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Abstract 12 

Maintenance of biodiversity, through seed banks and botanical gardens where the wealth of 13 

species’ genetic variation may be preserved ex situ, is a major goal of conservation. However, 14 

challenges can persist in optimizing ex situ collections where trade-offs exist between expense, 15 

effort, and conserving species evolutionary potential, particularly when genetic data is not 16 

available. Within this context, we evaluate the genetic consequences of guiding population 17 

preservation using geographic (isolation-by-distance, IBD) and environmental (isolation-by-18 

environment, IBE) data for ex situ collections where provenance data is available. We use 19 19 

genetic and genomic datasets from 15 plant species to (i) assess the proportion of population 20 

genetic differentiation explained by geographic and environmental factors, and (ii) simulate ex 21 

situ collections prioritizing source populations based on pairwise geographic or environmental 22 

distances. Specifically, we test the impact prioritizing sampling based on environmental and 23 
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geographic distances may have on capturing neutral, functional or putatively adaptive genetic 24 

diversity and differentiation. We find that collectively IBD and IBE explain a substantial 25 

proportion of genetic differences among functional (median 45%) and adaptive (median 71%) 26 

loci, but not for neutral loci (median 21.5%). Simulated ex situ collections reveal that inclusion 27 

of IBD and IBE increases both allelic diversity and genetic differentiation captured among 28 

populations, particularly for loci that may be important for adaptation. Thus, prioritizing 29 

population collections using environmental and geographic distance data can impact genetic 30 

variation captured ex situ. This provides value for the vast majority of plant species for which we 31 

have no genetic data, informing conservation of genetic variation needed to maintain 32 

evolutionary potential within collections. 33 

 34 

Introduction 35 

Genetic variation is fundamentally a prerequisite for adaptive evolution (Carlson et al. 2014). 36 

Consequently, to maintain species’ evolutionary potential, conservation often focuses on the 37 

preservation and maintenance of genetic variation. Ex situ collections provide one approach to 38 

preserve genetic diversity outside species’ native ranges. This includes extensive efforts to 39 

collect, preserve, and maintain variation across the range of different crop species, wild relatives, 40 

and rare or threatened species (Li et al. 2002; Westengen et al. 2013; Naredo et al. 2017). The 41 

Global Strategy for Plant Conservation (GSPC) aims to have at least 75% of endangered plant 42 

species preserved ex situ by 2020 and available for use in recovery or restoration (Target 8; 43 

https://plants2020.net/). While significant progress has been made, major gaps remain in the 44 

maintenance of genetic variation within collections (Sharrock et al. 2018). Consequently, ex situ 45 

programs designed to maintain genetic diversity are yet needed.  46 
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Traditionally, ex situ methods rely on either probabilistic equations (Brown & Marshall 47 

1995; Lawrence et al. 1995), or stochastic resampling using pre-existing genetic datasets to 48 

optimize sampling efforts (Caujapé-Castells & Pedrola-Monfort 2004; Gapare et al. 2008). 49 

However, these approaches have limitations as they either require the availability of genetic data 50 

(population resampling strategy) or make ungeneralizable assumptions of within species 51 

population structure (probability-based strategy; Lockwood et al. 2007). More recently, 52 

simulation-based strategies have been developed and tested to guide sampling practices (Hoban 53 

& Schlarbaum 2014; Hoban 2019). Simulation-based approaches do not require previously 54 

published genetic datasets but enable realistic simulations of population structure using available 55 

estimates of population size and genetic connectivity. To overcome challenges associated with a 56 

priori data requirements, the use of surrogate data, such as environmental or spatial data,  to 57 

estimate neutral and nonneutral genetic variation has received considerable attention (Guerrant Jr 58 

et al. 2013; Whitlock et al. 2016; Hanson et al. 2017). Empirical work has focused mainly on 59 

testing these data surrogates in preserving genetic diversity in situ or in wild populations 60 

(Whitlock et al. 2016; Hanson et al. 2017). However, using environmental and geographic data 61 

to optimize ex situ sampling could have substantial value to conservation.  62 

Evolutionary processes have predictable impacts on the distribution of standing genetic 63 

variation, which may be used to guide ex situ collections. IBD or “isolation-by-distance” (Wright 64 

1943) arises when gene flow between geographically distant populations is not enough to 65 

counteract the accumulation of genetic differences via genetic drift or following successive 66 

founder events during colonization (Slatkin 1993; Ledig 2000). In this way, IBD is a proxy for 67 

the relationship between pairwise population geographic and genetic distances associated with 68 

spatial structure and serial colonization across a landscape. Likewise, IBE or “isolation-by-69 
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environment” (Wang & Summers 2010) describes the accumulation of genetic differences 70 

between environmentally distinct populations. IBE predicts that environmental differences are 71 

correlated with genetic differences, as selection differs across environments (Keller et al. 2000; 72 

Lowry et al. 2008; McBride & Singer 2010), providing a proxy for the relationship between 73 

genetic and environmental distance (Dobzhansky 1937; Wang & Bradburd 2014). The influence 74 

of geographic and environmental variation in structuring patterns of genetic variation, either 75 

independently or collectively, has received extensive support across taxa (summarize in Sexton 76 

et al. 2014). Given these observations, spatial and environmental data may provide valuable 77 

proxies in designing ex situ conservation collections that optimize the preservation of neutral and 78 

nonneutral evolutionary processes. 79 

The impact of IBD and IBE on population genetic structure is expected to differ for neutral 80 

and adaptive genetic variation (Table 1). This includes the prediction that IBD will have a greater 81 

influence at neutral loci relative to IBE. IBD reflects past and current demographic history, as 82 

well as the interplay between drift and gene flow in structuring genetic variation, whereas IBE is 83 

influenced by natural selection, largely reflecting adaptive genetic variation. Cumulatively, we 84 

predict that IBD and IBE will explain the greatest proportion of genetic differences among 85 

populations for nonneutral loci. Finally, for those genetic markers underlying functional genetic 86 

diversity, including polymorphisms within genes or expressed sequences, we predict patterns of 87 

IBE and IBD will be intermediate as they may reflect a combination of adaptive and neutrally 88 

evolving loci.   89 

The explosion of genetic and genomic datasets publicly available provides a timely 90 

opportunity to compare the contribution of IBD and IBE to genetic structure. In the present 91 

study, we compare the influence of genetic marker type on IBD and IBE. We  classify single-92 
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sequence repeats (SSRs) and genome-wide single-nucleotide polymorphisms (SNPs) as neutral 93 

genetic variation (neutral class), SNPs identified previously as candidate loci for selection using 94 

statistical or empirical methods as underlying adaptive genetic diversity (adaptive class), and 95 

genetic markers within known genes or expressed sequences (genic SNPs or expressed sequence 96 

tag SSRs) as a functional class. We distinguish functional polymorphisms from neutral and 97 

adaptive classes as these markers estimate quantitative genetic variation and likely represent a 98 

combination of neutral and adaptive processes. 99 

To optimize sampling of genetic variation and differentiation ex situ, we have re-analyzed 100 

existing genetic and genomic datasets to (i) quantify the impact of IBD and IBE have on 101 

population genetic structure across neutral, functional and putatively adaptive genetic datasets, 102 

and (ii) to evaluate whether inclusion of IBD and IBE during population sampling influences 103 

genetic diversity captured at neutral, functional, and adaptive loci using simulated ex situ 104 

collections. We use variation partitioning to disentangle the effect of IBD, IBE, their 105 

intersection, and union on population genetic structure and then simulate ex situ collections using 106 

geographic and environmental distance metrics to optimize genetic variation and differentiation 107 

conserved. This study advances our understanding of the role non-genetic factors play in the 108 

distribution of genetic variation across natural populations, providing new parameters to 109 

optimize ex situ sampling designs where genomic data may be limited or non-existent. 110 

 111 

Methods 112 

Source of genetic and geographic data 113 

We searched the Dryad Digital Repository (https://datadryad.org/) to identify genetic or 114 

genomics datasets for plant species using three discrete search categories: “Population structure 115 
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plant”, “SSR population structure” and “SNP population structure”. Following this, for inclusion 116 

in our study, a dataset or a subset of a dataset had to meet the following criteria:  117 

1. Populations were collected range-wide or were sampled across an isolated fraction of a 118 

species’ distribution. 119 

2. Geographic coordinates (latitude, longitude) were available for each population sampled. 120 

3. Genetic data, categorized as SSRs (single-sequence repeats), EST-SSRs (expressed 121 

sequence tag SSRs) or SNPs (single-nucleotide polymorphism), were available. 122 

Range-wide sampling or sampling of populations spanning a large isolated fraction of a 123 

species’ distribution were required to ensure the majority of a species’ ecological niche space 124 

was captured. In addition, sampling a broad range of environmental and geographic distances 125 

can reduce the likelihood of covariance between environmental and geographic factors (Wang & 126 

Bradburd 2014). Using publicly available databases, population-specific latitude and longitude 127 

were used to model climatic variation associated with geographic provenance. These data were 128 

used in variation partitioning analyses and to calculate pairwise population environmental and 129 

geographic distances for each species. To calculate genetic distances, we included studies using 130 

SSRs, SNPs or EST-SSRs. SNP genotyping varied across studies, therefore we divided SNP 131 

datasets into two categories: SNPs assessed genome-wide (SNPs) and SNPs assessed within 132 

genes (Gen-SNPs). If specific SNPs were identified as being under selection based on previous 133 

work, we included a fifth category, SEL-SNPs. Finally, genetic markers were broadly classified 134 

as either putatively neutral (neutral class: SSRs, SNPs), underlying functional variation 135 

(functional class: EST-SSRs, Gen-SNPs) or putatively adaptive (adaptive class: SEL-SNPs). 136 

Overall, we gathered 17 genetic or genomic datasets, in addition to two genomic datasets 137 

received directly from Holliday et al. (2010) (Table 2; Appendix S1). To meet the above criteria, 138 
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datasets associated with seven of the 15 studied species were sub-sampled and individual 139 

geographic coordinates for one study were averaged to create population-scale coordinates 140 

(Table 2; Appendix S2). 141 

 142 

Environmental data 143 

We used latitude, longitude and elevation associated with population provenance to extract 144 

annual, seasonal, and monthly climate variables using ClimateNA (North America), ClimateSA 145 

(South America), ClimateEU (Europe) or ClimateAP (Asia Pacific) 146 

(https://sites.ualberta.ca/~ahamann/data.html) (Appendix S3). Where elevation was not provided, 147 

GPS Visualizer (http://www.gpsvisualizer.com/elevation) was used to assign population 148 

elevation values. In total, 80 environmental variables were assigned to each population; 149 

including 79 climate-related variables and elevation. For each of the species, all environmental 150 

variables associated with population origin were filtered, standardized, and transformed to 151 

summarize environmental differences among populations. First, dataset-specific environmental 152 

variables exhibiting no population-level variation were excluded from analyses. Environmental 153 

variables were then standardized and used to conduct a principal component analysis (PCA). 154 

PCA was used to reduce the overall number of environmental variables by summarizing 155 

environmental differences across two major axes of differentiation, which together explain more 156 

than 70% of environmental variation observed between populations (Appendix S4). These two 157 

major PC axes were considered as predictor variables for variation partitioning and used to 158 

calculate population pairwise environmental distances in simulations. 159 

 160 

Variation partitioning analysis 161 
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To quantify the contribution of IBD and IBE to genetic divergence within each of the 19 162 

datasets, we conducted a variation partitioning analysis in R (R core Team 2018) using the 163 

“vegan” package (Oksanen et al. 2007). We used standard estimates of population genetic 164 

differentiation re-calculated for all population pairs within each dataset as our response variable. 165 

To account for variation in genetic markers, we used Nei’s FST (Nei 1987), as this metric can 166 

provide comparable estimates of population genetic differentiation for both biallelic (e.g. SNPs) 167 

and multi-allelic (e.g. SSRs) loci. For each dataset, population divergence was partitioned 168 

between two sets of predictor variables; including the geographic coordinates (latitude, 169 

longitude) and the two major environmental PC axes (PC1, PC2) associated with each population 170 

within a dataset. Following variation partitioning, we conducted a partial distance-based 171 

redundancy analysis (dbrda) on each dataset to test the significance of (i) variance explained by 172 

each set of predictor variables alone (IBD, IBE; Table 2), and (ii) the variance explained by the 173 

union of predictor variables (IBD�IBE; Table 2). We did not evaluate the significance of the 174 

variance explained by the intersection of geographically structured environmental variables 175 

(IBD�IBE; Table 2), as this variance fraction is not testable using dbrda. 176 

 177 

Quantifying the correlation between genetic, environmental and geographic distances 178 

Geographic and environmental distance between population pairs was measured as the 179 

Euclidean distance between populations’ geographic coordinates (latitude, longitude) or. 180 

between populations’ two major environmental PC axes (PC1, PC2), respectively. To visualize 181 

and evaluate the covariance structure between genetic, environmental and geographic distance 182 

matrices, we graphed and estimated the correlation between all distance metrics (Table 2; 183 
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Appendix S5). Correlation coefficients were estimated using the nonparametric mantel test 184 

implemented in the R package “adegenet” (Jombart 2008) for each dataset separately. 185 

 186 

Simulating an ex situ collection: an idealized framework 187 

We simulated an idealized ex situ conservation collection for each dataset using a customized 188 

R script relying on R packages “adegenet” (Jombart 2008), “hierfstat” (Goudet 2005) and 189 

“data.table” (Dowle & Srinivasan 2019). This simulation measured the amount of genetic 190 

differentiation and the proportion of allelic diversity captured in ex situ collections that prioritize 191 

population sampling based on environmental and geographic distances. We simulated ex situ 192 

collections using four different population sampling strategies. This included random sampling, 193 

as well as sampling prioritized based on distances between populations’ two major 194 

environmental PC axes (Euclidean environmental distance), sampling based on distances 195 

between populations’ geographic coordinates (Euclidean geographic distance) or both (Fig. 1a). 196 

Ex situ collections were simulated using between two and the total number of populations 197 

available for each dataset (Np, Fig. 1a). Randomized sampling sampled populations without 198 

replacement from the pool of available populations. Environmentally or geographically 199 

prioritized simulations sampled population pairs with the greatest pairwise distances in 200 

decreasing order. Collections simulated using the combination of environmental and geographic 201 

distances sampled population pairs that exhibited the greatest sum of environmental and 202 

geographic distances following standardization, prioritized in decreasing order. All individuals 203 

within each population were sampled as part of the idealized simulation.  204 

To compare genetic diversity captured across simulated collections, we estimated two genetic 205 

parameters: Nei’s FST and allelic diversity captured (Ac/Ad). These indices were chosen as they 206 
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quantify different aspects of population genetic diversity. Nei's FST provides an estimate of 207 

genetic differentiation across sampled populations and Ac/Ad provides an estimate of the number 208 

of alleles captured in collections (Ac) relative to the total number of alleles present within a 209 

dataset (Ad). All genetic parameters were estimated in R using the “hierfstat” package.  210 

Population sampling and associated genetic summary statistics were simulated 500 times for 211 

each dataset to account for the variance introduced through randomly sampling across 212 

populations. Summary statistics were estimated based on average values across all 500 213 

simulations. No replication was used for environmental and/or geographic distance-based 214 

population sampling, as neither provenance of source populations nor genetic summary statistics 215 

would have changed with repeated iterations. 216 

For these idealized simulations, all individuals were sampled within each target population 217 

(equivalent to protecting the entire population), regardless of collection strategy, assuming 100% 218 

of the standing genetic variation was captured. However, monetary or logistical constraints 219 

usually impact the number of individuals that could be sampled within a target population. Given 220 

this, we predict that genetic diversity captured within source populations will vary. To assess 221 

whether insights gained from idealized simulations were maintained under more realistic 222 

conditions, we conducted additional simulations, introducing differences in the amount of 223 

genetic diversity captured between populations (hereafter referred to as realistic simulations). 224 

 225 

Simulating an ex situ collection: The realistic framework 226 

To simulate a realistic ex situ collection, a subset of individuals was sampled within each 227 

population. This provides the opportunity to evaluate the impact varying genetic diversity 228 

captured within populations may have on total genetic diversity and differentiation captured 229 
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across populations collected. We assume that ex situ collections aim to preserve as much genetic 230 

variation as possible within each population. Within this framework, we postulated that at least 231 

80% of within-population allelic diversity would be captured ex situ. Therefore, for each dataset, 232 

we assessed the number of individuals (N80%) that when sampled capture between 80%-100% of 233 

allelic diversity across populations. 234 

An additional simulation was used to determine the value of N80% for each dataset (Fig. 1b). 235 

For every population, N individuals (ranging from one up to the size of the smallest population 236 

within the assessed dataset) were randomly sampled without replacement. Following this, the 237 

number of alleles captured for N individuals (As) divided by the total number of alleles in the 238 

population (Ap) was quantified for each population. Sampling of individuals and quantification 239 

of allelic diversity captured was replicated 500 times for each population and value of N to 240 

calculate confidence intervals around As/Ap ratios. The number of individuals required to capture 241 

80% or more (As/Ap ≥0.8) of allelic diversity in every population (N80%) was visually assessed 242 

for each dataset independently (Appendix S6) and used to parametrize realistic simulations (Fig. 243 

1a). Ex situ collections were simulated 500 times using the realistic scenario to estimate genetic 244 

summary statistics regardless of the population sampling strategy used (Fig. 1a). For these 245 

simulations, N80% were often much lower than the existing size of most populations and 246 

performing repeated iterations accounted for the variation in genetic summary statistics 247 

introduced by small values of N80%.    248 

Maintaining the range of As/Ap ratios across datasets is crucial as unbalanced variance may 249 

confound the influence of prioritization strategies in downstream analyses. Four of the 19 250 

datasets (H. argophyllus (Gen-SNPs), M. lacinatus (SSRs), R. oldhamii (EST-SSRs) and S. 251 

leprosula (EST-SSRs)) were discarded from realistic simulations as N80% values were not 252 
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reached for these datasets (Appendix S6). These same datasets were also removed from idealized 253 

simulations to ensure that differences in summary statistics between idealized and realistic 254 

simulations originated solely from variation in allelic diversity captured across populations 255 

introduced in the latter. See Appendix S7 for a complete list of parameters tested and used for 256 

simulations.  257 

 258 

Analysis of simulated data 259 

We tested whether prioritizing source population collection using environmental and/or 260 

geographic distance data influences genetic variation and differentiation captured ex situ. For 261 

every number of populations sampled (Np), genetic summary statistics simulated using random 262 

sampling were subtracted from values based on prioritization strategies using environmental 263 

distances, geographic distances, or both. Summary statistics were averaged for each dataset 264 

following repeated iterations, grouped by distance-based strategies, genetic marker class, and 265 

simulation framework (idealized or realistic) (Fig. 2). Differences in genetic summary statistics 266 

are provided based on the proportion of populations sampled as the number of populations 267 

sampled for analysis varied across studies. For each dataset, we selected four numbers of 268 

populations sampled (Np) representing between 30-40%, 50-60%, 70-80%, and 90-100% of 269 

populations present in a dataset (Appendix S7). 270 

Finally, we fitted a linear model between proportions of populations sampled and differences 271 

in genetic summary statistics for every combination of genetic marker class, distance-based 272 

prioritization strategy, and simulation framework (Fig. 2). A negative relationship indicates that 273 

a given distance-informed sampling generally increases the genetic summary statistics relative to 274 

random sampling while a positive relationship would suggest the opposite. In addition, it is 275 
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important to note that a significant relationship (positive or negative) will always be approaching 276 

zero as the proportion of populations sampled increases. This is because with additional 277 

populations sourced, the probability that identical populations are sampled randomly or via 278 

distance-based strategies increases and will reach one when all populations are sampled. As the 279 

number of shared populations between sampling strategies increases, the difference in genetic 280 

summary statistics decreases. 281 

 282 

Results 283 

Relative contributions of IBD and IBE to population genetic differentiation 284 

Variation partitioning revealed that IBD explained significantly more among-population 285 

genetic differences (13%) than IBE alone (5.5%) or IBD�IBE (3%) for neutral genetic datasets 286 

(Table 3). This contrasts with functional and adaptive datasets, where a significant proportion of 287 

among-population genetic differences was explained by geographically structured environmental 288 

variables relative to environmental or geographic factors alone (Table 3). Overall, 31% and 42% 289 

of population genetic differences were explained by IBD�IBE for functional and adaptive 290 

datasets, respectively, while only a small proportion was explained by IBD (functional: 10%, 291 

adaptive: 16%) and IBE alone (functional: 2.5%, adaptive:1%). 292 

While significant differences in the proportion of genetic differentiation explained were 293 

observed across genetic marker classes for IBD�IBE and IBD�IBE, no significant differences 294 

were observed in the individual contribution of IBD and IBE (Table 3). IBD�IBE explained the 295 

greatest proportion of genetic differences for adaptive genetic markers (71%), followed by 296 

functional (45%) and neutral (21.5%) genetic markers, respectively. Interestingly, IBD�IBE 297 

explained substantial among-population genetic differences for both functional and adaptive 298 
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datasets but explained limited variation for neutral datasets (Table 3). The contribution of 299 

IBD�IBE to population genetic differentiation for adaptive and functional datasets likely reflect 300 

high correlations observed between environmental and geographic distance matrices (Table 2; 301 

Appendix S5). Therefore, the relative contribution of geography and environment should be 302 

interpreted with caution for these genetic marker classes, as population genetic differentiation 303 

could not be partitioned solely by IBD or IBE. 304 

 305 

Genetic diversity and differentiation captured in simulated ex situ collections 306 

Genetic differentiation (Nei’s FST) 307 

Significant negative relationships were observed between proportions of populations sampled 308 

and changes in genetic differences (FST) captured for collections simulated using both adaptive 309 

and functional datasets, but not neutral genetic datasets (Fig. 2a). This suggests that using 310 

environmental and/or geographic distance to prioritize population sampling may potentially 311 

increase adaptive and functional genetic differences but does not consistently impact neutral 312 

genetic variation. Simulations revealed that using all three distance-based population sampling 313 

strategies increased genetic differentiation captured among adaptive loci in ex situ collections 314 

(Fig. 2a). This contrasts with the results obtained for functional datasets, where sampling 315 

prioritizing source populations using environmental distance, or the combination of both 316 

environmental and geographic distances increased genetic differences captured.  317 

For both adaptive and functional genetic makers classes, simulations based on realistic and 318 

idealized within-population sampling scenarios led to similar slopes, regardless of the distance-319 

based population sampling strategy used (Fig. 2a; Appendix S8). This indicates that the ability of 320 
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distance-based population sampling strategies to increase FST among functional and adaptive loci 321 

was not impacted by the within-population sampling scenarios simulated.  322 

 323 

Proportion of allelic diversity captured (Ac/Ad) 324 

Both realistic and idealized ex situ collection simulations using functional and adaptive 325 

genetic datasets indicated allelic diversity captured (Ac/Ad) is likely sensitive to within-326 

population sampling. Prioritizing population sampling using environmental distances increased 327 

allelic diversity captured at functional loci under realistic within-population sampling conditions, 328 

but had no impact using idealized within-population sampling scenario (Fig. 2b). This contrasts 329 

with results obtained for adaptive datasets, where the opposite pattern was observed. Prioritizing 330 

population sampling using environmental or the combination of environmental and geographic 331 

distances increased Ac/Ad under idealized within-population sampling conditions (Fig. 2b). 332 

For neutral genetic datasets no consistent change in allelic diversity was observed in response 333 

to varying proportions of population sampled, regardless of population prioritization strategy 334 

tested or within-population sampling scenario simulated (Fig. 2b). Together, these results suggest 335 

that incorporating environmental and/or geographic distances to prioritize collections may 336 

increase allelic diversity captured at functional and adaptive loci, but not at neutral loci. 337 

Nonetheless, simulations also indicate that increasing allelic diversity captured in ex situ 338 

collections is dependent on within-population sampling scenarios and may thus only be achieved 339 

under specific sampling conditions. 340 

 341 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2020. ; https://doi.org/10.1101/2020.02.22.960989doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.22.960989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

Discussion 342 

Optimizing efforts to conserve genetic variation relies upon an understanding for how non-343 

genetic factors, geographic and environmental variation, contribute to population genetic 344 

structure. Here, we leverage population provenance and environmental data to optimize genetic 345 

differences captured in simulated conservation collections. Environmental and geographic 346 

factors explain some portion of the genetic differences observed among populations, although 347 

the extent differs by genetic marker class. The proportion of genetic differentiation explained by 348 

IBD�IBE was significantly higher for adaptive and functional datasets relative to neutral 349 

datasets. This suggests that geographic and environmental data may provide a useful guide when 350 

designing ex situ population sampling, particularly where the goal is to conserve adaptive and 351 

functional genetic variation. We simulated ex situ sampling and found that, as predicted, 352 

strategies that included environmental and/or geographic distance data to prioritize population 353 

sampling increased genetic differences and diversity captured at both functional and adaptive 354 

loci. Overall, we suggest that inclusion of IBD and IBE in guiding ex situ sampling can ensure 355 

adaptive and functional genetic variation are conserved, crucial for long-term preservation and 356 

maintenance of species’ evolutionary potential. 357 

Consistent with previous plant studies, our results demonstrate that genetic differentiation 358 

across neutral, functional, and adaptive loci can, at least partly, be explained by environmental 359 

and geographic factors (Bjørnstad et al. 1995; Nadeau et al. 2016; Xia et al. 2018) (Table 2). 360 

Interestingly, limited genetic differentiation was explained by IBD or IBE alone across all three 361 

genetic marker classes. For functional and adaptive datasets, this is likely due to the fact that 362 

substantial genetic structure is explained by their intersection (Table 3). Indeed, IBD�IBE 363 

reflects covariance between geographic and environmental factors that cannot be teased apart. 364 
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Additional empirical work minimizing this covariance would be required to completely 365 

disentangle these factors (Wang & Bradburd 2014). Nonetheless, when combined, environmental 366 

and geographic factors explained a substantial proportion of population genetic differentiation 367 

for both functional and adaptive datasets (IBD�IBE; Table 3). This suggests that geographic and 368 

environmental differences contribute largely to genetic divergence at nonneutral loci (Huang et 369 

al. 2016; Xia et al. 2018). Consequently, the inclusion of IBD�IBE may provide a means to 370 

capture adaptive and functional genetic variation ex situ. For neutral datasets, geographic and 371 

environmental factors, either individually (IBD, IBD) or cumulatively (IBD�IBE), explained 372 

very small proportions of among-population genetic differences (Table 3). This indicates that 373 

stochastic processes, such as genetic drift or founding events likely influence neutral genetic 374 

structure. Random fixation or loss of alleles through genetic drift (Stern & Orgogozo 2009) and 375 

accelerated allele fixation within populations following demographic changes, including 376 

bottlenecks or founder events (Maruyama & Fuerst 1985; Gavrilets & Hastings 1996), may lead 377 

to population structure that is not explained by environment or spatial data. Overall, our findings 378 

indicate that environmental and geographic distance metrics can be used to target genetic 379 

differences which likely reflect adaptive or functional genetic variation over neutral genetic 380 

variation. 381 

Ex situ strategies relying on existing genetic datasets (Caujapé-Castells & Pedrola-Monfort 382 

2004; Gapare et al. 2008) or genetic simulations (Hoban & Schlarbaum 2014; Hoban 2019) have 383 

previously optimized variation captured in collections. These approaches require substantial a 384 

priori information and target neutral genetic variation. Where knowledge of population location 385 

is available, pairwise geographic and environmental distances may be leveraged to extend 386 

previous sampling to conserve adaptive and functional genetic variation. Our simulations 387 
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demonstrate that ex situ collections prioritized using environmental or the combination of 388 

environmental and geographic distances increase both Nei’s FST and Ac/Ad captured for adaptive 389 

and functional datasets relative to random sampling (Fig. 2). This indicates that divergent 390 

selection and adaptation to local environments contribute to genetic differentiation at nonneutral 391 

loci (Hancock et al. 2011; Wang et al. 2016), likely influenced by IBE. IBE-based prioritization 392 

strategies suggest that part of the additional genetic differences captured in collections consist of 393 

spatially and/or environmentally restricted alleles (Fig. 2b). However, simulations also revealed 394 

that increasing allelic diversity captured in collections using distance-based prioritization 395 

strategies depends on within-population sampling conditions (realistic or idealized). These 396 

results have important applications to applied conservation efforts. First, a realistic sampling 397 

scenario was sufficient to increase genetic differentiation captured at adaptive and functional loci 398 

(Fig. 2a). This suggests that inclusion of IBD and IBE in population prioritization would likely 399 

increase among-population genetic differences captured at these loci by sampling only a subset 400 

of individuals within populations. However, only an idealized sampling scenario increased allelic 401 

diversity captured at adaptive loci (Fig. 2b). This indicates that extensive within-population 402 

sampling may be needed to increase adaptive allelic diversity conserved in collections. Overall, 403 

simulations demonstrate that prioritizing population sampling using IBD and/or IBE can increase 404 

genetic differences and diversity captured at both functional and adaptive loci without the need 405 

for prior genetic data, providing a means to target genetic variation that may be needed to 406 

maintain adaptive potential within collections. 407 

Despite the fact conservation has long valued environmental and geographic data (Brown & 408 

Marshall 1995; Guerrant et al. 2004; Guerrant Jr et al. 2013), use of these data for conservation 409 

planning have only emerged during the past decade (Vinceti et al. 2013; Whitlock et al. 2016; 410 
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Hanson et al. 2017). Consistent with previous work, we observe inconsistent benefits of 411 

leveraging geography for the preservation of neutral genetic diversity (Fig. 2). This could be due 412 

to the fact that gene flow between populations may be disturbed by landscape characteristics 413 

(Dudaniec et al. 2016), or some species may exhibit greater gene flow between geographically 414 

distant populations (O’Connell et al. 2007). Our results do provide additional empirical support 415 

for inclusion of environmental and geographic data in conservation planning, to target and 416 

increase adaptive genetic diversity conserved (Hanson et al. 2017) (Fig. 2). In addition, this study 417 

is the first to provide evidence that IBD- and/or IBE-based population prioritization strategies 418 

may increase genetic differentiation and diversity captured at functional loci. This indicates that 419 

using environmental and/or geographic surrogates may not only preserve current adaptive 420 

genetic diversity but may also secure genetic variation crucial for future adaptations. Finally, 421 

where other studies use amplified fragment length polymorphisms (AFLPs; Whitlock et al. 2016; 422 

Hanson et al. 2017), we focus on SSRs and SNPs datasets. The concordance across studies 423 

suggests a broad applicability for environmental and geographic data to act as surrogates to 424 

optimize the conservation of genetic variation.  425 

Although simulations are a powerful inferential tool, they can include a number of 426 

assumptions. Here, we assumed that maternal plants used in realistic and idealized simulations 427 

were collected for storage ex situ. However, the progeny of these plants more accurately reflects 428 

those likely to be included in collections (FAO, 2010). Future studies will need to consider 429 

empirical or simulated progeny data to evaluate whether environmental and/or geographic 430 

distance-based prioritization captures genetic variation across generations. In this study, we 431 

evaluated the overall impact of population sampling strategies on genetic variation and 432 

differentiation captured in ex situ collections. Nonetheless, simulations revealed important 433 
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variation in genetic summary statistics across datasets within genetic marker classes (Fig. 2). 434 

This variation is likely introduced by differences in species’ life history traits including mode of 435 

reproduction and breeding system (Loveless & Hamrick 1984). Despite this variance, our data 436 

suggest that inclusion of IBD and IBE in ex situ guidelines may still be valuable to optimizing 437 

functional and adaptive genetic variation captured. Future work assessing the influence trait 438 

combinations may have on predicting genetic variation captured in collections will complement 439 

the present research, providing sampling guidelines for species exhibiting specific life history 440 

characteristics. Finally, we grouped different genetic markers into genetic diversity classes to test 441 

the effect of prioritizing population sampling using environmental and/or geographic data at a 442 

broader scale. However, allelic distributions and mutation models largely differ between these 443 

genetic markers. Thus, future work should evaluate marker-specific patterns associated with 444 

IBD- and IBE-based prioritization strategies. 445 

Anthropogenic changes have had substantial impacts on global biodiversity, resulting in a 446 

global call for the preservation of biodiversity. This research expands existing ex situ population 447 

sampling strategies, leveraging geographic provenance and environmental distance to increase 448 

functional and adaptive genetic differences conserved in collections. Incorporating an 449 

understanding of evolutionary and ecological processes influencing population structure 450 

alongside new and existing datasets will be critical to enhancing current conservation practice. 451 

 452 

Supporting Information 453 

Reference and availability information associated with every genetic and genomic dataset 454 

(Appendix S1), modifications applied to genetic and genomic datasets (Appendix S2), raw set of 455 

climatic variables used in simulations and variation partitioning analyses (Appendix S3), 456 
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proportion of variance explained by the two major environmental principal components for each 457 

dataset (Appendix S4), covariance between environmental, geographic and genetic distances 458 

(Appendix S5), proportion of allelic diversity captured within populations using N80% or the size 459 

of the smallest population within datasets (Appendix S6), a list of tested and used parameters for 460 

realistic and idealized simulations (Appendix S7), and regression statistics associated with 461 

realistic and idealized simulations (Appendix S8) are available online.  462 
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Tables 589 

Table 1 Evolutionary processes a contributing to genetic structure across neutral and adaptive 590 

genetic markers and their predicted weight b on expected patterns of among-population genetic 591 

differentiation (Random, IBD and IBE).  592 

Neutral genetic markers Random IBD IBE 
Stochastic processes (e.g. genetic drift, inbreeding) ++ - - 

Demographic history (e.g. founder events) ++ + - 
Genetic drift combined with gene flow - +++ - 

Natural selection - - + 
Adaptive genetic markers Random IBD IBE 
Stochastic processes (e.g. genetic drift, inbreeding) - (+) - - 

Demographic history (e.g. founder events) - - - 
Genetic drift combined with gene flow - + - 

Natural selection - - +++ 

a Here we distinguish between genetic drift alone as a stochastic evolutionary force and genetic 593 

drift combined with gene flow as a process leading to a pattern of IBD. 594 
b -: no, +: small, ++: intermediate and +++: important influence of the evolutionary forces on the 595 

specified pattern.596 
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Table 2 Proportion of genetic differentiation explained by environmental and geographic variables a, obtained using variation 597 

partitioning analyses, and correlation coefficients estimated between pairwise geographic and environmental Euclidean distances for 598 

all 19 genetic and genomic datasets downloaded from Dryad (see Appendix S1).  599 

Study system  Data  Results 
Species Distribution  Number of 

Populations 
Genetic Marker d  IBD 

(Adj. R2) 
IBE 

(Adj. R2) 
IBD�IBE 
(Adj. R2) 

IBD�IBE 
(Adj. R2) 

Corr. 
(r) 

 Betula 
maximowicziana 

Japan  48 EST-SSRs  0.02 0.02 0.42 0.46 e 0.48 e 

Centaurea 
solstitialis b Eurasia  25 SNPs  0.14 e 0.33 e 0 0.47 e -0.02 

Helianthus 
annuus 

North 
America 

 15 SNPs  0.1 e 0.08 f 0.02 0.2 e 0.93 e 

Helianthus 
argophyllus b 

Texas  51 Gen-SNPs  0.02 0.04 e 0.32 0.38 e 0.9 e 

Mimulus 
guttatus b 

United 
Kingdom 

 14 SNPs  0.14 0.09 0 0.23 0.56 e 

Mimulus 
lacinatus b 

California  23 SSRs  0.01 0.03 0.04 0.08 f 0.35 e 

Narcissus 
papyraceus b 

Spain and 
Morocco 

 26 SSRs  0.12 f 0.03 0.02 0.17 f 0.08 

Nothofagus 
alpina 

Chile  12 SSRs  0 0 0.18 0.18 0.49 e 

Nothofagus 
glauca 

Chile  8 SSRs  0.75 e 0.05 0.06 0.86 e 0.2 

Nothofagus 
obliqua 

Chile  20 SSRs  0.17 e 0.06 0.39 0.62 e 0.31 e 

Picea   
sitchensis b 

North 
America 

 10 Gen-SNPs  0.07 0 0.37 0.44 0.44 e 

   10 SEL-SNPs  0.15 0 0.56 0.71 f 0.44 e 
Populus 
balsamifera b 

North 
America 

 31 Gen-SNPs  0.35 e 0.01 0.3 0.66 e 0.42 e 

   31 SEL-SNPs  0.32 e 0.01 0.42 0.75 e 0.42 e 
Populus  Sweden  12 Gen-SNPs  0.02 0 0.02 0.04 0.71 e 
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tremula c [control set] 

   12 
Gen-SNPs 

[defense set]  0.15 0.05 0.33 0.53 e 0.71 e 

   12 SEL-SNPs  0.16 0.07 0.25 0.48 e 0.71 e 
Rhododendron 
oldhamii 

Taiwan  18 EST-SSRs  0.13 e 0.05 0.24 0.42 e 0.29 e 

Shorea 
leprosula 

South-East 
Asia 

 24 EST-SSRs  0.24 e 0.03 0.25 0.52 e 0.27 e 

a Proportion of population genetic differentiation explained by pure geographic factors (IBD), pure environmental factors (IBE), the 600 

shared variation between environmental and geographic factors (IBD�IBE), and both environmental and geographic factors combined 601 

(IBD�IBE).  602 
b Subsampled genetic or genomic datasets; c Adjusted geographical coordinates 603 
d SSR (single-sequence repeat, neutral class), EST-SSR (expressed sequence tag single-sequence repeat, functional class), SNPs 604 

(genome-wide single-nucleotide polymorphism, neutral class), Gen-SNPs (genic single-nucleotide polymorphism, functional class) 605 

and SEL-SNPs (single-nucleotide polymorphism identified as potentially under selection, adaptive class). 606 
e, f Fractions of variation explained and correlation coefficients are significant (α=0.05 f, α=0.1g).  607 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted F
ebruary 23, 2020. 

; 
https://doi.org/10.1101/2020.02.22.960989

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2020.02.22.960989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

Table 3 Median proportion and 95% CI * of population genetic differences explained by IBD, IBE, IBD�IBE, and IBD�IBE given by 608 

genetic marker classes.  609 

Genetic Marker Class 
IBD 

Median Adj. R2 (95% CI) 
IBE 

Median Adj. R2 (95% CI) 
IBD�IBE  

Median Adj. R2 (95% CI) 
IBD�IBE  

Median Adj. R2 (95% CI) 
Neutral 0.13 (0.09, 0.25) 0.055 (0.02, 0.08) 0.03 (-0.12, 0.06) 0.215 (-0.19, 0.26) 

Functional 0.1 (-0.04, 0.18) 0.025 (0, 0.045) 0.31 (0.25, 0.38) 0.45 (0.37, 0.52) 
Adaptive 0.16 (0, 0.17) 0.01 (-0.05, 0.02) 0.42 (0.28, 0.59) 0.71 (0.67, 0.94) 

* 95% CI were obtained by bootstrapping. We considered two medians to be significantly different (α=0.05) if their confidence 610 

intervals did not overlap. 611 
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 1 

Figure 1 (a) Simulation framework used to estimate genetic variation and differentiation 2 

parameters in ex situ collections simulated under two different within-population sampling 3 

scenarios (realistic and idealized) and four distinct population prioritization strategies (random, 4 

based on environmental distance, based on geographic distance, and based on both 5 

environmental and geographic distance combined). (b) Simulation framework used to estimate 6 

the number of individuals required to capture between 80-100% of allelic diversity in every 7 

population of a dataset (N80%, see Figure 1a). Simulations using both frameworks were 8 

conducted on each dataset independently. Computation proceeds from top to bottom. 9 
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 10 

        11 

Figure 2 Average differences and SE across datasets in genetic summary statistics (y-axis)12 

estimated from ex situ collections simulated using distance-informed (environmental: Env,13 

geographic: Geo, environmental and geographic: Env & Geo) and random (Rand) population14 

sampling strategies (columns) separated by genetic marker classes (rows). Differences in genetic15 

summary statistics were estimated for various proportions of populations sampled (x-axis). (a)16 

Populations genetic differentiation (Nei’s FST). (b) Allelic diversity captured in simulated ex situ17 

collections (Ac/Ad). ns: non-significant.  18 
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