeled with the same color. More detail information about antibodies 413 

were described in Table 1. 414 
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 416 

Figure 4. The distiribution of docking scores between antibody and antigen using interface RMD (interface 417 

RMS) versus the binding energy (dG binding). The docking simulation were performed by 1000 generated 418 

antibody-antigen structures. The statistical significance was tested using student’s t-test. (A) Mean score of 419 

docking simulation between CR3022 and SARS-CoV S-RBD was -11.21 dG score, and mean score of CR-3022 420 

and SARS-CoV2  S-RBD was -13.61 dG score (p-value = 0.00367). 421 
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Table 1. Neutralizing antibodies and their epitopes analyzed in the study. 

Target Name Origin RBD binding residues PDB ID Reference 

      

SARS-CoV m396 Human K365, K390, D392, R395, R426, D429, R441, E452, D454, 

F483, Y484, T485, T486, T487, G488, I489, Y491, Q492 

2DD8 [39] 

 80R Human T433, N437, K439, P469, P470, A471, C474, W476, L478, D480, 

T485, Q492 

2GHW [40] 

 S230 Human L443, Y408, Y442, F460, Y475 6NB6 [41] 

 F26G19 Mouse T486, T487, G488, I489, G490, Y491, Q492 3NGF [42] 

 CR3022 Human n.a. n.a. n.a. 

MERS-CoV MERS-27 Human T392, N398, L495, K496, V527, S528, I529, V530, P531, S532, 

T533, W535, E536, D537, G538, D539, Y540, Y541, R542, 

K543, W553 

5YY5 [43, 44] 

 CDC2-C2 Human N501, K502, S504, F506, D510, R511, T512, E513, W535, 

E536, D537, G538, D539, Y540, Y541, R542, W553, V555, 

A556, S557 

6C6Z [43] 

 m336 Human Y499, N501, K502, S504, R505, F506, D510, R511, T512, 

E513, P515, W535, E536, D537, G538, D539, Y540, Y541, 

R542, W553, V555, S557, G558, S589 

4XAK [43, 45] 

 MCA1 Human K502, F506, S508, D510, R511, E513, S528, I529, P531, T533, 

W535, E536, G538, D539, Y540, Y541, R542, K543, Q544, 

W553, V555, S557 

5GMQ [43, 46] 

 4C2 Humanized G391, T392, P394, Y397, N398, K400, L495, K496, Y523, 

P525, C526, V527, S528, I529, V530, P531, S532, T533, V534, 

W535, E536, D537, D539, Y540, Y541, R542, K543, Q544, 

L545, S546, E549, W553, T560 

5DO2 [43, 47] 

 D12 Mouse G391, T392, P394, Y397, N398, F399, K400, L495, K496, 

P525, V527, S528, I529, P531, S532, T533, W535, E536, D537, 

D539, Y540, Y541, R542, K543, Q544, L545, S546, E549, 

W553, T560 

4ZPT [43, 48] 
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Table 2. Antibody-antigen docking score and experimental affinity 

Antibody  

SARS/MERS-CoV S-RBD  SARS-CoV-2 S-RBD p-value 

Docking  
(dG score) 

Experiment (nM) 
Docking  
(dG score) 

Experiment (nM) 
 

m396 (SARS) -21.92 0.0046 -6.92 No binding < 2.2e-16 

80R (SARS) -12.04 1.59 -3.59 - 3.986e-07 

S230 (SARS) -7.18 - -7.48 - 0.7731 

F26G19 (SARS) -17.16 0.45 -15.98 - 2.049e-05 

CR3022 (SARS) -11.21 0.125 -13.91 6.28 0.00367 

MERS27 (MERS) -13.12 71.2 -4.26 - < 2.2e-16 

CDC2-C2 (MERS) -28.21 2.65 -11.63 - < 2.2e-16 

m336 (MERS) -23.21 0.0994 -12.05 No binding < 2.2e-16 

MCA1 (MERS) -26.74 - -10.69 - < 2.2e-16 

4C2 (MERS) -21.12 317 -11.48 - < 2.2e-16 

D12 (MERS) -22.03 6.63 -14.01 - < 2.2e-16 
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