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ABSTRACT 46 

Rationale & Objective: Manual quantification of activated cells can provide valuable 47 

information about stimuli-induced changes within brain regions; however, this analysis remains 48 

time intensive. Therefore, we created SimpylCellCounter (SCC), an automated method to 49 

quantify cells that express Cfos protein, an index of neuronal activity, in brain tissue and 50 

benchmarked it against two widely-used methods: OpenColonyFormingUnit (OCFU) and 51 

ImageJ Edge Detection Macro (IMJM).  52 

Methods: In Experiment 1, manually-obtained counts were compared to those detected via 53 

OCFU, IMJM and SCC. The absolute error in counts (manual versus automated method) was 54 

calculated, and error types were categorized as false positives or negatives. In Experiment 2, 55 

performance analytics of OCFU, IMJM and SCC were compared. In Experiment 3, SCC 56 

performed analysis on images it was not trained on, to assess its general utility.  57 

Results & Conclusions: We found SCC to be highly accurate and efficient in quantifying both 58 

cells with circular morphologies and those expressing Cfos. Additionally, SCC utilizes a new 59 

approach for counting overlapping cells with a pretrained convolutional neural network classifier. 60 

The current study demonstrates that SCC is a novel, automated tool to quantify cells in brain 61 

tissue, complementing current, open-sourced quantification methods designed to detect cells in 62 

vitro.  63 

Keywords: Automated quantification, convolutional neural network, Cfos, brain tissue 64 
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INTRODUCTION 70 

Immediate early genes (IEGs) are rapidly transcribed and translated upon stimulus 71 

exposure, making them useful for post-behavioral, correlated readouts of cellular activity1. Cfos, 72 

a commonly studied IEG, is a proto-oncogene and member of the Fos family of transcription 73 

factors. cfos mRNA is transcribed within minutes of stimulus exposure and results in the 74 

cytoplasmic expression of Cfos protein 60-90 minutes later2. Behaviorally-induced increases in 75 

the number of Cfos-Immunoreactive (Cfos-IR) cells often suggest that these activated neuronal 76 

ensembles may contribute to specific behaviors. For example, characterization of the brain 77 

regions and cell types in which Cfos protein is increased has provided insight into the cell 78 

populations that contribute to learning and memory, drug addiction, obesity and fear 79 

conditioning3–11.  80 

To analyze Cfos-IR cells, experimenters can choose between manual or automated 81 

methods for quantification. Brain slices are typically immunohistochemically stained for Cfos 82 

protein, resulting in round, light to dark-labeled cells. For manual quantification, cells can be 83 

counted in areas within a set microscopic field of view, or digital images of Cfos-stained tissue 84 

are obtained, imported and thresholded using software such as ImageJ to aid in counting4,5,12,13. 85 

While analysis with select software improves the reliability of manual quantification, an 86 

experimenter must still determine whether to count a dark-stained cell based on smoothness, 87 

clarity and size. Additionally, as the number of images increases, so does fatigue and the 88 

potential for increased errors in counts. Alternatively, existing automated methods can be used 89 

to quantify Cfos-like cells even though they are optimized for cell colony or tumor spheroid 90 

analysis. However, these algorithms can encounter problems with edge detection, contrast 91 

enhancement and denoising in brain tissue analysis14–18
. Edge detection allows for clean 92 

segmentation of cells within colonies; however, this algorithm can detect false edges in 93 

background staining present with Cfos cells, which can obscure the cells of interest. While 94 
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contrast enhancement makes it easier to detect Cfos-IR cells, it can result in an overestimation 95 

of total cell count due to increased pixel intensity of dimly-stained cells. Lastly, denoising can 96 

remove background noise from Cfos images, but it can also lead to false negatives in images 97 

where Cfos-IR cells may be slightly out-of-focus. Therefore, to increase objectivity, reliability and 98 

minimize the time required to analyze images, an improved automated method for quantifying 99 

Cfos-like cells in brain tissue is required.  100 

We created SimpylCellCounter (SCC), an efficient and accurate automated method for 101 

quantifying Cfos-IR cells in brain tissue. SCC utilizes binary thresholding and morphological 102 

functions from the open-sourced computer vision library OpenComputerVision19, implemented in 103 

Python. SCC allows a user to manually set parameters of darkness with basic thresholding, cell 104 

size and circularity by filtering out non-circular objects and counting only user-defined objects 105 

(Fig 1). SCC also utilizes OpenCV’s highly-efficient, image processing functions to rapidly batch 106 

process large sets of digital images and incorporates a new approach to separating overlapping 107 

cells via a convolutional neuronal network.  108 

To test the feasibility and efficiency of SCC, we compared our algorithm to two, highly-109 

cited, open-sourced, cell colony-based automated quantification methods: 110 

OpenColonyFormingUnit17 (OCFU) and ImageJ Edge Detection Macro16 (IMJM). We chose 111 

OCFU and IMJM due to the similarities between Cfos-IR cells and the cell colony images 112 

analyzed in their respective publications. We used 192 images of Cfos-IR cells from the 113 

orbitofrontal cortex (OFC) of rats that underwent a cue-induced reinstatement paradigm where 114 

previously drug-paired cues elicited increased drug-seeking behaviors. We tested various 115 

metrics of performance between OCFU, IMJM and SCC and found that SCC quantified Cfos-IR 116 

cells with high accuracy when compared with manual analysis. SCC displayed the fastest 117 

quantification time of all automated methods tested and maintained accuracy and efficiency 118 

when threshold values and image size were changed. Lastly, we showed that SCC generalized 119 
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across multiple sets of images (fabricated Cfos images, S. aureus and E. coli colonies), 120 

indicating that it was not overfit to our laboratory’s method of Cfos analysis.  121 

RESULTS 122 

Comparison of Cfos-IR counts between manual and automated methods (EXP 1) 123 

The number of Cfos-IR cells at several bregma points within the ventral OFC (vOFC) 124 

was quantified manually (white) or with three automated methods: OCFU (orange), IMJM (gray) 125 

or SCC (blue) (Fig 2). Specifically, a 4x6 ANOVA revealed no significant Method x Bregma 126 

interaction effect or main effects of Method or Bregma (Fig 2A). Therefore, all automated 127 

methods (OCFU, IMJM and SCC) displayed similar average number of Cfos-IR cells at each 128 

bregma point. An ANOVA of the total number of vOFC Cfos-IR cells quantified by each method 129 

did not reveal a significant effect. However, there was a trend (F3,28 = 2.51, p = 0.079) for an 130 

increased total number of cell counts by OCFU and IMJM, but not SCC, compared to manual. 131 

(Fig 2B).  132 

Next, we calculated the difference in the number of Cfos-IR cells counted between 133 

manual and each automated method. ANOVA of the total absolute errors per method revealed a 134 

significant effect (F2, 141 = 30.41, p<0.0001). Post-hoc analysis revealed that the absolute error 135 

between manual and automated counts determined by SCC was significantly less than both 136 

OCFU and IMJM (Bonferroni’s test, p<0.01). Therefore, compared to IMJM and OCFU, SCC 137 

had the least difference in cell counts compared to manual analysis (Fig 2C).  138 

To further explore the types of errors, we conducted an analysis of false positives (Fig 139 

2D) and false negatives (Fig 2E) for all automated methods. ANOVA of false positives revealed 140 

a significant effect, (F2,87 = 22.37, p<0.0001), with SCC displaying a significantly lower 141 

magnitude of false positives compared to OCFU and IMJM (Bonferroni’s test, p<0.01). 142 

Additionally, an ANOVA of false negatives revealed a significant effect, (F2,87 = 5.27, p<0.01) 143 
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with SCC detecting significantly lower magnitude of false negatives compared to IMJM 144 

(Bonferroni’s test, p<0.01) but not OCFU. Therefore, SCC minimized detection of false positives 145 

and negatives, resulting in a smaller number of absolute errors compared to OCFU and IMJM. 146 

Examples of types of false positives (plus symbol) and negatives (carrot symbol) compared to 147 

manual counts (magenta circles) are depicted for each automated method (Fig 3). 148 

Lastly, the number of Cfos-IR cells quantified with SCC was correlated with manual 149 

counts (Fig 2F). Linear regression analysis of manual vs automated counts revealed the 150 

following: manual vs OCFU, p<0.0001 with a regression equation of y = 0.552x + 20.75; manual 151 

vs IMJM, p<0.0001 with a regression equation of y = 0.540x + 28.68; manual vs SCC, p<0.0001 152 

with a regression equation of y = 0.948x + 0.31. Therefore, SCC detected similar cell counts per 153 

image when compared to manual analysis. 154 

Differences in automated method performance (EXP 2) 155 

 We compared the performance analytics of OCFU, IMJM and SCC at analyzing Cfos-IR 156 

cells (Fig 4). We determined the average time (sec) for each automated method to quantify one 157 

image (Fig 4A). An ANOVA of time per method revealed a significant effect (F2,87 = 1292, 158 

p<0.0001), with SCC exhibiting the lowest analysis time (Bonferroni’s test, p<0.01). The time 159 

required to quantify a set of images as a function of image size was also compared (Fig 4B). A 160 

3x7 repeated measures ANOVA of analysis time per method revealed a significant Method x 161 

Size interaction effect (F12,522 = 2271, p<0.0001) and a significant main effect of Size 162 

(F6,522=9773, p<0.0001), with SCC exhibiting the lowest time to analyze one image across size 163 

groups (Bonferroni’s test, p<0.01). Therefore, all 3 automated methods display increases in 164 

processing time with larger image size. While SCC’s processing speed increases as a function 165 

of image size, it exhibits the most rapid analysis compared to OCFU and IMJM.  166 
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Lastly, we compared the absolute error of each automated method as the threshold 167 

varied as a percentage of mean pixel intensity per image (Fig 4C). A 3x4 repeated measures 168 

ANOVA of absolute errors per method revealed a significant Method x Threshold group 169 

interaction effect (F6,126 = 9.11, p<0.0001) and a significant main effect of Threshold group (F3,126 170 

= 66.08, p<0.0001), with SCC displaying the lowest absolute error across threshold groups 171 

(Bonferroni’s test, p<0.01). Therefore, SCC displays robust accuracy even as threshold 172 

percentage and background noise increases.  173 

Determining SCC’s performance on different image types (EXP 3) 174 

 We compared ground truth (white) to SCC (blue) counts on three different types of 175 

images: fabricated Cfos-images, S. aureus and E. coli cell colonies (Fig 5). Independent 176 

samples t-test of average ground truth counts vs SCC counts revealed no significant differences 177 

(Fig 5B, t28 = 0.13, p = 0.89). Linear regression of ground truth vs SCC counts revealed a 178 

significant correlation (Fig 5C, p<0.0001) and regression equation of y = 0.991x – 0.82. 179 

Independent samples t-test of average ground truth counts vs SCC counts revealed no 180 

significant differences between groups (Fig 5E, t26 = 0.11, p = 0.91). Linear regression of ground 181 

truth vs SCC counts revealed a significant correlation (Fig 5F, p<0.0001) and regression 182 

equation of y = 0.968x + 0.10. Independent samples t-test of average ground truth counts vs 183 

SCC counts revealed no significant differences between groups (Fig 5H, t28 = 0.20, p = 0.84). 184 

Linear regression of ground truth E. coli counts vs SCC counts revealed a significant correlation 185 

(Fig 5I, p<0.0001) and regression equation of y = 0.943x + 0.39. Taken together, these results 186 

show that SCC counts matched ground truth counts for fabricated Cfos images (Fig 5A-C), S. 187 

aureus images (Fig 5D-F) and E. coli colonies (Fig 5G-I). Therefore, SCC accurately quantifies 188 

cell types that it was not trained on, indicating generalizability.  189 

 190 

 191 
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DISCUSSION 192 

 193 

The present study aimed to create an automated method to analyze cell number in brain 194 

tissue, to complement existing open-sourced methods designed for cell colony analysis. We 195 

created SimpylCellCounter (SCC) and used this automated method to quantify the number of 196 

Cfos-immunoreactive (IR) cells in brain tissue. We analyzed several variables and found that 197 

SCC 1) detected a similar magnitude of cells as manual analysis, 2) displayed low absolute 198 

errors, false positives and negatives compared to two widely-used automated methods, 199 

OpenColonyFormingUnit (OCFU) and ImageJ Edge Detection Macro (IMJM) and 3) was rapid 200 

at processing images of increasing size and 4) detected similar number of cells across varying 201 

thresholds suggesting that this algorithm can maintain accuracy when this parameter changes. 202 

Importantly, SCC introduces a novel approach to detect and quantify overlapping cells with the 203 

use of Hu Moments and a convolutional neural network (CNN). Use of a pretrained CNN affords 204 

rapid analysis along with high levels of accuracy at quantifying overlapping cells. For binarized 205 

objects with significant overlap, it is difficult to judge whether there are multiple cells or simply 206 

one cell with irregular morphological features. Our CNN implementation is optimal for such a 207 

task since it learns morphological features of binarized single or multiple cells, making input 208 

data classification with a pretrained network a quick process. 209 

SCC-driven analysis of Cfos-IR cell number was correlated with manual counts. We 210 

previously found that rats presented with a drug-associated cue displayed an increased number 211 

of Cfos-IR cells in the ventral orbitofrontal cortex (vOFC). Specifically, when compared to 212 

previous manually-analyzed data, SCC detected similar numbers of total Cfos-IR cells (Fig 2B) 213 

and similar numbers of counts in anterior-posterior divisions of the OFC (Fig 2A). Furthermore, 214 

there is a near perfect match of cell counts analyzed manually vs with SCC (Fig 2F). Taken 215 

together, these data indicate that SCC is comparable to manual analysis, accurate at providing 216 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.22.960948doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.22.960948


 

9 

 

objective estimates of cell number and efficient since less time is needed to determine whether 217 

a cell should be counted based on size, shape and pixel intensity. 218 

We also compared manual analysis of cell counts to two, commonly-used algorithms OCFU 219 

and IMJM, which analyze cell number in colonies but can also be used for other applications 220 

requiring detection of circular objects. We did not benchmark SCC against general cell analysis 221 

methods like CellProfiler20 and Ilastik21, since they require the user to have a working 222 

understanding of computer vision algorithms to create a custom pipeline for analysis prior to 223 

inputting data, making these solutions less user-friendly.  224 

  We wanted to examine whether OCFU, IMJM and SCC detected similar numbers of cells. 225 

While not significant, there was a trend for OCFU and IMJM to result in higher total numbers of 226 

Cfos-IR cells in the vOFC and across bregmas, compared to manual and SCC (Fig 2B). When 227 

we compared the absolute error between manual and automated counts, we found that SCC 228 

resulted in significantly less errors than OCFU and IMJM (Fig 2C). We then aimed to 229 

understand the potential reasons for differences in cell number between manual, OCFU, IMJM 230 

and SCC methods. Examples of false negatives occurred where OCFU filtered out Cfos-IR cells 231 

that were oblong shaped or blurry. False positives may have occurred when cells displayed a 232 

color gradient (half of cell dark, other half light), resulting in a cell being counted twice (Fig 3, 233 

OCFU). Examples of false negatives in IMJM occurred when contrast enhancement created a 234 

loss of difference in pixel intensity in a cell vs background, resulting in edge detection failure and 235 

omission of neighboring positive cells. Additionally, filtering procedures may alter cell 236 

morphology, making it difficult for IMJM’s watershed algorithm to effectively separate certain 237 

overlapping cells, leading to lower counts. (Fig 3, IMJM). False positives could result from 238 

errors where background, noise-like particles with correct cell shape are erroneously filled with 239 

IMJM’s “fill holes” step, leading to increased counts.  240 
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SCC is a brain-specific algorithm that complements currently-available, automated 241 

quantification methods, offering improvements in speed of digital analysis. SCC’s simple 242 

processing scheme only includes functions that are essential to separating Cfos-IR cells from 243 

background and noise, such as thresholding, dilation and erosion. Similar to OCFU and IMJM, 244 

SCC initially processes an entire digital image, until step 4 of the algorithm (Fig 1A), when it 245 

then computes Hu Moments to independently and sequentially quantify circularity in a contour-246 

wise fashion. Therefore, SCC decides which objects demand additional time for analysis: non-247 

circular contours are input into the CNN to test for overlapping cells while circular objects are 248 

simply counted, thereby reducing processing times (Fig 4A). Furthermore, we also determined 249 

that SCC is consistently faster at processing increasingly larger images (Fig 4B) and maintains 250 

a high level of count accuracy even as threshold values change (Fig 4C). As thresholds 251 

approach the mean pixel intensity of the image being processed, the absolute error (manual – 252 

automated) consistently increases for all automated methods. However, SCC is able to 253 

minimize this error, likely due to the dynamic filtering operations: as threshold approaches the 254 

mean, objects are more rigorously filtered by increasing iterations of dilation and erosion.  255 

Lastly, we aimed to determine whether the SCC algorithm could also accurately analyze cell 256 

counts from other lab data. To do this, we utilized data from artificially-constructed Cfos-IR 257 

images that contained cells in varying size and intensity. SCC exhibits accurate performance, as 258 

shown by raw averages and correlation (Fig 5A-C). Furthermore, we utilized sample images 259 

obtained from the OCFU database from S. aureus and E. coli image samples. SCC displayed 260 

strong correlations between manual vs automated detection method, demonstrating that our 261 

algorithm can detect circular, non-Cfos-IR, objects including cells that are pigmented and from 262 

in vitro mediums (Fig 5D-F, G-I). These data demonstrate that SCC is not overfit to the data it 263 

was trained on and can likely generalize to other datasets collected by different labs. With that 264 
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being said, even though SCC can count other types of cells in bacterial cultures, SCC is built for 265 

Cfos-like images.  266 

In the future, SCC can potentially be used to effectively analyze viral or fluorescent images. 267 

For example, colorimetric Cfos images have dark cells and a lighter background, whereas 268 

fluorescently-labeled cells would be lighter than the background. Therefore, the user can simply 269 

invert the threshold in SCC and proceed with the same processing chain. Given that the SCC 270 

code is flexible, a user can easily adjust parameters of threshold, size and filtering to fit their 271 

specific application. SCC is an accurate, efficient and novel automated tool to quantify Cfos-like 272 

cells in brain tissue and can be extended to analysis of cells with circular morphologies. 273 

MATERIALS & METHODS 274 

Animals and Behavioral Experiments 275 

We utilized a previously published data set in which the number of Cfos-IR cells was 276 

increased with exposure to cocaine-associated cues22. Male Sprague-Dawley rats (Envigo Inc, 277 

Haslett, MI, N=20) were housed under reversed lighting conditions (lights off 7am, on 7pm) and 278 

were fed 20-25g of standard irradiated rodent chow with water available ad libitum. Protocols 279 

were approved by the Institutional Animal Care and Use Committee (IACUC) at Michigan State 280 

University (MSU) and followed the National Research Council’s Guide for the Care and Use of 281 

Laboratory Rats. Intravenous catheters were subcutaneously implanted into the right jugular 282 

vein. Following 5 days of recovery, rats underwent cocaine self-administration and extinction 283 

training, followed by drug-seeking tests without cue (EXT) or with cue presentation (TEST). 284 

After tests, rats were sacrificed and perfused, brains were extracted and cryoprotected and 285 

sectioning and image processing was conducted as previously described22. We obtained a total 286 

of 192 images of Cfos-stained sections from lateral and ventral OFC (lOFC, vOFC respectively) 287 

from six bregma points spanning the A-P axis (+5.12 to +3.72), from which Cfos-IR cells were 288 
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quantified22. In the current study, we compared counts that were previously analyzed manually, 289 

with the automated methods OCFU, IMJM and SCC.  290 

Image Processing Steps and Parameter Selection 291 

 Manual: We imported images into ImageJv1.5113, converted them to 8-bit grayscale and 292 

applied threshold values with the top value set to 115 and the bottom set to 120. These 293 

adjustments created a round, red contour around the darkest cells on each image, which 294 

assisted experimenters to judge the circularity and size of cells during counting (Fig 1A).  295 

 OCFU: We utilized the OCFU graphic user interface application for all experiments. We 296 

set two parameters: radius size (minimum at 10 pixels, maximum at auto-max) and threshold to 297 

61. Since OCFU’s threshold does not directly correspond to pixel intensity, we incorporated a 298 

standardization procedure (Supplementary Methods & Supplementary Fig S2) by which a 299 

threshold value of 61 in OCFU was equivalent to the value of 115 in manual, IMJM and SCC. 300 

(Fig 1A).  301 

IMJM: This algorithm contained numerous parameters that were local to ImageJ 302 

functions but not common to OCFU or SCC. Therefore, we used parameters for IMJM provided 303 

in16. We modified the contrast enhancement value to 0.001 and circularity value to 0.8-1.0 (Fig 304 

1A). We also added a binary threshold step and implemented IMJM in MATLAB’s ImageJ 305 

wrapper, MIJI23. The exact MIJI workflow can be found at: 306 

https://github.com/aneeshbal/SimpylCellCounter/blob/master/recreationFunctions/AutoQMS_MI307 

JI.m 308 

SCC:  Binary Mask- In the first processing step, the user selects the folder of images to 309 

be analyzed then SCC applies a binary threshold to 8-bit images, converting all pixel values 310 

lower than the set threshold to black and those higher than threshold to white. After 311 

thresholding, shapeless, poorly-connected, sparse groups of black pixels represent background, 312 
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noise-like particles while round, well-connected, dense collections of black pixels represent 313 

Cfos-IR cells.  314 

Dilation & Erosion - In the dilation step, white pixels (background) engulf adjacent black 315 

pixels (cells of interest + noise). Consequently, small, noise-like objects are completely engulfed 316 

by white pixels and become part of the background. To recover an object’s original morphology, 317 

which is altered with dilation, SCC performs an erosion step (opposite of dilation). Dilation and 318 

erosion steps occur for a set number of iterations, determined by the user-set threshold to mean 319 

pixel intensity ratio (MPI). As the threshold-MPI ratio approaches 1, the magnitude of noise-like 320 

particles exponentially increases, therefore SCC accordingly increases the iterations of these 321 

steps resulting in a stringent filtering process.  322 

Object Selection- Following dilation and erosion, SCC discards objects based on size 323 

criteria by drawing contours over all the objects on the filtered binary mask, calculates the 324 

zeroth-order moment of each contour (area) and discards all contours with a smaller area than 325 

the user-set criteria (pixel radius converted to area). Following this step, certain objects may be 326 

overlapping, obscuring the total cell count. Rather than performing the popular watershed 327 

segmentation algorithm to separate overlapping objects, which can alter cell morphology24, we 328 

utilized Hu Moments to compute contour circularity25,26. Hu Moments are orientation- and scale-329 

invariant properties intrinsic to shapes. Perfectly circular contours resulted in a log-adjusted first 330 

Hu Moment value of ~0.79. We observed that a single contour surrounds the perimeter of 331 

overlapping objects, resulting in a non-circular contour with a first Hu Moment value typically 332 

below ~0.76. SCC then applies a pretrained convolutional neural network (CNN) classifier 333 

(Supplementary Methods & Supplementary Fig S1) to determine the number of cells within non-334 

circular contours and adds these to the number of circular contours. For all experiments, radius 335 

size was set to 10 pixels, threshold was 115 and circularity was 0.7 unless otherwise stated. 336 

(Fig 1A).  337 
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Experiment 1: Accuracy and Feasibility of Automated Methods   338 

Using 192 images of vOFC brain sections from TEST rats, we compared the average 339 

number of Cfos-IR cells per bregma point, and the total number of Cfos-IR cells. Next, we 340 

calculated the absolute error of cell counts between manual vs each automated method (OCFU, 341 

IMJM, SCC) and then conducted an error analysis in a subset of images. For each manually-342 

counted cell, the number of false positives (cells counted by automated methods but not 343 

manually) and false negatives (cells counted manually but not by automated methods) was 344 

determined. Last, we correlated the number of counts detected via manual vs each automated 345 

method and conducted a linear regression analysis. 346 

Experiment 2: Performance Analytics of Automated Methods 347 

 Using 30 randomly selected Cfos-IR images from EXT and TEST subjects (lOFC and 348 

vOFC), we calculated the average time (sec) to process one image (1920 x 1460 pixels), then 349 

resized each image (by factors of 0.5, 1, 2, 4, 6, 8, 10) and calculated the resulting image size: 350 

��� ����� 	
�� �
�������� 	
��� ���

����� ������
. For each resize factor, we calculated the average time 351 

(sec) for each automated method to process 30 images. Lastly, using 15 randomly-selected 352 

Cfos-IR images from EXT and TEST subjects (lOFC and vOFC), we calculated the absolute 353 

error for each automated method as a function of a changing threshold. For each image, we 354 

multiplied the MPI by each threshold factor (0.7, 0.75, 0.8 or 0.85) to obtain the final threshold 355 

value. We then quantified Cfos-IR cells and the absolute error for each image between manual 356 

vs automated methods. We did not use the command line interface for OCFU but instead 357 

quantified the image processing time on the graphic user interface (GUI) from the input image 358 

until a cell count was displayed.  359 

Experiment 3: Overfitting Analysis for SCC 360 
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 We obtained 3 separate datasets of non-Cfos images including: 1) fabricated Cfos 361 

images (n=15), 2) S. aureus colony images (n=14) and 3) E. coli colony images (n=15). We 362 

created 15 fabricated Cfos images, using a Python implementation of OpenCV by placing a 363 

random number of circles (between 5 and 100) of varying pixel intensities and sizes on a gray 364 

background that closely resembles the background staining of Cfos images. Additionally, we 365 

obtained cell colony images of S. aureus and E. coli from the open-sourced database provided 366 

by Dr. Quentin Geissman at the following link: http://opencfu.sourceforge.net/samples.php. The 367 

source images contain agar plates but since SCC does not have a region of interest selector, 368 

images were cropped to include only a subset of contents inside agar plates. The final images 369 

used are provided at: 370 

https://github.com/aneeshbal/SimpylCellCounter/tree/master/imageSamples.  371 

 For fabricated Cfos-IR images, we calculated ground truth counts and compared them to 372 

SCC counts. Ground truth here was defined as the number of cells that met the user-defined, 373 

size and threshold criteria, and since these images were fabricated, the exact number of cells 374 

was pre-determined. We calculated the average counts per image and performed a correlation 375 

and linear regression of ground truth vs SCC counts. For cell colony images, we defined ground 376 

truth as the number of cells counted by OCFU, given that it was optimized for cell colony 377 

images. We then repeated the analyses performed on the fabricated Cfos-IR images on S. 378 

aureus and E. coli image samples.  379 

Code Availability 380 

 All code is available: https://github.com/aneeshbal/SimpylCellCounter 381 

Statistics 382 

For EXPs 1 & 2, repeated measures analysis of variance (ANOVA) were conducted for 383 

mean cell counts across bregma points comparing manual vs automated methods (within-384 
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subject factor = bregma, between-subject factor = method), time per automated method  across 385 

image size groups (within-subject = image size, between-subject = method) and absolute errors 386 

by automated methods across threshold factor (within-subject = threshold group, between-387 

subject = method). One-way ANOVAs were conducted to explore differences in total cell counts, 388 

absolute errors, false positives and negatives across automated methods and time taken to 389 

analyze images per automated method. Additionally, linear regression was conducted to 390 

examine correlations between manual vs automated counts and ground truth vs SCC counts. 391 

For EXP 3, independent t-tests were conducted to examine differences between ground truth vs 392 

SCC counts. For all statistical and post-hoc tests, alpha was set to 0.05.  393 

 394 

  395 
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FIGURE LEGENDS 463 

Figure 1: Schematic of Automated Processing Steps. A) Selected parameters for threshold 464 

(pixel intensity), object size (pixel radius) and object circularity for Manual, 465 

OpenColonyFormingUnit (OCFU), ImageJ Edge Detection Macro (IMJM) and 466 

SimpylCellCounter (SCC) of Cfos-immunoreactive (Cfos-IR) cells. B) Image processing 467 

sequence for SCC: 1) loads images and converts to 8-bit grayscale making all pixel intensities 468 

range between 0 and 255, 2) performs global threshold based on a user-set value and creates a 469 

binarized mask, 3) performs morphological operations on the binary mask to filter out noise-like 470 

particles, 4) further selects for objects based on size, circularity and cell overlap, leading to a 471 

final cell count. 472 

Figure 2: Comparison of Manual vs Automated Quantification Methods. Manual vs 473 

automated quantification of Cfos-IR cells obtained from the ventral orbitofrontal cortex (vOFC) of 474 

rats that underwent cue-induced reinstatement of drug-seeking behavior. The automated 475 

methods included: OCFU (orange), IMJM (gray) and SCC (blue). A) Average number of Cfos-IR 476 

cells counted by manual vs automated methods over several points along the anterior-posterior 477 

axis (bregma + 5.12 to + 3.72) of the vOFC, n = 96 total images per method. B) Average 478 

number cell counts. C) Average absolute error: ��������� ������ � �������� �������, D) 479 

Average number of false positives, number of cells detected by automated methods that were 480 

not counted manually, n = subset of 30, E) Average number of false negatives, number of cells 481 

counted manually that were not detected by automated methods, n = subset of 30 images, F) 482 

Correlation of manual vs automated counts. Manual correlated with OCFU, p < 0.001 and 483 

regression of y = 0.552x + 20.75; Manual correlated with IMJM, p < 0.001 and regression of y = 484 

0.540x + 28.68; Manual correlated with SCC, p < 0.001 and regression of y = 0.948x + 0.31. 485 

 486 
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Figure 3: Characterization of Automated Quantification. Comparison of 3 images with 487 

manual vs automated method with examples of count classification: OCFU (orange), IMJM 488 

(gray) and SCC (blue). The number of detected cells is displayed in the upper right corner of 489 

each image. Correctly counted cells (compared to manual) are depicted in magenta circles. 490 

False positives are depicted by a plus symbol while false negatives are depicted by the carrot 491 

symbol.  492 

Figure 4: Performance Analytics of Automated Methods. OCFU (orange), IMJM (gray) and 493 

SCC (blue) performance analytics were compared. A) Average time (sec) to quantify Cfos-IR 494 

cells per image (1920 x 1460 pixels), n = 30 images per automated method. B) Average time 495 

(sec) as a function of image size (pixels) to quantify the number of Cfos-IR cells per image, n = 496 

30 images per automated method. Inset displays data for SCC only. C) Average absolute error 497 

per image where: ��������� ������ � �������� ������� as the binary threshold value 498 

approaches the mean pixel intensity of the image, n = 15 images per threshold factor. Inset 499 

displays data for SCC only.  500 

 501 

Figure 5: Overfitting Analysis. SCC evaluated multiple sets of data including fabricated Cfos 502 

images and non-neuronal cell types S. aureus and E. coli to test the generalizability of our 503 

algorithm. Ground truth was defined as: the number of known Cfos-IR cells that meet threshold, 504 

size, and circularity criterion on fabricated Cfos images (A-C) and the number of cells per image 505 

counted by OCFU (D-I). OCFU was trained on these two datasets, meaning it is accurate, 506 

thereby making it “ground truth”. Ground truth (white bars), SCC (blue bars). A) Representative 507 

image of fabricated Cfos cells, B) Average number of cells counted by ground truth vs SCC, n = 508 

15 images, C) Ground truth counts correlated with SCC counts resulted in p < 0.001 and 509 

regression of y = 0.991x - 0.82, D) Representative image of S. aureus, E) Average number of 510 

cells counted by manual vs SCC, n = 14 images, F) Ground truth counts correlated with SCC 511 
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counts resulted in p < 0.001 and regression of y = 0.968x + 0.10, G) Representative image of E. 512 

coli, H) Average number of ground truth cells vs SCC counts, n = 15 images, I) Ground truth 513 

counts correlated with SCC counts resulted in, p < 0.001 and regression of y = 0.943x + 0.39. 514 
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