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Abstract (250 word max) 36 

Data analysis in non-targeted metabolomics is extremely time consuming. Genetic 37 

factors and environmental cues affect the composition and quantity of present 38 

metabolites i.e. the constitutive and non-constitutive metabolites. We developed 39 

gcProfileMakeR, an R package that uses standard output files from GC-MS for 40 

automatic data analysis using CAS numbers. gcProfileMakeR produces three outputs: a 41 

core or constitutive metabolome, a second list of compounds with high quality matches 42 

that is non-constitutive and a third set of compounds with low quality matching to MS 43 

libraries.  As a proof of concept, we defined the floral scent emission of Antirrhinum 44 

majus using wild type plants, the floral identity mutants deficiens and compacta as well 45 

as RNAi lines of AmLHY. Loss of petal identity was accompanied by appearance of 46 

aldehydes typical of green leaf volatile profiles. Decreased levels of AmLHY caused a 47 

major increase in volatile complexity, and activated the synthesis of benzyl acetate, 48 

absent in WT. Furthermore, some volatiles emitted in a gated fashion in WT such as 49 

methyl 3,5-dimethoxybezoate or linalool became constitutive. Using sixteen volatiles of 50 

the constitutive profile, all genotypes were classified by Machine Learning with 0% 51 

error.  gcProfileMakeR may thus help define core and pan-metabolomes. It enhances the 52 

quality of data reported in metabolomic profiles as text outputs rely on CAS numbers. 53 

This is especially important for FAIR data implementation. 54 

  55 
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Introduction 56 

Plants, bacteria and animals emit complex mixtures of Volatile Organic Compounds 57 

(VOCs) forming blends or scent profiles. The chemodiversity of plant scent profiles is 58 

enormous as the last list of compounds published classifies over 1700 compounds 59 

(Knudsen et al., 2006). The variety of combinations in terms of quality and quantity of 60 

VOCs make many scent profiles unique for a species, or variety. 61 

The structure of a scent profile is determined by a combination of three factors. First, 62 

developmental processes underlie the structure of a scent profile, as leaves, roots, 63 

flowers or fruits of a given plant emit distinct combinations of VOCs. Second, 64 

environmental conditions modify scent emission. For instance, some VOCs are 65 

typically produced under pathogen attacks (Kessler and Baldwin, 2002; Shimoda et al., 66 

2012; Groen et al., 2016) and scent emission is affected by temperature and circadian 67 

regulation (Kolosova et al., 2001; Cna’ani et al., 2014; Terry et al., 2019a). Finally, 68 

genetic diversity plays a key role as many species, varieties and mutants emit differing 69 

scent profiles. Scent profiles can be used to identify species as it is a stable character 70 

and the major VOCs emitted tend to be a shortlist of metabolites (Knudsen et al., 2006; 71 

Raguso et al., 2006; Weiss et al., 2016a).  72 

Whilst core scents are formed by a given blend of VOCs and are typical of a species or 73 

an organ, volatiles emitted in a non-constitutive way may play important biological 74 

roles. Thus, the combination of genetic diversity, morphogenesis and environmental 75 

cues, can make challenging the unequivocal determination of a scent profile emitted by 76 

a species, an organ, or under certain environmental conditions.  77 

Reaching a consensus among samples of which compounds are comprising the 78 

constitutive metabolomic profile and which form the non-constitutive metabolome or 79 

discriminate between two sets of samples is mainly done manually. This causes two 80 
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major problems, first, criteria are not always obvious or consistent and second, the 81 

procedure is extremely tedious, time consuming and prone to error. Sample size is key 82 

to determine accurately metabolic profiles. However, due to the difficulties found in 83 

data processing, sample size increment (n≥5) is neglected in many studies. An 84 

additional issue is the complexity of names given to a single chemical compound. In 85 

many cases, they include a common name, a chemical structure and sometimes isomers. 86 

The Chemical Abstract Service Number or CAS number is a single identifier that allows 87 

unambiguous assignation of a chemical structure. Thus the adoption of CAS-number 88 

defined metabolomes is the most appropriate way to produce metabolomics raw data in 89 

a suitable format for FAIR data management where data can be reanalysed (Wilkinson 90 

et al., 2016).  91 

 92 

Here we provide an R-package that uses as inputs spreadsheet files produced by GC-MS 93 

apparatus to determine the core metabolome and non-constitutive compounds emitted 94 

by a set of samples. It compares between samples to give a set of common and 95 

differential set of metabolites in an automatic fashion.  96 

We demonstrate the utility of gcProfileMakeR by analysing two genotypes of 97 

Antirrhinum majus affecting petal identity (Bey et al., 2004; Manchado-Rojo et al., 98 

2012). Furthermore, we analysed the complete scent emission profile of A.majus lines 99 

with downregulated levels of AmLHY (Terry et al., 2019b). Our results indicate that the 100 

organ identity gene deficiens (Sommer et al., 1990), required to establish a petal organ 101 

identity, has a major impact in the scent profile emitted by the flowers, that result in 102 

scent profiles more similar to vegetative tissues. The downregulation of AmLHY causes 103 

among other features the appearance of volatiles undetected in the wild type plants, 104 

indicating a major coordination of scent emission by AmLHY. Using Machine Learning, 105 
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we were able to classify the constitutive scent profiles of four genotypes with 0% error 106 

suggesting a great potential of gcProfileMakeR for downstream bioinformatics 107 

processing of metabolomic data. 108 

 109 

Results and Discussion 110 

 111 

The full implementation of non-targeted metabolomics can give as a result a very large 112 

lists of liquid and/or gas chromatograms comprising hundreds of compounds (Zhu et al., 113 

2018). Oftentimes, the number of compounds described undergo an arbitrary cut-off as 114 

major and minor components. The second reason to define only a subset of metabolites 115 

is that the comparison between samples is performed manually. We developed 116 

gcProfileMakeR, a tool accelerating the actual identification of common compounds in 117 

a set of samples. It uses reproducible criteria for downstream processing and data 118 

reusability. gcProfileMakeR was developed as an R package as R is open source, and 119 

the scientific community, especially biology, is doing a massive use of it. 120 

gcProfileMakeR determines the core metabolome and non-constitutive compounds 121 

present in a set of samples, thus allowing extensive exploration. 122 

 123 

gcProfileMakeR workflow 124 

gcProfileMakeR uses two types of raw data: either XLS data files obtained directly 125 

from Agilent Chemstation software (Library Search Report) or CSV files (Fig. 1A). An 126 

example dataset can be retrieved within the library. 127 

GC basic data contains information for each integrated peak about retention time (RT) 128 

and area of the peak. Mass spectra alignment with available libraries (MS libraries) 129 
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allows to identify the compounds present in the sample with a certain degree of 130 

confidence (quality). Annotated compounds (hits) are listed according to the quality of 131 

the match between the mass spectra obtained and the mass spectra listed in the MS 132 

library. Hits are specified by chemical names of compounds and the CAS Registry 133 

Number associated to the hit/compound. CAS numbers are specific for a compound 134 

whereas chemical names are redundant and may imply different isomers or molecules. 135 

gcProfileMakeR works with RT, qualities and CAS numbers in order to provide lists of 136 
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compounds identified by CAS numbers, areas and qualities. Chemical names are linked 137 

to the CAS numbers as they are understandable by scientists. 138 

Two filters can be applied to pretreat data (Fig. 1A). The first one, cas2rm, will sort out 139 

any CAS number defined by the user, thus allowing the elimination of known 140 

contaminants, or compounds that are ubiquitous and complicate further analysis. The 141 

second filter, minQuality, eliminates hits, either first or secondary, with a quality below 142 

a defined level. It could leave retention times empty if being too strict (e.g. = 95). It 143 

allows to use a strategy of low strictness at the integration step and explore the data, 144 

decreasing the threshold to define a complete metabolome.  145 

gcProfileMakeR uses three functions (Fig. 1A). The first function 146 

NormalizeWithinFiles, analyses each file/sample assigning for each retention time a set 147 

of possible hits (compounds). Peak areas of the same compounds with an identical CAS 148 

number found in different RTs, will be added (Fig. 1B). The second function 149 

NormalizeBetweenFiles, reaches a consensus between files in such a way that the same 150 

compounds separated in relatively close retention times are grouped together. The third 151 

function getGroups, establishes what is considered as “Profile”, “Non-constitutive by 152 

Frequency” and “Non-constitutive by Quality”. The rationale behind including a Non-153 

constitutive by Quality list is that some compounds, even as chemical standards, give 154 

low quality due to poor representation in MS libraries, for instance methyl jasmonate 155 

(Fig. 1C). Frequency and quality default thresholds can be adjusted, thus allowing data 156 

exploration.  157 

Default values have been tested with different sets of samples and number of samples 158 

and have proved the best outputs when compared to manual annotation (data not 159 

shown).  The output of gcProfilemakeR are three mutually exclusive lists of 160 

compounds. The first set of compounds listed as “Profile” are those compounds which 161 
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appear in all the samples of a given type i.e. genotype and/or treatment and which have 162 

a high matching quality: above a percentage of samples defined by the researcher. 163 

Compounds listed as “Non-constitutive by Frequency” are metabolites with a high 164 

mean-quality score (default: >85%) in the MS analysis but present in less than the 165 
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percentage of the samples defined previously (Fig. 1A). Finally, compounds listed as 166 

“Non-constitutive by Quality” are metabolites with a low mean-quality (default: <85%) 167 

that are in at least 30% of the samples (default value). Frequency and quality thresholds 168 

can be adjusted for stringency thus allowing data exploration. Results can be plotted 169 

with the function plotGroup (Fig 2). In this function, compoundType parameter can be 170 

adjusted in order to get profiles (p), non-constitutive by frequency (ncf) or non-171 

constitutive by quality (ncq). Results are plotted according to the average area and 172 

quality of each compound grouped in each category. The graphic obtained is in HTML 173 

format and allows, by pointing at the columns, to see the actual compound names that 174 

are linked to a CAS number (Fig. 2). Pointing at the quality percentages it shows the 175 

error rates of the quality for a given CAS number. This facilitates working with the 176 

graphics. They can also be saved as .png. 177 

 178 

Testing gcProfileMakeR in floral organ identity mutants and clock transgenic lines 179 

We have experimentally validated gcProfileMakeR using a set of Antirrhinum majus 180 

mutants, transgenic and wild type plants. Floral scent emission depends on properly 181 

formed petal tissues, as weak alleles of B-function genes such as deficiens-nicotianoides 182 

(def-nic) (Sommer et al., 1991) or compacta (co), show significant changes in the 183 

quantities of the terpenoids myrcene and ocimene, and the phenylpropanoid methyl 184 

benzoate (Manchado-Rojo et al., 2012). However, the complete scent profile had not 185 

been analysed. 186 

 187 

We analyzed four datasets of floral volatiles, one corresponding to Sippe 50 wild types, 188 

one produced by the mutant def-nic, a third corresponding to co and a fourth 189 

corresponding to RNAi:AmLHY . We used a list of possible contaminants, which might 190 
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proceed from the twister absorption matrix (Supplemental Table S1), and cas2rm to 191 

eliminate from our results any CAS numbers corresponding to siloxane or related 192 

derivatives. 193 

Using gcProfileMakeR allowed to obtain a comprehensive profile present in at least 70 194 

% of the samples (pFreqCutoff= 0.70). The wild type scent profile comprised seven 195 

constitutive VOCs in wild type flowers including benzenoids/phenylpropanoids and 196 

monoterpenes (Fig 3). In contrast, co produced only five, losing one benzenoid and one 197 

monoterpene, while it emitted decanal, an aldehyde absent in wild type. The stronger B-198 

function mutant allele def-nic did not emit monoterpenes and had yet increased levels of 199 

aldehydes with presence of nonanal and decanal (Fig. 3). In sharp contrast, the scent 200 

profile of RNAi:AmLHY was significantly more complex than the wild type, and it 201 

included a total of fourteen VOCs comprising aldehydes, benzenoids/phenylpropanoids, 202 

mono and sesquiterpenes (Fig. 3).  203 
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When we inspected the Non-Constitutive by Frequency VOCs i.e. those found in less 204 

than 70% of the samples (Fig. 4), we found that wild type flowers emitted an additional 205 

set of five VOCs comprising the amine indole, benzenoids/phenylpropanoids and 206 

monoterpenes. In contrast, the number of volatiles emitted as Non-constitutive by 207 

Frequency by the rest of genotypes was substantially larger. The mutant co emitted 38 208 

additional VOCs in all the categories including cycloalkanes such as cyclododecane, 209 

esters like borneol acetate, sesquiterpenes such as bornene and alpha-farnesene and 210 

terpene derivatives such as hexahydrofarnesyl acetone. The weak def-nic produced 19 211 

volatiles while the RNAi:AmLHY lines produced 20 additional VOCs. Some of these 212 

were found only in the RNAi:AmLHY lines (see below). The analysis of non-constitutive 213 

by quality scent profile revealed 21 new volatiles (Supplemental Fig. S1). These 214 

compounds included aldehydes detected in transgenic lines, such as dodecanal and 215 

octanal. 216 
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An important outcome of the data analyzed is that the actual genetic capacity of VOC 217 
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emission in a wild type plant may be grossly underestimated. While the constitutive 218 

scent profile of the wild type is more complex than in the mutants, it is far simpler than 219 

the RNAi:AmLHY plants. This phenotype was also noticeable analyzing the daily 220 

emission of wild type and transgenic lines. The complexity of the constitutive and non-221 

constitutive profile by frequency was higher in RNAi:AmLHY flowers (Fig. 5, 222 

Supplemental Fig. S2). Interestingly, we also found differences in time emission, as in 223 

case of the monoterpene linalool, that was not detected at ZT9 and ZT15 in wild type 224 

flowers but was constitutively emitted in all analyzed time points in transgenic 225 

snapdragons (Fig. 5). 226 

This suggests a general function of DEF, CO and AmLHY in establishing a concrete 227 

aroma typical of A.majus flowers. 228 
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 229 

Effect of floral organ identity mutants and RNAi:AmLHY on VOC biosynthetic 230 

pathways 231 

We identified compounds in snapdragon fragrance that are precursors of other volatiles, 232 

as benzaldehyde and its derivatives benzyl alcohol, benzyl acetate and methyl benzoate 233 

(Muhlemann et al., 2014). We found that, in general, snapdragon showed constitutive 234 

volatiles such as acetophenone, whereas other volatiles such as benzyl alcohol and 235 

methyl salycilate were present in the non-constitutive profile by frequency (Fig. 6). 236 

Based on previous data, we plotted the schematic pathway of 237 

benzenoid/phenylpropanoids and terpenoids pathways (Fig. 6, Fig. 7), indicating which 238 

group of snapdragon flowers emitted or not a compound, and its frequency among the 239 

analysed population. These results suggest a preferred route: the volatiles benzaldehyde 240 

and benzyl alcohol were not found in the constitutive profile of any snapdragon group 241 

whereas methyl benzoate was constitutively emitted in wild-type, compacta and 242 

RNAi:AmLHY lines but not in deficiens-nicotianoides (def-nic) group.  243 

On the other hand, the monoterpenes linalool, pinene, limonene, myrcene and ocimene 244 

share the substrate geranyl pyrophosphate (Fig. 7). Pinene, limonene and myrcene were 245 

not present in the constitutive profile of analysed plant groups whereas linalool showed 246 

a constitutive emission in wild-type and RNAi:AmLHY and ocimene, in all plants except 247 

in def-nic mutant group. Differences in the constitutive and non-constitutive profile may 248 

be useful for further analysis of transcription factors, enzymes and transporters involved 249 

in volatile emission.  250 

 251 
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Genotypes can be separated by Machine learning  252 

Once we obtained a Constitutive Profile list of volatiles, we performed a classification 253 

analysis using the Machine Learning algorithm Random Forest (Breiman, 2001).  Our 254 

data revealed that all snapdragon scent profiles were correctly classified (error out of 255 

bag or OOB, 0%) (Table 1). The “randomForest” package also provides a rank list with 256 

the accuracy in which a predictor, a volatile in our case, can be used for classification 257 

(Table 2). Altogether, our results show that gcProfileMakeR gives as output classified 258 

scent profiles that are sufficiently different to be separated by Machine Learning.  259 

As sessile organisms, plants rely on their chemistry to deal with the many interactions 260 

conditioning their survival (abiotic and biotic). That may be the reason why plant 261 

volatile chemotypes are known for their variability with regard to composition and 262 

relative abundance of VOCs (Junker et al., 2018). gcProfileMakeR should ease the task 263 

to define constitutive and non-constitutive metabolomes in large datasets. 264 

 265 
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Materials and Methods 266 

Plant material and VOCs analysis 267 

We used flowers from Antirrhinum majus compacta (co) and deficiens-nicotianoides 268 

(def-nic) mutants (Manchado-Rojo et al., 2012) and RNAi:AmLHY from three 269 

independent transgenic lines (Terry et al., 2019b). Antirrhinum plants were grown in the 270 

greenhouse as described previously, using standard methods (Weiss et al., 2016b). Scent 271 

samples were analysed according to (Ruiz-Hernández et al., 2017). Samplings periods 272 

of VOCs were 24 hours for def-nic and co, while WT and RNAi:AmLHY were sampled 273 

every six hours for a complete day. The RNAi:AmLHY samples were aggregated to 274 
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compare to other genotypes. We analysed 16 biological replicas for wild type Sippe 50, 275 

35 for co, 9 for def-nic and 40 for iRNA:AmLHY.  276 

 277 

gcProfileMakeR 278 

 279 

gcProfileMakeR R package is available at git clone 280 

git@gitlab.atica.um.es:fernando.perez8/gcProfileMakeR.git. 281 

Some packages are recommended to be pre-installed in R before gcProfileMakeR runs: 282 

readxl, plyr, stringr, dplyr, tidyr, ggplot2 and egg. 283 

 284 

Machine Learning Analysis 285 

We used the random forest algorithm implemented in the R package “randomForest” ” 286 

(Liaw and Wiener, 2002) (R version 3.6.1). We rearranged our data in a data frame 287 

where the rows correspond to the samples from wild type, co, defnic mutants and 288 

RNAi:AmLHY and the columns contain the value of the selected volatiles, expressed as 289 

integrated peak area divided by the fresh weight. We used randomForest default 290 

parameters, setting parameter “importance” as “TRUE” and obtaining a classification 291 

random forest.   292 

 293 

Acknowledgments 294 

 295 

Tables 296 

Table 1. Random forest confusion matrix. The total number of samples of each 297 

snapdragon group is shown in parentheses (observed column). The number of 298 
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misclassified samples of each group are in columns (predicted columns). The class.error 299 

column indicates the percentage of misclassified samples (1-[(total correct 300 

predictions/total predictions) x 100]). 301 

Observed                                              Predicted class.error 
compacta deficiens RNAi:AmLHY Wild type

compacta (35) 35 0 0 0 0 
deficiens (9) 0 9 0 0 0 
RNAi:AmLHY (10) 0 0 10 0 0 
Wild type (4) 0 0 0 4 0 
 302 

  303 
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Table 2. Importance ranking of volatile organic compounds among Antirrhinum majus 304 

groups (wild-type, compacta mutant, deficiens mutant and RNAi:AmLHY) using random 305 

forest algorithm. The NIST library identifies two pairs of similar compounds which 306 

share the same retention time, 2'-Hydroxyacetophenone and 4'-Hydroxyacetophenone, 307 

and 2'-Methoxyacetophenone and 4'-Methoxyacetophenone, respectively. These 308 

compounds are depicted with a slash (“/”) in the table. Volatiles are ranked based on 309 

mean decrease in accuracy (MDA). This value indicates the accuracy in which a volatile 310 

can be used for classification.  311 

Volatile MDA
Nonanal 16.26
Farnesene 14.8
Methyl 2-methylbutyrate 14.65
3,5-Dimethoxytoluene 14.44
Methyl benzoate 12.66
Acetophenone 10.96
Phenethyl acetate 9.57
Methyl 3,5-
dimethoxybenzoate 9.26
Ocimene 6.52
Linalool 5.99
Decanal 5.54
2'-/4'-Hydroxyacetophenone 5.04
2'-/4'-Methoxyacetophenone 4.93
Terpinolene 3.75
Ethyl benzoate 1.42
Benzyl acetate 0
 312 
  313 
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Figure Legends 314 

Figure 1. (A) gcProfileMakeR pipeline. This library accepts Excel (.xls) and .csv files 315 

as input data. The first function, NormalizeWithinFiles, reads the data and groups 316 

compounds with similar retention time (RT) and common CAS numbers. Users also can 317 

apply two filters: cas2rm (compound/s to exclude) and minQuality (minimum quality). 318 

NormalizeBetweenFiles groups compounds with similar RT in all files, with the most 319 

representative CAS number. getGroups determines the constitutive and non-constitutive 320 

profiles (i.e. metabolic profile) by frequency and quality, which are choose by the user. 321 

Finally, plotGroup creates a graphic the constitutive, non-constitutive by frequency 322 

and/or non-constitutive profile by quality. (B) A standard  chromatogram where two 323 

close peaks are integrated separately by default and dataset corresponding to peaks, 324 

where the identity with highest probability of the peaks is the same, methyl benzoate 325 

(CAS number 93-58-3). (C) Mass spectra of methyl jasmonate(CAS No: 39924-52-2), a 326 

commercial standard (upper panel) and mass spectral database (lower panel)Willey10th-327 

NIST11b. 328 

 329 

Figure 2. plotGroup function. This graph shows the constitutive profile by frequency of 330 

the wild-type snapdragon at ZT3 (Zeitgeber time). The x-axis shows the CAS number 331 

of volatile organic compounds. The upper part displays the average quality of volatiles 332 

(red line) and the lower part of the graph indicates the average areas of compounds 333 

(blue bars), that are plotted in decreasing order.  334 

  335 

Figure 3. Heat map of constitutive by frequency scent profile of wild-type snapdragon 336 

(SIPPE50), the mutants compacta and deficiens-nicotianoides and the transgenic line 337 

RNAi:AmLHY. We set minQuality to 80% (NormalizeWithinFiles function). 338 
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Constitutive profile comprises those compounds that were present on at least the 70% of 339 

analyzed samples. Volatile compounds are clustered by class. Yellow and blue colors 340 

denote a detected and a non-detected compound, respectively. 341 

 342 

Figure 4. Heat map of non-constitutive by frequency scent profiles of wild-type 343 

snapdragon (Sippe 50, WT), the mutants co and defnic and the transgenic line 344 

RNAi:AmLHY (RNAi). We set minQuality to 80% (NormalizeWithinFiles function). 345 

Non-constitutive profile comprises those compounds that were present on or less than 346 

the 30% of analyzed samples. Volatile compounds are clustered by class. Green and red 347 

colors indicate a detected and a non-detected compound, respectively. 348 

 349 

Figure 5. Constitutive scent profile of wild-type and transgenic RNAi:AmLHY 350 

snapdragons at four different time-points, denoted as ZT (zeitgeber time) 3, 9, 15 and 351 

21. ZT0 represents the time of lights on and ZT12, lights off.  We set minQuality to 352 

80% (NormalizeWithinFiles function). Constitutive profile includes VOCs that were 353 

present on at least the 70% of analyzed samples. Volatiles are listed according to their 354 

class. Yellow indicates detected compounds and blue, non-detected compounds. 355 

 356 

Figure 6. Benzenoid/phenylpropanoids schematic pathway. Detected and non-detected 357 

volatiles are shown as follow: first row refers to constitutive profiles and second row to 358 

non-constitutive by frequency profiles. Detected compounds in the constitutive and non-359 

constitutive profiles are depicted by yellow and green, respectively. Non-detected 360 

compounds in the constitutive and non-constitutive profiles are indicated in blue and 361 

red, respectively. Each column represents a snapdragon group: wild-type (1st), co (2nd) 362 

and defnic (3rd) and transgenic lines RNAi:AmLHY (4th). PAL: phenylalanine ammonia 363 
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lyase, CCMT: cinnamic acid carboxyl methyl transferase, BALDH: benzaldehyde 364 

dehydrogenase, BA2H: benzoic acid 2-hydroxylase, BAMT: benzoic acid carboxyl 365 

methyl transferase, SAMT: salicylic acid carboxyl methyl transferase. 366 

 367 

Figure 7. Terpenoids schematic pathway. Representations are like in Figure 6. LS: 368 

linalool synthase, PS: pinene synthase, LMS: limonene synthase, MYS: myrcene 369 

synthase, OCS: ocimene synthase, FS: farnesene synthase, IPP: isopentenyl 370 

diphosphate. 371 

 372 
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