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Abstract

Motivation: Hi-C data has enabled the genome-wide study of chromatin folding and architecture, and has
led to important discoveries in the structure and function of chromatin conformation. Here, high resolution
data plays a particularly important role as many chromatin substructures such as Topologically Associating
Domains (TADs) and chromatin loops cannot be adequately studied with low resolution contact maps.
However, the high sequencing costs associated with the generation of high resolution Hi-C data has
become an experimental barrier. Data driven machine learning models, which allow low resolution Hi-C
data to be computationally enhanced, offer a promising avenue to address this challenge.
Results: By carefully examining the properties of Hi-C maps and integrating various recent advances
in deep learning, we developed a Hi-C Super-Resolution (HiCSR) framework capable of accurately
recovering the fine details, textures, and substructures found in high resolution contact maps. This was
achieved using a novel loss function tailored to the Hi-C enhancement problem which optimizes for an
adversarial loss from a Generative Adversarial Network (GAN), a feature reconstruction loss derived from
the latent representation of a denoising autoencoder, and a pixel-wise loss. Not only can the resulting
framework generate enhanced Hi-C maps more visually similar to the original high resolution maps, it also
excels on a suite of reproducibility metrics produced by members of the ENCODE Consortium compared
to existing approaches, including HiCPlus, HiCNN, hicGAN and DeepHiC. Finally, we demonstrate that
HiCSR is capable of enhancing Hi-C data across sequencing depth, cell types, and species, recovering
biologically significant contact domain boundaries.
Availability: We make our implementation available for download at: https://github.com/PSI-Lab/HiCSR
Contact: ljlee@psi.toronto.edu
Supplementary information: Available Online

1 Introduction

In recent years, high-throughput chromosome conformation capture (Hi-
C) (Lieberman-Aiden et al., 2009) has increasingly enabled studies of
the three-dimensional (3D) architecture of the genome. Using proximity-
based ligation combined with high-throughput sequencing, the Hi-C
method produces a genome-wide heat map contact matrix where each
value represents the interaction frequency between two loci. The analysis
of Hi-C contact matrices has led to significant discoveries on the nature
of chromatin substructures such as A/B Compartments (Lieberman-Aiden
et al., 2009), Topologically Associating Domains (TADs) (Dixon et al.,
2012), and chromatin loops (Rao et al., 2014). Beyond the discovery
of architectural substructures, chromatin conformation has been shown
to play a significant role in gene regulation and expression (Franke

et al., 2016; Lupiáñez et al., 2015), illustrating the important relationship
between genome architecture and cellular functions.

The resolution of a Hi-C matrix is determined by the chosen genomic
bin size, with a smaller bin size resulting in a higher resolution. This choice
of bin size is typically determined by sequence depth, as an insufficient
number of sequence reads for a given resolution results in sparse and noisy
Hi-C data. In general, a linear increase in resolution requires a quadratic
increase in sequencing depth (Schmitt et al., 2016), making high resolution
Hi-C data costly to obtain. While Hi-C matrices with high resolutions
(≤ 10 Kb) have been generated, the large cost incurred for increasing
sequence depth results in an abundance of low resolution datasets (e.g.
40 Kb - 1 Mb). These low resolution datasets encumber the analysis of
finer substructures in the 3D genome, as the details of certain substructures
such as chromatin loops cannot be accurately identified in low resolution
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contact maps (Rao et al., 2014). There is therefore both a clear advantage
and high demand for high resolution Hi-C datasets.

The large amounts of publicly available Hi-C data provides an
opportunity for researchers to develop new predictive tools which can
both accelerate experimentation and enable new discoveries. In the context
of Hi-C, deep learning methods can leverage this large volume of data
to computationally increase the resolution of a Hi-C contact matrix in
scenarios where the sequence depth is low. This is done by learning a
mapping between high and low resolution contact maps, similar to natural
image based methods for enhancement and denoising (Ledig et al., 2017;
Zhang et al., 2017). These techniques provide researchers with a means to
generate high resolution Hi-C datasets with significantly fewer sequencing
reads than would otherwise be required for a given resolution. Although
different deep learning based Hi-C enhancement methods have been
developed, they fall short in several aspects. Methods which optimized
for a Mean Squared Error (MSE), such as HiCPlus (Zhang et al., 2018)
and HiCNN (Liu T. et al., 2019), suffer from a lack of high frequency
information resulting in a blurred output. This is caused by an objective
function which prefers solutions that are the pixel-wise average of many
possible solutions that lie on the plausible image manifold (Mathieu et al.,
2016). To avoid blurred predictions, hicGAN (Liu Q. et al., 2019) and
DeepHiC (Hong et al., 2019) were proposed. First, hicGAN replaced pixel-
wise loss functions with a purely adversarial loss. However, this caused
hicGAN predictions to miss details found in the true high resolution data.
DeepHiC combined an adversarial loss, pixel-wise loss, and a perceptual
loss derived from a VGG-16 loss network (Simonyan and Zisserman,
2015) trained on ImageNet. However, the introduction of this perceptual
loss caused unwanted natural image textures in DeepHiC’s predictions not
otherwise found in real Hi-C data.

Improving upon these methods, we proposed a novel Hi-C Super-
Resolution (HiCSR) framework capable of inferring high resolution Hi-C
data from low resolution Hi-C data with high accuracy. This was achieved
using a new loss function tailored to the Hi-C enhancement problem.
HiCSR optimizes a weighted combination of adversarial loss, pixel-
wise L1 loss, and a feature reconstruction loss obtained from the latent
representation of a task specific denoising autoencoder (Vincent et al.,
2008). While previous enhancement methods have failed to address the
unique properties of Hi-C data in their evaluations, relying primarily on
correlative and image-based metrics, we opt for Hi-C specific metrics of
reproducibility as a more meaningful measure of model performance. To
our knowledge, this is the first effort to compare a suite of Hi-C super
resolution methods in this way. We demonstrate that HiCSR enhanced
Hi-C data consistently achieves strong reproducibility scores across cell
types and species with respect to the true high resolution Hi-C data, and
outperformed all previously proposed super-resolution models in terms
of reproducibility. We also find that HiCSR enhanced data is capable of
recovering Hi-C specific attributes, such as insulation score values and
TAD boundaries in multiple cell types and across species.

2 Methods

2.1 Unsupervised representation learning of Hi-C data

To begin, we describe an unsupervised approach to learning a
representation of high resolution Hi-C data. This approach is motivated
by the notion that a good representation of the input data should be robust
to noise corruptions. Additionally, a strong performance in this denoising
task requires a good feature representation that adequately captures the
structure of the input (Vincent et al., 2010). We therefore propose to use a
denoising autoencoder to learn the Hi-C representation in an unsupervised
fashion. We train a model to denoise high resolution Hi-C data and in the
process, learn a useful feature representation in the model’s latent space.
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Fig. 1. Overview of Hi-C representation learning. (A) Denoising
autoencoder setup. High resolution Hi-C data is first corrupted by adding
zero mean Gaussian noise to the input. The corrupted data is then
passed into the reconstruction network φ. The network φ learns to
denoise corrupted Hi-C data and predict a noise-free reconstruction. (B)
Architecture of the denoising autoencoder. The model consists of five
convolutional layers followed by five deconvolutional layers with skip
connections every other layer. The network takes noisy high resolution
Hi-C data as input and infers a noise-free reconstruction.

Specifically, high resolution Hi-C matrix IHR is first corrupted with zero
mean Gaussian noise, producing a noisy version of the input data IHRZ :

IHRZ = IHR + ηZ Z ∼ N (0, 1) (1)

where η is a noise corruption factor. The noise corrupted input is then
passed through the denoising autoencoder network φ to produce the
reconstruction φ(IHRZ ) = ĨHR. An overview of this setup is illustrated
in Fig. 1A. For each new Hi-C sample provided to the network during
training, a new noise sample is produced from the noise generating
distribution and added to the input. These noise corruptions are only
added during the training phase of the denoising autoencoder. Once the
model is trained, representations are extracted from the noise-free data.
The denoising autoencoder is trained to reconstruct the noise-free n × n
input by minimizing the MSE between the original high resolution contact
matrix and the predicted reconstruction:

`φ =
1

n2

n∑
i=1

n∑
j=1

(
IHRi,j − ĨHRi,j

)2 (2)

The denoising autoencoder employs a slightly modified image
restoration architecture from Xiao-Jiao et al., 2016 shown in Fig. 1B.
The encoder and decoder portions are each made up of five convolutional
layers with ReLU (Nair and Hinton, 2010) activation and a tanh output
function. He initialization (He et al., 2015) is used for all convolutional
and deconvolutional layers. Throughout the model, every other layer also
includes a symmetric skip connection which performs an element-wise
sum between the encoder’s post-activation convolutional output with its
counterpart in the decoder. These skip connections aid in the flow of
gradients during backpropagation, as well as enable the model to pass
fine details of the Hi-C matrix to the decoding layers allowing for the end-
to-end learning of deeper networks to be more effective and efficient (He
et al., 2016). Each convolutional and deconvolutional layer consists of 64
filters of size 3 × 3. Once trained, the denoising autoencoder is able to
compute a feature representation of Hi-C data of any input size, as the
model is fully convolutional.
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Fig. 2. Overview of the HiCSR framework. (A) HiCSR employs an adversarial training strategy, augmented by two additional loss functions. First, low
resolution Hi-C data is passed to the generator networkGwhich produces a super-resolved output. Both the super-resolved output and true high resolution
Hi-C data are then used as inputs to compute the three components of the generator’s loss function. The discriminator network D predicts whether each
input sample comes from either the true high resolution Hi-C data distribution or from the generator, and its performance on this task is used to compute
an adversarial loss `adv . Additionally, a denoising autoencoder loss network φ then computes a feature reconstruction loss `φfeat between the inputs.
Finally, the inputs are used to compute the pixel-wise L1 loss `1. (B) Generator network G consists of 15 residual blocks with a skip connection. The
generator enhances low resolution Hi-C data producing the super-resolved output. (C) Discriminator network D is fully convolutional and predicts the
probability that the sample came from real high resolution Hi-C data, as opposed to super-resolved Hi-C data produced by the generator.

2.2 HiCSR framework

In this section, we provide a detailed description of the HiCSR framework.
HiCSR is a Hi-C enhancement model which combines a Generative
Adversarial Network (GAN) (Goodfellow et al., 2014) architecture with a
denoising autoencoder loss network to predict accurate high resolution
Hi-C data from insufficiently sequenced samples. Given pairs of low
and high resolution Hi-C contact matrices (ILR, IHR), where ILR is a
down-sampled version of IHR (e.g. 16× fewer sequence reads), HiCSR
produces a prediction ISR of the high resolution sample. An overview of
the framework is shown in Fig. 2A and additional information on model
parameters can be found in Supplementary Table 1.

HiCSR optimizes for a weighted combination of losses: an adversarial
loss produced from the discriminator of a GAN, a feature reconstruction
loss computed from the feature representations of a denoising autoencoder,
and a pixel-wise L1 loss. The total objective function of the generator is
given by:

`G = λa`adv + λf `
φ
feat + λ1`1 (3)

where λa, λf , and λ1 are scaling constants. Each component of the loss
function focuses on a specific and desirable aspect of enhancement. The
adversarial loss `adv ensures that the generator favours outputs which
lie on the true high resolution Hi-C data manifold, encouraging visually
convincing solutions. The feature reconstruction loss `φfeat ensures that
HiCSR enhanced Hi-C data shares accurate feature representations with
true high resolution Hi-C data. Finally, the L1 loss `1 encourages similarity
on the level of individual pixels. The minimization of the combined losses
ensures that HiCSR generates enhanced Hi-C data that is both accurate
and visually convincing.

2.2.1 Adversarial loss
The GAN training method employs two neural networks to produce
synthetic samples which appear to come from the desired data generating
distribution. The first network called the generator, takes samples from
an input distribution, and through a series of non linear transformations
produces synthetic samples which appear to have been drawn from the
desired sample distribution. The second network is the discriminator,
which takes samples from either the generator or the training set as input,
and attempts to classify them as having either come from the generator

or the training set. The two networks are trained in an alternating fashion
and play an adversarial game. As the generator improves in its ability to
create realistic samples, the discriminator improves its ability to distinguish
between the training distribution and the generator’s output. Training is
considered successful when the generator has learned to create synthetic
samples which the discriminator cannot accurately distinguish from real
samples of the desired distribution.

Forming this description mathematically in the context of Hi-
C enhancement, we define the generator network G (Fig. 2B) and
discriminator network D (Fig. 2C), parameterized by θG and θD
respectively. During training, the generator network takes low resolution
Hi-C data ILR as input and produces super-resolved Hi-C data ISR =

G(ILR) as output. The discriminator network takes both the super-
resolved matrix ISR produced from the generator and true high resolution
Hi-C data IHR as input, and classifies the input sample as either real (high
resolution) or fake (a sample produced by the generator). The objective
function of the two networks can then be written as a minimax game:

min
θG

max
θD

V (G,D) = EIHR∼PHR
[logD(IHR)]

+EILR∼PLR
[log(1−D(G(ILR)))]

(4)

where PHR and PLR are the data generating distributions of high and
low resolution Hi-C data, respectively. The discriminator’s classification
performance on this task is used to produce the first component of the
generator’s loss function, the adversarial loss. We used the standard
generator loss (Goodfellow et al., 2014) over all n = 1, ..., N training
samples:

`adv =
N∑
n=1

− logD(G(ILR)) (5)

The generator uses a fully convolutional architecture so that once
trained, the model allows for any size of Hi-C data to be enhanced. The
generator implements residual learning (He et al., 2016) and consists
of 15 residual blocks as well as a skip connection. Each convolutional
layer within the residual blocks consists of 64 (3 × 3) filter maps.
The discriminator model is also fully convolutional and uses Leaky
ReLU activations. Both models leverage Batch Normalization (Ioffe and
Szegedy, 2015) for regularization and to reduce training time.
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2.2.2 Feature reconstruction loss
Inspired by previous work outlining the use of loss networks (Johnson
et al., 2016; Gatys et al., 2015), the HiCSR framework employs a
denoising autoencoder (described in Sec. 2.1) loss network φ pretrained to
reconstruct noise corrupted high resolution Hi-C data. To do so, both the
enhanced Hi-C matrix ISR and the true high resolution Hi-C matrix IHR

are individually passed through the loss network, and their reconstructions:
φ(ISR) = ĨSR, and φ(IHR) = ĨHR are computed. Once both
predictions are made, the intermediate feature representations from all
encoder layers are extracted.

Using these intermediate feature representations, we then computed
a feature reconstruction loss lφfeat which measures the similarity
between the feature maps obtained from passing the super-resolved
Hi-C data and true high resolution Hi-C data through the denoising
autoencoder. Specifically, the feature reconstruction loss is the sum of the
squared normalized Euclidean distances between the pre-activation feature
representations of the true high resolution matrix IHR, and enhanced
matrix G(ILR) across all K layers of the encoder network:

`φfeat =
K∑
k=1

1

CkWkHk
‖φk(IHR)− φk(ISR)‖22 (6)

where φk is the pre-activation feature representation of the denoising
autoencoder at layer k of the encoder. For each sample, this similarity
is computed for feature maps of shape Ck × Wk × Hk for each of
the k = 1, . . . ,K encoder layers between two separate denoising
autoencoder inputs.

2.2.3 Pixel-wise L1 loss
While both the adversarial and feature reconstruction losses discussed
thus far encourage useful properties for Hi-C enhancement, they have
no explicit criteria that encourages a faithful prediction in the pixel-wise
sense. For this reason, we include a Mean Absolute Error (MAE) / L1 loss
computed between the super-resolved and true Hi-C high resolution Hi-C
data:

`1 =
1

n2

n∑
i=1

n∑
j=1

∣∣IHRi,j − ISRi,j ∣∣ (7)

2.3 HiCSR dataset generation and preprocessing

The dataset used to train and evaluate HiCSR requires pairs of high and
low resolution Hi-C data. To obtain these sets of matrices, we began with
a database of sequence reads for a given cell type and generated the low
resolution data through a uniform random down-sampling of the original
aligned reads by a factor of 16. Both the original (high resolution) and
down-sampled reads were then processed into low and high resolution
contact maps using the Hi-C processing pipeline, HiC-Pro (Servant et al.,
2015) with default settings. As there are few meaningful interchromosomal
interactions, only the intrachromosomal contact matrices are considered.

Both sets were then normalized by sequence depth to remove model
dependency on the total number of raw interactions. We define the matrix
Mc as the raw contact matrix of chromosome c, and performed a log
transform on the contact matrices given by:

Xc = log2(1 +Mc) (8)

We then applied a linear transform 2Xc/maxi,j{Xc
i,j} − 1,

normalizing the matrices to the range [−1, 1] for each chromosome. The
normalized contact matrices were then cropped to generate low resolution
n×n sub-matrices and their corresponding high resolution counterparts for
each chromosome. As most meaningful interactions occur within TADs,
and the majority of TADs are less than 1 Mb in size within the human
genome, interactions with a genomic distance greater than 2 Mb (far from
the matrix diagonal) were discarded.

2.4 HiCSR evaluation

Previously, all Hi-C enhancement models have been evaluated and
compared using image and correlation based measures. With respect to
image based approaches, MSE tends to favour blurred solutions (Mathieu
et al., 2016), and the applicability of the Structural Similarity (SSIM)
index (Wang et al., 2004) to Hi-C similarity is questionable, as it was
designed for evaluating the perceptual quality of natural images. With
respect to correlation measures, it has been shown that two unrelated
biological samples can have a high Pearson correlation coefficient and
furthermore, it is possible to find higher Pearson and Spearman correlations
between unrelated samples than those between true biological replicates
(Yang et al., 2017; Yardimci et al., 2017). In these cases, both Pearson
and Spearman Correlation metrics fail to account for the unique spatial
structure found in Hi-C data, as well as the "distance effect" (propensity
for increased contact frequency between loci at small linear distances along
the genome (Lieberman-Aiden et al., 2009)) seen in all Hi-C datasets.

We therefore focus on a more biologically significant measure,
evaluating HiCSR on Hi-C specific metrics which quantify the
reproducibility of Hi-C samples. We employed a Hi-C reproducibility
software package (Yardimci et al., 2017) which combines four different
software tools developed by members of the ENCODE Consortium to
compute reproducibility/similarity scores: GenomeDISCO (Ursu et al.,
2018), Hi-C Spector (Yan et al., 2017), HiCRep (Yang et al., 2017), and
QuASAR-Rep (Sauria and Taylor, 2017). Each of these methods propose
a unique perspective for scoring the similarity between two contact maps.
GenomeDISCO performs a series of random walks on a network created
from the Hi-C data in order to first smooth the contact map. Similarity
is then computed as the difference between the smoothed contact maps.
Hi-C Spector focuses on spectral reproducibility, comparing the eigen-
decomposition of the Laplacian matrix between samples using a weighted
difference of eigenvectors. The HiCRep method accounts for both contact
map sparsity and the "distance effect" in its measure. HiCRep smooths the
contact map using a 2D mean filter and then stratifies the contact map by
genomic distance, computing similarity as the strata-weighted correlation
between contact maps. QuASAR-Rep computes similarity by testing for
the assumption that spatially proximal loci will produce similar contact
frequencies throughout the genome.

These measures for reproducibility provide a tool for computing
contact map similarity which is designed with the unique aspects
of Hi-C data in mind. These software tools allow researchers to
quantitatively validate the quality and reproducibility between a previously
validated sample and a new experimental sample to confirm high
quality experimental results. In the context of Hi-C enhancement, Hi-
C reproducibility measures provide a logical basis for the comparison
between a super-resolved matrix and the true high resolution Hi-C data.

We compared HiCSR’s performance on each of the four described
reproducibility metrics against all previously proposed Hi-C enhancement
methods including HiCPlus, HiCNN, hicGAN, and DeepHiC. On this
evaluation, a successful Hi-C super-resolution model would therefore
score a high reproducibility value across all four measurements. In the same
way, we also evaluated HiCSR’s ability to transfer information learned on
a training set cell type to new cell types. We retrained HiCSR on a new
data set from a different cell type, and evaluated the reproducibility scores
of the enhanced Hi-C data on cell types that were previously unseen.

Despite the aforementioned weaknesses of image and correlation based
evaluations of Hi-C data, for completeness we also compared HiCSR to
other Hi-C enhancement methods using MSE, MAE, Peak Signal-to-noise
Ratio (PSNR), as well as both Pearson and Spearman correlation. For this
evaluation, each metric is computed as a function of genomic distance and
the results are averaged over distances less than 2.0 Mb apart.
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3 Results

3.1 Denoising autoencoder produces high fidelity
reconstructions of Hi-C data

Before evaluating the enhancement capability of the HiCSR model, we
confirmed that the trained denoising autoencoder loss network (used to
compute a feature reconstruction loss) is able to accurately reconstruct
high resolution Hi-C data. The denoising autoencoder was trained on 10
Kb resolution Hi-C data from the GM12878 cell type using all available
paired-end Hi-C reads downloaded from the Gene Expression Omnibus
(GEO) database (accession GSE63525) (Rao et al., 2014). The Denoising
autoencoder network uses chromosomes 1-16 for training, 17 and 18 for
hyper-parameter tuning, and 19-22 for evaluation. The model was trained
on a total of 70484 overlapping sub-matrices of sizen×n, wheren = 40

(i.e. Hi-C patches of size 0.4× 0.4 Mb). The denoising autoencoder was
trained over 600 epochs using the Adam optimizer (Kingma et al., 2014)
with a batch size of 256, a learning rate of 5×10−3, and a noise corruption
factor of η = 0.1.

We evaluated the denoising autoencoder’s reconstruction capability
from several perspectives. When inspecting the denoising autoencoder’s
performance qualitatively (Fig. 3A), we found that the reconstruction
captures many of the visual intricacies of the original Hi-C data, and
produces a high fidelity reconstruction. We then compared samples from
the high resolution Hi-C data to the reconstructed samples of Hi-C data
produced from the denoising autoencoder using MSE (Fig. 3B). To
further validate, we grouped all test chromosomes together, binned the
MSE values according to short-range interactions (0.00-0.25 Mb), mid-
range interactions (0.25-1.00 Mb) and long-range interactions (1.00-2.00
Mb), taking the average within bins. For short-, mid-, and long-range
interactions, the denoising autoencoder achieved a MSE of 0.013, 0.025,
and 0.033, respectively. We found that the reconstructed matrix samples
achieved low error across all four test chromosomes, and that the model
produced particularly small errors at low genomic distances. This is a
desirable outcome for Hi-C matrix reconstructions as the most significant
and least noisy interactions occur at low genomic distances.

For additional comparison we also evaluated the contact frequency
profiles of both real Hi-C data and reconstructed Hi-C data from the
denoising autoencoder. We computed the base 2 logarithm of the raw
interaction frequencies and grouped them into 0.4 Mb sized bins. We then
compared the distributions of the resultant binned interaction frequencies
between real Hi-C data from the test chromosomes and their corresponding
reconstructions (Fig. 3C). We found that both the real and reconstructed Hi-
C data have similar interaction frequency profiles at a variety of genomic
distances, and the reconstructed matrix correctly matches the exponential
drop off in contact frequency seen in real Hi-C data.

3.2 Denoising autoencoder learns a meaningful
representation of high resolution Hi-C data

Next, we aimed to evaluate the learned representations of the denoising
autoencoder. In line with the proposed feature reconstruction loss used in
the HiCSR framework, we analyzed the feature space of the model using
the same setup used to evaluate the denoising autoencoder reconstructions
in the previous section. To determine if the learned feature representations
are useful for Hi-C enhancement tasks, we inspected the pre-activation
feature representations at each layer of the encoder when high resolution
Hi-C data is passed as input. For select filters within the model,
we discovered that the corresponding feature maps captured key high
frequency textures which are ubiquitous in Hi-C contact maps (Fig. 4A).
Specifically, we found filters which preserved the speckled textures
typically found in Hi-C data, as well as activation maps which emphasize
high frequency hatching patterns in both the vertical and horizontal
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Fig. 3. Evaluation of denoising autoencoder reconstructions in the
GM12878 cell type. (A) Sample denoising autoencoder prediction from
chromosome 20 (2.0 Mb - 4.0 Mb). Visualizations depict the original
high resolution Hi-C data (left), Hi-C data reconstruction (middle)
and the log ratio between them (right). (B) Mean Squared Error
between the true Hi-C data and the reconstruction as a function of
genomic distance for chromosomes 19-22. The reconstruction from the
denoising autoencoder achieves consistently low error on all four test
chromosomes. (C) Comparison of interaction frequencies between the
denoising autoencoder reconstruction and real Hi-C data, binned by
genomic distance. The denoising autoencoder-produced reconstructions
achieve similar interaction frequencies to that of real Hi-C data across a
range of genomic distances.

A
�1�22

Chr	21:	26.0	-	27.0	Mb

�3�16 �2�44 �4�11 �1�52

B

Chr	21:	34.0	-	35.0	Mb

C

Chr	19:	31.0	-	32.8	Mb     

�5�2 �2�9 �4�60

Fig. 4. Visualization of the denoising autoencoder feature representations in
the GM12878 cell type depicting High resolution Hi-C data input and select
examples of the accompanying pre-activation feature maps. (A) Sample
from chromosome 21 (26.0 - 27.0 Mb). Select pre-activation feature maps
F from the encoder layers L capture the high frequency content and
textures found in Hi-C data. Sample feature maps illustrate high frequency
speckling textures (L1F22), vertical hatching patterns (L3F16, L2F44)
and horizontal hatching patterns (L4F11, L1F52). (B) Sample from
chromosome 21 (34.0 - 35.0 Mb). Pre-activation maps of the encoder
exhibit interpretable substructures found in Hi-C data. Feature maps
emphasize self-interacting loci (L5F2) and distinguish Topologically
Associating Domains (TADs) from other interactions (L2F9). (C) Samples
from chromosome 19 (31.0 - 32.8 Mb). Pre-activation maps of the encoder
contains representations of chromatin loops (L4F60).
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directions. These learned representations encapsulate some of the lower-
order structures found within Hi-C contact matrices, and contribute to
the overall visual particularities of the data. The reconstruction of these
textures is a desirable characteristic of a Hi-C super-resolution model,
as they allow the super-resolved outputs to faithfully preserve the high
frequency information that is captured in real Hi-C data. It is therefore a
good indication that the denoising autoencoder has learned useful feature
representations for Hi-C enhancement.

Beyond simple texture information, we discovered that the denoising
autoencoder was also able to capture higher-order information. We
discovered that the denoising autoencoder feature representations captured
interpretable chromatin substructures known to exist in true high
resolution Hi-C data. Select filters from the encoder layers were able
to capture structural information found in high resolution Hi-C data,
and the representations emphasize biologically interpretable features
such as self-interacting loci, and TADs (Fig. 4B). We find that the
denoising autoencoder is also capable of representing the relative spike in
interaction frequencies corresponding to chromatin loops (Fig. 4C). The
preservation of these substructures within the feature representations are
a promising sign that the denoising autoencoder has learned a meaningful
representation of high resolution Hi-C data, and would therefore provide
benefit to the Hi-C enhancement process.

3.3 HiCSR-enhanced data consistently achieves high
reproducibility scores across cell types

HiCSR was trained on pairs of low and high resolution Hi-C data from
the GM12878 cell type with the same dataset split used for the denoising
autoencoder (1-16 for training, 17 and 18 for validation). In total, HiCSR
is trained with 70484 pairs of sub-matrices of size n×n, where n = 40.
The generator and discriminator training was done in an alternating fashion
over 500 epochs using the Adam optimizer with a batch size of 128, and a
learning rate of 10−5. The HiCSR training procedure took 48 hours on a
single NVIDIA Tesla P100 GPU. The LeakyReLU activation used in the
discriminator was implemented with α = 0.2. Scaling factors λa, λf ,
and λ1 were chosen through cross-validation as 2.5×10−3, 1.0, and 1.0,
respectively. Once trained, the discriminator and denoising autoencoder
were discarded, and Hi-C super-resolution predictions were made with the
generator alone.

We first evaluated HiCSR on image and correlation based metrics in
a similar fashion to previous methods, computing the MSE, Peak Signal-
to-noise Ratio, MAE, Pearson, and Spearman Correlation averaged over
genomic distances ≤ 2.0 Mb (Table 1). We evaluated HiCSR against
a suite of previously developed deep learning based Hi-C enhancement
methods, including HiCPlus, HiCNN, hicGAN and DeepHiC. For
DeepHiC and hicGAN, which utilize normalization to remove the model’s
dependency on sequence depth, we used the provided relevant pretrained
models. As HiCPlus and HiCNN prescribe no normalization and are
therefore sensitive to sequence depth, we retrained the models according
to the training methods described in the original papers (Zhang et al.,
2018; Liu T. et al., 2019). Although HiCNN performs best on most of
these metrics, HiCSR achieved state-of-the-art performance on MAE, and
competitive performance overall.

We then moved to evaluate HiCSR on a more biologically relevant
metric, testing the HiCSR model on four different software tools which
measure the intrachromosomal reproducibility between the true high
resolution Hi-C data and an enhanced Hi-C matrix. These reproducibility
methods: GenomeDISCO, HiC-Spector, HiCRep, and QuaSAR-Rep,
assign a score in the range [0, 1] to an enhanced Hi-C matrix indicating the
reproduction quality between the input matrix and the true high resolution
Hi-C contact map. We computed a reproducibility score for each of the four
methods for the six test chromosomes (19-22, X, Y) resulting in a total of

Table 1. Image based metrics Mean Squared Error (MSE), Peak Signal-to-
noise Ratio (PSNR), and Mean Absolute Error (MAE), as well as Pearson and
Spearman Correlation metrics within a genomic distance of 2.0 Mb, averaged
over chromosomes 19-22 in the GM12878 cell type. All metrics were computed
between true high resolution and enhanced Hi-C data.

Model MSE PSNR (dB) MAE Pearson Spearman

High resolution 0.00 ∞ 0.00 1.00 1.00
16x down-sample 3.596 12.96 1.610 0.616 0.639
HiCPlus 0.146 26.89 0.279 0.934 0.900
HiCNN 0.118 27.81 0.245 0.943 0.909
hicGAN 0.270 24.20 0.384 0.877 0.842
DeepHiC 0.179 26.01 0.313 0.932 0.891
HiCSR (ours) 0.143 26.97 0.244 0.926 0.889

24 separate evaluations for each model (Supplementary Table 2). We found
that HiCSR enhanced Hi-C matrices achieved a high score for each of the
reproducibility metrics. Averaging over the test chromosomes, HiCSR
enhanced data achieved a score of 0.927 from GenomeDISCO, 0.950
from HiC-Spector, 0.973 from HiCRep, and 0.980 from QuASAR-Rep.
Across all reproducibility scoring methods, HiCSR enhanced data received
consistently high scores, performing the best in 20 out of 24 reproducibility
comparisons. We found that HiCSR outperforms all other Hi-C super-
resolution models in terms of reproducibility when tested across all four
metrics. A comparison of the mean performance on these metrics between

Fig. 5. (A) Mean reproducibility scores for all Hi-C enhancement models
from left to right: hicGAN = 0.84, DeepHiC = 0.84, HiCPlus = 0.92,
HiCNN = 0.93 and HiCSR = 0.96. HiCSR outperforms all other super-
resolution models in terms of reproducibility (* One-sided independent
t-test). Error bars signify standard deviation. (B) Comparison between
super-resolution model performances on each of the four reproducibility
metrics, GenomeDISCO, HiC-Spector, HiCRep, and QuASAR-Rep.
While previous models perform relatively poorly on GenomeDISCO and
HiC-Spector, HiSR performs equally well across all metrics.
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A B

Fig. 6. (A) Hi-C super-resolution visual comparisons on a log scale. Samples shown are from chr21: 33.00 - 37.00 Mb at 10 Kb resolution in the GM12878
cell type. Hi-C contact maps depicted are as follows from left to right: 16x down-sampled low resolution, true high resolution, HiCSR (top), HiCPlus,
HiCNN, hicGAN, and DeepHiC (bottom). (B) Visual comparison on a log scale between HiCSR predictions when trained on the GM12878, NHEK, and
CH12LX cell types. Samples shown are from chr21: 37.00 - 41.00 Mb (top), chr21: 46.00-50.00 Mb (middle), and chr21: 16.00 - 20.00 Mb (bottom) at
10 Kb resolution.

Hi-C enhancement models (Fig. 5A) shows that HiCSR (with an average
score of 0.958) provides a significant improvement over all other models
(p < 0.05, one-sided independent t-test), including HiCNN which has the
second highest average reproducibility score of 0.931. We also found that
when comparing reproducibility scores across the four metrics (Fig. 5B),
previous Hi-C super-resolution methods perform poorly in comparison to
HiCSR using the GenomeDISCO and HiC-Spector metrics. This indicates
that HiCSR is able to better recover the high frequency information found
in experimental Hi-C data.

We provide a visual comparison of all model enhancements illustrated
in Fig. 6A. This comparison highlights the various enhancement artifacts
produced by current Hi-C super-resolution methods. We note that HiCPlus-
and HiCNN-enhanced matrices tend be overly smooth and blurred
compared to real Hi-C data. With hicGAN-enhanced data, the predictions

Table 2. Reproducibility scores from GenomeDISCO, HiC-Spector, HiCRep,
and QuASAR-Rep with HiCSR trained on the GM12878, NHEK and CH12LX
cell types, and evaluated on chromosomes 19 - 22 of the GM12878 cell type.
All reproducibility scores were computed between true high resolution and
enhanced Hi-C data.

GM12878 GenomeDISCO HiC-Spector HiCRep QuASAR-Rep

Chr19 0.933 0.969 0.982 0.980
Chr20 0.914 0.956 0.975 0.978
Chr21 0.908 0.917 0.976 0.972
Chr22 0.927 0.969 0.983 0.983

NHEK

Chr19 0.817 0.882 0.863 0.867
Chr20 0.848 0.857 0.887 0.851
Chr21 0.753 0.849 0.910 0.869
Chr22 0.796 0.855 0.870 0.865

CH12LX

Chr19 0.789 0.865 0.918 0.835
Chr20 0.735 0.841 0.913 0.814
Chr21 0.783 0.892 0.957 0.853
Chr22 0.793 0.803 0.941 0.832

are error prone due to its lack of a pixel-wise loss. Finally, with DeepHiC-
enhanced data, we found "wave-like" artifacts produced which do not
occur in real Hi-C data. We speculate that these optimization artifacts are
caused by the use of a pretrained VGG based perceptual loss, encouraging
textures found in the natural image domain on which VGG was trained.
In contrast, we found that the HiCSR framework is able to produce
highly realistic contact maps which more accurately capture the realistic
textures found in experimental Hi-C data. Additional visual samples
emphasizing the different optimization artifacts of each model are provided
in Supplementary Fig. 1.

We also tested HiCSR’s ability to transfer super-resolution mappings
learned from one cell type to another previously unseen cell type. To do
this, we made use of 10 Kb resolution Hi-C data from two additional
cell types: NHEK (human) and CH12LX (mouse). For each cell type we
used all available paired-end reads downloaded from the Gene Expression
Omnibus (GEO) database (accession GSE63525). We again computed
reproducibility scores (Table 2) when HiCSR was trained on NHEK or
CH12LX, in addition to the original, matching GM12878. Visual samples
of HiCSR trained on different cell types but tested on the same GM12878
cell line are provided in Fig. 6B. Although there is a slight performance
degradation when training and testing on different cell types, we found
that HiCSR is able to produce enhanced Hi-C data that achieves both
visual realism and high reproducibility scores across all four measures
(Supplementary Fig 2.).

3.4 HiCSR effectively recovers TAD boundaries across
varying sequence depths, cell types, and species

Finally, we evaluated HiCSR on a common Hi-C analysis task by exploring
the effect of sequence depth and cell type on the model’s ability to recover
contact domain boundaries. From the GM12878 cell type, we evaluated
on chromosomes 19-22, from NHEK chromosomes 9, 13, 16 and 19, and
from CH12LX chromosomes 8, 12, 16, and 18. We began by computing
the normalized insulation scores (Crane et al., 2015) of the low resolution,
HiCSR enhanced, and high resolution contact maps for each chromosome.
We then compared the insulation scores of the low resolution and HiCSR
enhanced data to the high resolution insulation scores using MSE.

We found that HiCSR enhanced data significantly reduces the error in
the insulation score compared to low resolution data, and that the HiCSR
framework is capable of recovering the insulation score values at a variety
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Fig. 7. Evaluation of TAD boundaries recovered from HiCSR predicted Hi-C data across cell and species type. (A) Low resolution, HiCSR enhanced,
and high resolution Hi-C data samples with corresponding insulation scores for the GM12878 and NHEK (human) cell types, as well as the CH12LX
(mouse) cell type. The contact domain boundaries are shown with the boundary annotations highlighted in red for all three cell types. (B-D) Comparison
of detected contact domain boundaries for each contact map relative to a curated set of known TAD boundary locations derived from the Insulation Score,
Directionality Index, and GMAP methods.

of sequence depths. In the GM12878 cell type, where the low resolution
Hi-C data has a sequence depth of 407.80 M reads, a MSE of 0.012 was
found for the low resolution insulation score, while the HiCSR enhanced
insulation score achieves a MSE of 0.005. In the NHEK cell type (67.08 M
reads), a MSE of 0.230 was found for the low resolution insulation score
while the HiCSR enhanced score reaches a MSE of 0.103. Finally, for the
CH12LX cell type (86.43 M reads), a MSE of 0.086 was found for the
low resolution score, while the HiCSR enhanced data achieves a MSE of
0.040.

A sample of the contact maps, insulation scores, and resultant TAD
boundaries (derived from the high resolution sample), for each cell type
is illustrated in Fig. 7A. It can be seen that in all cases HiCSR is able to
recover a sensible approximation of the insulation score. Even in cases
where a lower sequence depth results in an extremely noisy signal, HiCSR
enhanced data produced an insulation score which preserves the local
minima used for TAD boundary annotation.

We further validated HiCSR’s capability to recover TAD boundaries
across sequence depth, cell type, and species by comparing TADs called
from the insulation scores of the low resolution, HiCSR enhanced and high
resolution data, to a known set of curated TAD boundaries from the TAD
Knowledge Base (TADKB) (Liu T. et al., 2019) for each cell type. We
consider over 1000 TAD boundaries from this knowledge base computed
using the Insulation Score, Directionality Index (Dixon et al., 2012), and
the Gaussian Mixture model And Proportion test (GMAP) (Yu et al., 2017)
methods and determined the extent to which they could be recovered by
HiCSR (Fig. 7 (B-D)). We deemed called contact boundaries to be correct
if they fell within 0.16 Mb of a true contact boundary. We found that in all
cases, HiCSR was able to call TAD boundaries more accurately than the
original low resolution Hi-C data. In the GM12878 cell type, We also note
that in both the NHEK and CH12LX cell types where the sequence depth is
particularly low, HiCSR was able to recover a significant proportion of the
true TAD boundaries, correctly locating over 20% more contact domain
boundaries on average compared to the low resolution counterpart. Even
within the GM12878 Hi-C data set with a much greater sequencing depth,
we found that while the low resolution data was able to call TADs relatively
better, it was still outperformed by the HiCSR enhanced insulation score.

4 Discussion
In this work, we showcase the HiCSR framework for enhancing low
resolution Hi-C data. HiCSR is capable of producing highly accurate
and visually convincing high resolution Hi-C contact maps from low
resolution data. We believe that HiCSR will find use within the research
community when analyzing low resolution Hi-C data obtained from
either new experiments or online repositories. Our method leverages
the strengths of all previously proposed deep learning methods and
improves upon them by introducing a Hi-C specific feature reconstruction
loss derived from a denoising autoencoder. To motivate the use of the
denoising autoencoder for Hi-C representation learning, we first showed
its capability in producing high fidelity reconstructions of Hi-C data.
Furthermore, we demonstrated that the learned feature representations
contain useful textures and interpretable Hi-C specific substructures
including self-interacting loci, TADs, and chromatin loops.

Additionally, we believe that the denoising autoencoder developed
to augment HiCSR’s objective function provides an interesting approach
to task specific image based problems beyond super-resolution methods.
In non-natural image based biological problems, it is not always clear
which features of the image are important or useful. In these cases, the
features learned by the denoising autoencoder provide an automated way
to develop problem specific insights and loss functions which can be
validated post-hoc by inspecting the model’s learned representations. We
encourage future works to further explore these methods for unsupervised
representation learning with both Hi-C data and biological data more
broadly.

We argued that current evaluation methods of Hi-C enhancement (e.g.
correlation methods) fall short as they do not consider the unique structures
found within Hi-C data when evaluating the relative efficacy of Hi-C
enhancement methods. We instead proposed the use of Hi-C specific
measures of reproducibility and similarity which have been developed
and endorsed by the Hi-C research community. We showed that HiCSR
outperforms all previously proposed models achieving consistently high
reproducibility scores measured with four separate metrics, indicating that
HiCSR enhanced data is highly similar to the true high resolution Hi-C data
from several reproducibility perspectives. Similarly, we found that HiCSR
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was capable of learning Hi-C super-resolution mappings which transferred
well across cell types and again achieved high reproducibility scores. This
indicates that there are shared properties underlying Hi-C contact maps
across both cell types and species which are captured in HiCSR’s model
parameters.

We also validated HiCSR’s performance in a common Hi-C analysis
task, evaluating the model’s ability to recover TAD boundaries which are
not detectable in low resolution data. We show that HiCSR is able to
perform well at this task, providing robust results across a range of cell
types, and between both human and mouse species. This indicates that
HiCSR has captured the underlying structure which is shared in Hi-C data
across varying cell types.

As Hi-C super-resolution methods are still relatively new, there are
many avenues which may be explored to further improve the methodology.
For example, one could investigate the use of ensemble methods. Training
HiCSR on datasets from a variety of cell types, thereby increasing
dataset size and variation, will likely improve cross-cell super-resolution
predictions. Another possible improvement to our work is to provide side
information to the model during training and when making predictions.
For example, side information pertaining to the genomic distance of the
current submatrix to be predicted may provide beneficial results, improving
the model’s optimization behaviour. In addition to improving upon the
methodology of HiCSR, work exploring the relative trade-offs between
deep learning Hi-C enhancement methods (such as those discussed here)
and recently proposed alternative methods such as HIFI (Cameron et al.,
2020) is required to better understand the scenarios in which each technique
is preferred.

Our contribution further improves upon the state-of-the-art in Hi-C
super-resolution, providing a solution which produces highly realistic
and accurate contact maps. We believe that continued refinements to
the Hi-C enhancement process combined with more biologically relevant
evaluations, as exemplified by this work, will accelerate its adoption by
experimental biologists and contribute to our understanding of the 3D
genome.
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