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ABSTRACT 52 

Zinc (Zn) deficiency is a major risk factor for human health, affecting about 30% of the 53 

world’s population. To study the potential of genomic selection (GS) for maize with increased 54 

Zn concentration, an association panel and two doubled haploid (DH) populations were 55 

evaluated in three environments. Three genomic prediction models, M (M1: Environment + 56 

Line, M2: Environment + Line + Genomic, and M3: Environment + Line + Genomic + Genomic 57 

x Environment) incorporating main effects (lines and genomic) and the interaction between 58 

genomic and environment (G x E) were assessed to estimate the prediction ability (rMP) for each 59 

model. Two distinct cross-validation (CV) schemes simulating two genomic prediction breeding 60 

scenarios were used. CV1 predicts the performance of newly developed lines, whereas CV2 61 

predicts the performance of lines tested in sparse multi-location trials. Predictions for Zn in CV1 62 

ranged from -0.01 to 0.56 for DH1, 0.04 to 0.50 for DH2 and -0.001 to 0.47 for the association 63 

panel. For CV2, rMP values ranged from 0.67 to 0.71 for DH1, 0.40 to 0.56 for DH2 and 0.64 to 64 

0.72 for the association panel. The genomic prediction model which included G x E had the 65 

highest average rMP for both CV1 (0.39 and 0.44) and CV2 (0.71 and 0.51) for the association 66 

panel and DH2 population, respectively. These results suggest that GS has potential to accelerate 67 

breeding for enhanced kernel Zn concentration by facilitating selection of superior genotypes. 68 

 69 

INTRODUCTION 70 

Malnutrition arising from zinc (Zn) deficiency is a major risk factor for human health 71 

affecting nearly 30% of the world’s population (Bouis and Saltzman 2017; Gannon et al. 2017). 72 

The problem is more prevalent in low-and middle income countries (LMICs), and is highly 73 

attributed to lack of access to a balanced diet, reliance on cereal-based diets and ignorance of good 74 
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nutritional practices (Welch and Graham 2004). Several approaches, such as food fortification, 75 

diversification and supplementation have been tried to reduce Zn deficiency. However, in LMICs, 76 

these methods have not been entirely successful (Misra et al. 2004; Stein 2010). 77 

Breeding maize for increased Zn concentration may offer some relief. The Zn-enriched 78 

varieties can be widely accessible, will not require continued investment once developed, and they 79 

remain after the initial successful investment and research (Govindan 2011). Recently, maize 80 

varieties with 15-36% more Zn were released in Guatemala and Colombia (Listman 2019). 81 

Nevertheless, increased breeding efforts are required to develop more Zn-enriched varieties for a 82 

diverse range of environments and management practices. Progress toward developing those 83 

varieties has mainly relied upon conventional plant breeding approach that is labor-intensive and 84 

time-consuming. However, with the recent advances in genomics, new methods for plant breeding 85 

such as genomic selection (GS) can be used to identify genotypes with enhanced Zn concentration 86 

more efficiently and rapidly. 87 

 In a GS breeding scheme, genome-wide DNA markers are used to predict which 88 

individuals in a breeding population are most valuable as parents of the next generation (cycle) 89 

of offspring (Meuwissen et al. 2001; de los Campos et al. 2009; Pérez-Rodríguez et al. 2012). 90 

Kernel Zn concentration is determined at the end of a plant’s life cycle, so GS can enable 91 

selection of promising genotypes earlier in the life cycle. This reduces the time and cost of 92 

phenotypic evaluation and may increase the genetic gain per unit time and cost (Heslot et al. 93 

2015; Manickavelu et al. 2017; Arojju et al. 2019).  94 

The utility and effectiveness of GS has been examined for many different crop species, 95 

marker densities, traits and statistical models and varying levels of prediction accuracy have been 96 

achieved (de los Campos et al. 2009, 2013; Crossa et al. 2010, 2013, 2014; Jarquín et al. 2014; 97 
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Pérez-Rodríguez et al. 2015; Zhang et al. 2015; Velu et al. 2016). Although the number of 98 

markers needed for accurate prediction of genotypic values depends on the extent of linkage 99 

disequilibrium between markers and QTL (Meuwissen et al. 2001), a higher marker density can 100 

improve the proportion of genetic variation explained by markers and thus result in higher 101 

prediction accuracy (Albrecht et al. 2011; Zhao et al. 2012; Combs and Bernardo 2013; Liu et al. 102 

2018). Importantly, higher prediction accuracies have been obtained when genotypes of a 103 

population are closely related than when genetically unrelated (Pszczola et al. 2012; Combs and 104 

Bernardo 2013; Spindel and McCouch 2016).  105 

Initially, GS models and methods were developed for single-environment analyses and 106 

they did not consider correlated environmental structures due to genotype by environment (G x E) 107 

interactions (Crossa et al. 2014). The differential response of genotypes in different environments 108 

is a major challenge for breeders and can affect heritability and genotype ranking over 109 

environments (Monteverde et al. 2018). Multi-environment analysis can model G x E using genetic 110 

and residual covariance functions (Burgueño et al. 2012), markers and environmental covariates 111 

(Jarquín et al. 2014), or marker by environment (M x E) interactions (Lopez-Cruz et al. 2015). 112 

This approach to GS can successfully be used for biofortification breeding of maize because multi-113 

environment testing is routinely used in the development and release of varieties.  114 

Modelling covariance matrices to account for G x E allows the use of information from 115 

correlated environments (Burgueño et al. 2012). Mixed models that allow the incorporation of a 116 

genetic covariance matrix calculated from marker data, rather than assuming independence among 117 

genotypes improves the estimation of genetic effects (VanRaden 2008). The benefit of using 118 

genetic covariance matrices in G x E mixed models is that the model relates genotypes across 119 

locations even when the lines are not present in all locations (Monteverde et al. 2018). GS models 120 
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capable of accounting for multi-environment data have extensively been studied in different crops 121 

(Zhang et al. 2015; Cuevas et al. 2016, 2017; Velu et al. 2016; Jarquín et al. 2017; Sukumaran et 122 

al. 2017a; Monteverde et al. 2018; Roorkiwal et al. 2018). In those studies, incorporating G x E 123 

demonstrated a substantial increase in prediction accuracy relative to single-environment analyses. 124 

Kernel Zn has been investigated in several quantitative trait loci (QTL) analyses in maize 125 

and each study has reported that Zn concentration is under the control of several loci. The 126 

phenotypic variation explained by those loci ranges from 5.9 to 48.8% (Zhou et al. 2010; Qin et 127 

al. 2012; Ŝimić et al. 2012; Baxter et al. 2013; Jin et al. 2013; Zhang et al. 2017a; Hindu et al. 128 

2018). A Meta-QTL analysis across several of those studies identified regions on chromosome 2 129 

that might be important for kernel Zn concentration (Jin et al. 2013). Additionally, genomic 130 

regions associated with Zn concentration were recently reported in a genome-wide  association 131 

study of maize inbreds adapted to the tropics (Hindu et al. 2018). Whereas some of the regions 132 

were novel, four of the twenty identified were located in already reported QTL intervals. Taken 133 

together, the QTLs may be used in a breeding program through marker-assisted selection (MAS) 134 

or GS.  135 

A wide array of maize genetic studies has reported considerable effects of G x E 136 

interactions for kernel Zn concentration (Oikeh et al. 2003, 2004; Long et al. 2004; Chakraborti et 137 

al. 2009; Prasanna et al. 2011; Agrawal et al. 2012; Guleria et al. 2013). However, genotypes with 138 

high-Zn concentration have been identified in both tropical and temperate germplasm (Ahmadi et 139 

al. 1993; Bänziger and Long 2000; Brkic et al. 2004; Menkir 2008; Chakraborti et al. 2011; 140 

Prasanna et al. 2011; Hindu et al. 2018). Additionally, evaluation procedures for kernel Zn are 141 

labor-intensive, expensive and time-consuming (Palacios-Rojas 2018). To the best of our 142 

knowledge, no study has examined the predictive ability of GS methods that incorporate G x E for 143 
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Zn concentration in maize. Within the framework of the reaction norm model (Jarquín et al. 2014), 144 

the potential of GS for Zn using maize inbreds adapted to tropical environments were assessed. 145 

The objectives of this study were; (i) to evaluate the prediction ability for Zn using an association 146 

mapping panel and two bi-parental populations evaluated in three tropical environments, (ii) to 147 

assess and compare the predictive ability of different GS models, and (iii) to examine the effects 148 

of incorporating G x E on prediction accuracy for Zn. 149 

 150 

 151 

MATERIALS AND METHODS 152 

Zinc association mapping (ZAM) panel 153 

The ZAM panel consists of 923 inbreds from maize breeding programs of the 154 

International Maize and Wheat Improvement Center (CIMMYT). The panel represents wide 155 

genetic diversity for kernel Zn concentration (Hindu et al. 2018). 156 

 157 

Bi-parental DH populations  158 

From the ZAM panel, four inbreds with contrasting Zn concentration were selected and 159 

used to form two bi-parental (doubled haploid [DH]) populations (Table 1). DH1 was derived 160 

from the F1 generation of a mating between CML503, a high-Zn inbred (31.21 μg/g) with 161 

CLWN201, a low-Zn inbred (22.62 μg/g). DH2 was derived from the F1 generation of a mating 162 

between CML465, another high-Zn inbred (31.55 μg/g) with CML451, a moderate-Zn inbred 163 

(27.88 μg/g). DH1 and DH2 were comprised of 112 and 143 inbreds, respectively. 164 

 165 
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Experimental design and phenotypic evaluation 166 

Zinc association mapping (ZAM) panel 167 

The ZAM panel was grown at CIMMYT research stations in Mexico, during the months 168 

of June through September and November through March at Agua Fria in 2012 and 2013, and 169 

Celaya in 2012. Plot sizes and the experimental designs (Hindu et al. 2018). 170 

  171 

Bi-parental DH populations   172 

The DH populations were grown at CIMMYT research stations in Mexico; Celaya in 173 

2014 and Tlaltizapan (18°41’N, 99° 07′ W; 962.5 m asl) in 2015 and 2017. In 2014 and 2015, 174 

both populations were evaluated in single-replication trials (Hindu et al. 2018). In 2017, a 175 

randomized complete block design (RCBD) with two replications was used. The rows were 2.5 176 

m long and 75 cm apart and each genotype was grown in a single row plot. All plots were 177 

managed according to the recommended agronomic practices for each environment.  178 

From the ZAM panel and each DH population, four to six plants in each plot were self-179 

pollinated, hand-harvested at physiological maturity, hand-shelled and dried to a moisture 180 

content of 12.5%. The bulked kernels from each plot are considered a representative sample and 181 

were used in subsequent Zn analyses as described (Hindu et al. 2018).  182 

 183 

Genotypic data  184 

Genomic DNA was extracted from leaf tissues of all inbred lines (ZAM panel and DH 185 

populations) using the standard CIMMYT laboratory protocol (CIMMYT, 2005). The samples 186 

were genotyped using the genotyping by sequencing (GBS) method at the Institute for Genomic 187 

Diversity, Cornell University, USA (Elshire et al. 2011; Crossa et al. 2013). The restriction 188 
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enzyme ApeK1 was used to digest DNA, GBS libraries were constructed in 96-plex and 189 

sequenced on a single lane of Illumina HISeq2000 flow cell (Elshire et al. 2011). To increase the 190 

genome coverage and read depth for SNP discovery, raw read data from the sequencing samples 191 

were analyzed together with an additional ~30, 000 global maize collections (Zhang et al. 2015). 192 

SNP identification was performed using TASSEL 5.0 GBS Discovery Pipeline with B73 193 

(RefGen_v2) as the reference genome (Elshire et al. 2011; Glaubitz et al. 2014). The source code 194 

and the TASSEL GBS discovery pipeline are available at https://www.maizegenetics.net and the 195 

SourceForge Tassel project https://sourceforge.net/projects/tassel. For each inbred, the pipeline 196 

yielded 955, 690 SNPs which were distributed on the 10 maize chromosomes. After filtering 197 

using a minor allele frequency of 0.05 and removing SNPs with more than 10% missing data, 198 

181,889 (ZAM panel) and 170, 798 (bi-parental) SNPs were used for genomic prediction. 199 

 200 

Phenotypic data analysis 201 

For the ZAM panel, broad-sense heritability (H2) across environments was estimated as:  202 

𝐻2 =
𝜎𝐺

2

𝜎𝐺
2 +

𝜎𝐺𝐸
2

𝑙
⁄ +

𝜎𝑒
2

𝑙𝑟
⁄

 203 

where 𝜎𝐺
2 is the variance due to genotype, 𝜎𝐺𝐸

2  is variance due to genotype x environment, 𝜎𝑒
2 is 204 

the error variance, l is the number of environments and r is the number of replications using 205 

multi-environment trial analysis with R (META-R) (Alvarado et al. 2016). For the DH 206 

populations, variance components based on the genomic relationship matrix were computed 207 

using BGLR package as implemented in GBLUP (Pérez and de los Campos 2014). An estimate 208 

of narrow-sense heritability (ℎ̂2) for each DH population was calculated as: 209 
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ℎ̂2 =
𝜎̂𝑔

2

𝜎̂𝑔
2 + 𝜎̂𝑒

2
 210 

where 𝜎̂𝑔
2 is an estimate of the additive genetic variance and 𝜎̂𝑒

2 is an estimate of the residual   211 

variance. 212 

Correlation coefficients between Zn and environments, descriptive statistics and 213 

phenotypic data distribution using boxplots were generated in R (core Team 2018). Line means 214 

(genotypic values) for the ZAM panel were estimated as Best Linear Unbiased Estimators 215 

(BLUEs) with a random effect for replications nested within each environment. Raw data 216 

(values) were used for the DH populations. 217 

 218 

Statistical models 219 

Genomic models used in this study were based on the reaction norm model which models 220 

the markers (genomic) by environment interaction (Jarquín et al. 2014). This model is an 221 

extension of the Genomic Best Linear Unbiased Predictor (GBLUP) random effect model, where 222 

the main effects of lines (genotypes), genomic, environments and their interactions are modelled 223 

using covariance structures that are functions of marker genotypes and environmental covariates. 224 

In this study, environment is the combination of site and year (site-by-year). A brief description 225 

of the models is given below. 226 

 227 

M0. Phenotypic baseline model 228 

The phenotypes 𝑦𝑖𝑗 are modelled as: 229 

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + 𝐿𝑗 + 𝐸𝐿𝑖𝑗 + 𝑒𝑖𝑗, 230 
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this linear model represents the response of the jth (j=1,…,J) genotype/line tested in the ith 231 

(i=1,…,I) environment 〖{𝑦〗𝑖𝑗} as the sum of an overall mean 𝜇 plus random environmental main 232 

effect [𝐸𝑖 ~
𝑖𝑖𝑑

𝑁(0, 𝜎𝐸
2)], the random genotype main effect [𝐿𝑗  ~

𝑖𝑖𝑑
𝑁(0, 𝜎𝐿

2)], the random interaction 233 

between the jth genotype and the ith environment [𝐸𝐿𝑖𝑗  ~
𝑖𝑖𝑑

𝑁(0, 𝜎𝐸𝐿
2 )] and a random error term 234 

[𝑒𝑖𝑗 ~
𝑖𝑖𝑑

𝑁(0, 𝜎𝑒
2)]. From this linear model, N(.,.) denotes a normal random variable, iid stands for 235 

independent and identically distributed responses and 𝜎𝐸
2,  𝜎𝐿

2, 𝜎𝐸𝐿
2 , 𝜎𝑒

2 are the variances for 236 

environment, genotype, genotype by environment and residual error, respectively. The baseline 237 

model does not allow borrowing of information among genotypes because the genotypes were 238 

treated as independent outcomes. Thus, models used in this study were derived from the baseline 239 

model by subtracting terms or modifying assumptions and/or incorporating genomics/marker 240 

information. 241 

 242 

M1. Environment + Line 243 

This model is obtained by retaining the first three components from the baseline model 244 

(overall mean, random environment main effect and random line main effect) while their 245 

underlying assumptions remain unchanged. 246 

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + 𝐿𝑗 + 𝑒𝑖𝑗.                                    [1] 247 

Here environments were considered as site-by-year combinations. 248 

 249 

M2. Environment + Line + Genomic 250 
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Another representation of the random main effect of line 𝐿𝑗 in the previous model is 251 

considering a linear combination between markers and their correspondent marker effects, 𝑔𝑗 =252 

∑ 𝑥𝑗𝑚𝑏𝑚
𝑝
𝑚=1 , such that  253 

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + 𝐿𝑗 + 𝑔𝑗 + 𝑒𝑖𝑗   [2] 254 

where 𝑏𝑚 ~
𝑖𝑖𝑑

𝑁(0, 𝜎𝑏
2) represents the random effect of the mth (m=1,…,p) marker, 𝑥𝑗𝑚  is the 255 

genotype of the jth line at the mth marker and 𝜎𝑏
2 its correspondent variance component.  256 

Therefore,  𝐠 = (g1, … , g𝐽)
′
, is the vector of genetic effects, and follows a normal density with 257 

mean zero, and a co-variance matrix 𝐶𝑜𝑣(𝐠) = 𝐆𝜎𝑔
2 with 𝐆 =

𝐗𝐗′

𝑝
 being the genomic relationship 258 

matrix (Lopez-Cruz et al. 2015) that describes genetic similarities among pairs of individuals. In 259 

this model, the line effect 𝐿𝑗 is retained to account for imperfect information and model mis-260 

specification because of potential imperfect linkage disequilibrium between markers and 261 

quantitative trait loci (QTLs). 262 

 263 

M3. Environment + Line + Genomic + Genomic × Environment 264 

This model accounts for the effects of lines 𝐿𝑗 , of markers (genomic) 𝑔𝑗, of environments (𝐸𝑖) 265 

and the interaction between markers (genomic) and the environment (𝐸𝑔𝑖𝑗). The model includes 266 

the interaction between markers (genomics) and the environment via co-variance structure 267 

(Jarquín et al. 2014). The model is as follows: 268 

                        𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + 𝐿𝑗 +  𝑔𝑗 + 𝐸𝑔𝑖𝑗 + 𝑒𝑖𝑗                                             [3]                                                                                                            269 

Where 𝐸𝑔𝑖𝑗 is the interaction between the genetic value of the ith genotype in the jth environment 270 

and  𝑬𝒈 = {𝐸𝑔𝑖𝑗}~𝑁(𝟎, (𝒁𝒈𝑮𝒁𝒈
′ )#(𝒁𝑬𝒁𝑬

′ )𝜎𝐸𝑔
2 ), where 𝒁𝑔 and 𝒁𝐸 are the correspondent  271 

incidence matrices for the effects of genetic values of genotypes and environments, respectively, 272 
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𝜎𝐸𝑔
2  is the variance component of 𝑬𝒈 and # denotes the Hadamard product (element-to-element 273 

product) between two matrices. 274 

 275 

Prediction accuracy assessment using cross-validation 276 

Two distinct cross-validation schemes that mimic prediction problems that breeders may face 277 

when performing genomic prediction were used (Burgueño et al. 2012). One random cross-278 

validation (CV1) evaluates the prediction ability of models when a set of lines have not been 279 

evaluated in any environment (prediction of newly developed lines). In CV1, predictions are 280 

entirely based on phenotypic records of genetically related lines. The second cross-validation 281 

(CV2) is related to incomplete field trials also known as sparse testing, in which some lines are 282 

observed in some environments but not in others. In CV2, the goal is to predict the performance 283 

of lines in environments where they have not yet been observed. Thus, information from related 284 

lines and the correlated environments is used, and prediction assessment can benefit from 285 

borrowing information between lines within an environment, between lines across environments 286 

and among correlated environments.  287 

In CV1 and CV2, a fivefold cross-validation scheme was used to generate the training and 288 

validation sets to assess the prediction ability for Zn within the ZAM panel and each DH 289 

population. The data were randomly divided into five subsets, with 80% of the lines assigned to 290 

the training set and 20% assigned to the validation set. Four subsets were combined to form the 291 

training set, and the remaining subset was used as the validation set. Permutation of five subsets 292 

taken one at a time led to five training and validation data sets. The procedure was repeated 20 293 

times and a total of 100 runs were performed in each population. The average value of the 294 

correlations between the phenotype and the genomic estimated breeding values (GEBVs) from 295 
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100 runs was calculated for the ZAM panel, and each DH population for Zn in each environment 296 

and was defined as the prediction ability (rMP). 297 

 298 

Data availability  299 

All models were fitted in R (core Team 2018) using the BGLR package (Pérez and de los 300 

Campos 2014). All phenotypic and genomic data can be downloaded from the link: 301 

http://hdl.handle.net/11529/10548331 302 

 303 

RESULTS 304 

Descriptive statistics 305 

 Mean values of kernel Zn concentration were estimated for each environment and across 306 

environments (Tables 2A and 2B). For the ZAM panel, kernel Zn ranged from 14.76 to 39.80 307 

μg/g in Celaya 2012, 15.16 to 42.52 μg/g and 17.05 to 46.52 μg/g in Agua Fria 2012 and 2013, 308 

respectively (Figure 1). The highest mean (29.53 μg/g) for Zn was observed in Agua Fria 2013. 309 

DH1 had Zn values ranging from 16.00 to 48.00 μg/g in Celaya 2012, 16.00 to 35.00 μg/g in 310 

Tlaltizapan 2015 and 15.50 to 39.00 μg/g in Tlaltizapan 2017, while the respective values for DH 311 

2 were 17.70 to 43.14 μg/g, 15.60 to 37.80 μg/g and 14.70 to 37.60 μg/g  (Figures 2A and 2B). 312 

The highest means for Zn were observed in Celaya 2014 (25.38 μg/g) and 2017 (27.96 μg/g) for 313 

DH1 and DH2, respectively (Table 2B). Across environments, heritability (H2/ℎ2̂ ) estimates 314 

were 0.85, 0.83 and 0.76 for the ZAM panel, DH1 and DH2, respectively (Tables 2A and 2B). 315 

There were significant positive correlations between environments for Zn (Table 3), accounting 316 

for the moderate to high heritability estimates. 317 
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Principal component analysis for the ZAM panel suggested presence of a relatively 318 

diverse set of lines, and 452 principal components (PCs) were needed to explain 80% of the 319 

genotypes’ variance (Figures 3A and 3B). The first two principal components explained 3.85% 320 

of the total variance. For the DH populations first two eigenvectors separated them two groups 321 

(DH1 and DH2) and 56 principal components were needed to explain 80% of the genotypes’ 322 

variance (Figures 3C and 3D). The first two principal components explained 27.50% of the total 323 

variation for the DH populations. 324 

 325 

Prediction ability in different populations 326 

Cross-validated rMP values for kernel Zn were estimated for the ZAM panel and DH 327 

populations (Tables 4, 5 and 6). The average rMP values in CV1 were consistently lower than 328 

those in CV2, suggesting the importance of using information from correlated environments 329 

when predicting performance of inbred lines. The mean rMP values in CV1 and CV2 for the 330 

ZAM panel were 0.39 and 0.71, respectively (Table 4). For the DH populations, average rMP 331 

values were 0.53 for DH1-CV1, 0.44 for DH2-CV1 (Table 5), 0.70 for DH1-CV2 and 0.51 for 332 

DH2-CV2 (Table 6). 333 

In the ZAM panel, the highest values in CV1 (0.47) and CV2 (0.72) were obtained in 334 

Celaya and Agua Fria 2012 (Table 4). For the bi-parental populations, both under CV1 and CV2, 335 

higher rMP values were observed for DH1 compared to DH2. The highest values in CV1 (0.56) 336 

and CV2 (0.71) were observed in Tlaltizapan 2017 and 2015, all for DH1 (Tables 5 and 6). The 337 

consistently higher rMP values in CV1 and CV2 of DH1 could be attributed to the higher (0.58 to 338 

0.62) correlation values between environments (Table 3).  339 

 340 
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Prediction ability of different models 341 

Comparing the rMP values obtained from each model, M1 had the lowest (-0.001, -0.03 342 

and 0.04) accuracies in CV1 for the ZAM panel and DH populations (Tables 4 and 5). Those 343 

values were improved in CV2 because the predictions benefited from previous records (collected 344 

from other environments) of lines whose Zn values were being predicted. When M1 was 345 

expanded to M2 by adding the main effects of markers, the rMP values at each environment and 346 

across environments were increased. For example, in CV1, M2, >100-fold increase in rMP values 347 

were observed for the ZAM panel and DH populations, and in CV2, M2, average rMP values 348 

increased by 2.98%, 2.94% and 11.11% for the ZAM panel, DH1 and DH2, respectively (Tables 349 

4, 5 and 6).  350 

The multi-environment model (M3), which includes the interaction between markers 351 

(genomic) and the environment (𝐸𝑔𝑖𝑗) gave higher prediction accuracy than single-environment 352 

models (M1 and M2). In CV1, mean rMP values increased from 0.37 (M2) to 0.39 (M3) for the 353 

ZAM panel and from 0.43 (M2) to 0.44 for DH2 (Tables 4 and 5). Similar trends were observed 354 

in CV2 for the ZAM panel and DH2 (Tables 4 and 6). However, in both CV1 and CV2 of DH1, 355 

incorporating 𝐸𝑔𝑖𝑗 did not improve rMP values for Zn (Tables 5 and 6). For CV1, M3, rMP values 356 

for Zn in individual environments ranged from 0.34 to 0.47 for the ZAM panel (Table 4), 0.51 to 357 

0.55 for DH1 and 0.35 to 0.50 for DH2 (Table 5). For CV2, M3, those values ranged from 0.69 358 

to 0.72 for the ZAM panel, 0.68 to 0.70 for DH1 and 0.43 to 0.56 for DH2 (Tables 4, 5 and 6).  359 

 360 

DISCUSSION 361 
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 Overall, moderate to high prediction ability values for kernel Zn were observed for the 362 

ZAM panel and DH populations. This could be attributed to the heritabilities observed for kernel 363 

Zn (Tables 2A and 2B). Similar observations were reported for Zn concentration in wheat (Velu 364 

et al. 2016; Manickavelu et al. 2017). High quality predictions with high accuracy for GS 365 

programs are expected for traits with moderate to higher heritability estimates (Combs and 366 

Bernardo 2013; Lian et al. 2014; Muranty et al. 2015; Saint Pierre et al. 2016; Manickavelu et 367 

al. 2017; Zhang et al. 2017b, 2019; Arojju et al. 2019). Consistent with a study on Zn and iron 368 

(Fe) concentration in spring wheat, the prediction accuracies in this study are sufficient to 369 

discard at least 50% of the inbreds with low-Zn concentration (Velu et al. 2016).  370 

Data from both bi-parental populations and diverse collection of inbreds have been used 371 

for GS and cross-validation (CV) experiments have shown that prediction accuracies could also 372 

be affected by the relatedness between training and prediction sets (Habier et al. 2007; de Roos 373 

et al. 2009; Asoro et al. 2011; Daetwyler et al. 2013; Cericola et al. 2017; Crossa et al. 2017).  In 374 

this study, average predicted accuracies were higher for CV1 of the bi-parental populations (0.53 375 

for DH1 and 0.44 for DH2) compared to the ZAM panel (0.39). Higher predicted values in CV1 376 

of the DH populations could be attributed to the closer relationship between DH lines in the 377 

training and prediction sets, maximum linkage disequilibrium (LD) between a marker and a 378 

QTL, and controlled population structure (Bernardo and Yu 2007; Albrecht et al. 2011; Zhang et 379 

al. 2015). In collections of diverse inbreds, prediction accuracy may depend on the ancestral 380 

relationships between the lines. So, in experiments using such collections of lines, prediction 381 

accuracies have been more variable than accuracies achieved using bi-parental populations 382 

(Spindel and McCouch 2016).  383 
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Cross-validation (CV) schemes are used in genomic prediction to estimate the accuracy 384 

with which predictions for different traits and environments can be made (Burgueño et al. 2012; 385 

Zhang et al. 2015; Saint Pierre et al. 2016; Velu et al. 2016; Sukumaran et al. 2017a, 2017b; 386 

Monteverde et al. 2018; Roorkiwal et al. 2018). In this study, two CV schemes (CV1- predicting 387 

the performance of newly developed lines, and CV2- predicting the performance of lines that 388 

have been evaluated in some environments, but not in others) were used. The utility of these 389 

schemes indicated that prediction values for newly developed lines (CV1) were generally lower  390 

(0.39 for the ZAM panel, 0.53 for DH1 and 0.44 for DH2) than the values for lines which have 391 

been evaluated in different but correlated environments (CV2; 0.71, 0.70 and 0.51 for the ZAM 392 

panel, DH1 and DH2, respectively). Such observations indicate the importance of using 393 

information from correlated environments when predicting the performance of inbred lines. 394 

However, selection of new lines without field testing, as simulated in CV1 allows shortening of 395 

the generation interval (cycle time) by replacing the time-intensive phenotypic evaluation for Zn 396 

with genomic-estimated breeding values. But, the quality of prediction accuracy may be lower 397 

such that the annual rate of genetic progress in a GS program is compromised (Burgueño et al. 398 

2012). So, the ultimate decision of how a breeding scheme should be structured could depend on 399 

the compromise between the desired prediction accuracy and the generation interval (Burgueño 400 

et al. 2012).  401 

Genotype by environment interaction is an important factor affecting kernel Zn 402 

concentration in maize and genomic prediction models that incorporate G x E may enhance the 403 

potential of GS for biofortification breeding. For different crop species and traits, genomic 404 

prediction models which incorporated G x E  achieved higher prediction accuracies in both CV1 405 

and CV2 schemes relative to models which did not include G x E (Burgueño et al. 2012; Guo et 406 
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al. 2013; Jarquín et al. 2014; Lopez-Cruz et al. 2015; Zhang et al. 2015; Monteverde et al. 407 

2018). In this study, the impact of modeling G x E variance structures for multi-environment 408 

trials was investigated and results indicated that the average predicted values from M3 (G x E 409 

model) were higher (0.39 and 0.44 for CV1 and 0.71 and 0.51 for CV2) than the values from M2 410 

(non-G x E; 0.37 and 0.43 for CV1-M2, 0.69 and 0.50 for CV2-M2) for the ZAM panel and 411 

DH2. These findings agree with those reported on Zn concentration in wheat (Velu et al. 2016), 412 

providing evidence that incorporating G x E in GS models can enhance their power and 413 

suitability for improving maize for kernel Zn concentration. Conversely, the average predicted 414 

values for CV1 and CV2 of DH1 were higher in M2 (0.53 and 0.70) than in M3 (0.53 and 0.69). 415 

Except for differences in population size (112 lines vs 143 lines), this was unexpected since DH1 416 

and DH2 were grown in the same environments.  417 

The gains in prediction accuracies for the GS model that accounted for G x E were 418 

dependent on the correlation between environments and CV method used. In this study, the 419 

phenotypic correlations between environments were all positive (ranging from 0.58 to 0.62 for 420 

DH1, 0.29 to 0.46 for DH2 and 0.61 to 0.66 for the ZAM panel). Such correlations can be 421 

exploited using multi-environment models to derive predictions that use information from across 422 

both the lines and environments (Burgueño et al. 2012). For instance, although the phenotypic 423 

correlations between environments for DH2 were positive (0.29 to 0.46), the lowest average 424 

prediction value (0.51) for CV2 was observed for this population. This was expected because 425 

CV2 uses phenotypic information from genotypes which have already been tested; hence, 426 

effectively exploiting the correlations between environments (Burgueño et al. 2012; Jarquín et 427 

al. 2014; Crossa et al. 2015; Pérez-Rodríguez et al. 2015; Saint Pierre et al. 2016; Monteverde et 428 

al. 2018). However, for CV1, the information between environments could only be accounted for 429 
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through the genomic relationship matrix (Monteverde et al. 2018). Hence, the gains in CV1 may 430 

likely attribute to more accurate estimate of environment-specific marker effects (Guo et al. 431 

2013). In contrast, when multiple environments are weakly correlated, prediction accuracies 432 

from across environment analyses can be negatively affected relative to prediction accuracies 433 

within environments (Bentley et al. 2014; Wang et al. 2014; Spindel and McCouch 2016). Thus, 434 

before designing a GS experiment, identifying correlated environments where environments can 435 

differ in terms of site, year or season in which data were collected is of great interest (Spindel 436 

and McCouch 2016).  437 

The ability to predict kernel Zn concentration using high-throughput SNP markers 438 

including G x E interactions creates an opportunity for efficiently enhancing Zn concentration in 439 

maize breeding programs. For instance, during early generations of a breeding program, GS can 440 

be utilized to identify genotypes with favorable alleles when numbers of progenies and families 441 

are large. This could potentially reduce the resource-intensive evaluation process and 442 

advancement of false-positive progenies (Velu et al. 2016). Coupled with advances in 443 

technologies for assessing Zn, plant scientists can more rapidly measure Zn concentration in 444 

maize kernels using the energy dispersive x-ray fluorescence (XRF) assays (Guild et al. 2017). 445 

Thus, with more validations and model refinements, GS can potentially accelerate the breeding 446 

process to enhance Zn concentration in maize for a wider range of environments. 447 

 448 

CONCLUSION 449 

The moderate to high prediction accuracies reported in this study shows that GS can be 450 

used in maize breeding to improve kernel Zn concentration. Assuming two possible seasons of 451 

Zn evaluation per year, the predicted genetic gains can be estimated from prediction accuracies 452 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2020. ; https://doi.org/10.1101/2020.02.24.963090doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.24.963090
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

and genetic variances of the training populations. The genetic variances for the ZAM panel, DH1 453 

and DH2 were 12.38, 12.20 and 14.88, and prediction accuracies were 0.71, 0.70 and 0.51, 454 

respectively. If the inbreds in each predicted population are ranked based on their predicted Zn 455 

values and the top 10% selected, then their expected average Zn values can be estimated from  456 

the proportion of inbreds selected, their respective training population genetic variances, 457 

prediction accuracies and the time interval for evaluating the lines. With reference to this, the 458 

expected average values of Zn are approximately 31 μg/g for the ZAM panel, 30 μg/g for DH1 459 

and 27 μg/g for DH2. These averages are higher than the averages of the respective training 460 

populations (~27 μg/g for the ZAM panel, ~25 μg/g for DH1 and ~26 μg/g for DH2) suggesting 461 

that the prediction accuracies achieved are sufficient to select at least 10% of the predicted 462 

inbreds with higher Zn concentration. 463 

The prediction accuracies were of lower quality when genomic predictions were 464 

conducted across populations. When the ZAM panel was used as the training population, 465 

prediction accuracies for DH1, DH2 and DH1+DH2 were 0.15, -0.10 and 0.09, respectively. 466 

When DH1 and DH2 were used as a training and prediction set for each other, prediction 467 

accuracies were 0.08 and 0.16 (Unpublished data). These prediction accuracies are considerably 468 

lower than those reported in this study and the differences may be attributed to: (i) weak genetic 469 

relationships between the training and prediction population sets and (ii) different methods of 470 

analysis because the prediction accuracies reported in this study were partly achieved by 471 

modelling the random-effects environment structure to account for G x E while for the 472 

unpublished data, the random-effects environment structure of G x E was not included. 473 

This study also showed that higher prediction accuracies can be achieved when some of 474 

the lines are predicted using previous information about them collected from correlated 475 
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environments. The multi-environment model (M3) which included the interaction between 476 

markers, and the environment gave higher prediction accuracy both in CV1 and CV2 for the 477 

association panel and DH2 compared with the models which only included main effects (M1 and 478 

M2) indicating the importance of accounting for G x E in genomic prediction.  479 
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TABLES 706 

Table 1 Pedigree and average concentration of kernel Zn (μg/g) concentration for the parents of 707 

the DH populations 708 

DH population Pedigree Parent1 Parent2 

Zn (μg/g) 

Parent1 Parent2 

DH1 CML503/CLWN201 CML503 CLWN201 31.21 22.62 

DH2 CML 465/CML451 CML465 CML451 31.55 27.88 

 709 

 710 

 711 

 712 

 713 

 714 

 715 
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 717 
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 720 
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Table 2 Descriptive statistics for kernel Zn concentration in (A) the ZAM panel and (B) DH 729 

populations grown in each environment, variance components and broad-and narrow sense 730 

heritabilities. 731 

A 732 

Population 
Population 

size 
Location 

Mean ± se 

(μg/g) 
𝜎𝐺

2a 𝜎𝐺𝐸
2 a H2 

ZAM panel 923 

Agua Fria 2012 26.15 ± 0.15 

12.04 2.42 0.85 

Celaya 2012 25.06 ± 0.14 

Agua Fria 2013 29.53 ± 0.16 

Across 26.94 ± 0.10 

B 733 

Population Population size Location Mean ± se (μg/g) ℎ̂2 

DH1 112 

Celaya 2014 25.38 ± 0.48 

0.83 

Tlaltizapan 2015 24.01 ± 0.38 

Tlaltizapan 2017 24.53 ± 0.37 

Across 24.65 ± 0.26 

DH2 143 

Celaya 2014 27.96 ± 0.39 

0.76 

Tlaltizapan 2015 24.08 ± 0.33 

Tlaltizapan 2017 24.64 ± 0.37 

Across 25.59 ± 0.22 

Broad-sense heritability H2 of Zn in each environment and across environments 734 

Narrow-sense heritability ℎ2̂ of Zn across environments 735 

avariance due to genotypes 𝜎𝐺
2

 and the interaction between genotypes and the environment 𝜎𝐺𝐸
2

 significant 736 

at P<0.001 737 

 738 

 739 

 740 
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Table 3 Phenotypic correlation between environments for kernel Zn  741 

             DH1            DH 2 ZAM Panel 

aEnv1 vs Env2 0.62 0.46 0.63 

aEnv1 vs Env3 0.58 0.29 0.66 

aEnv2 vs Env3 0.62 0.45 0.61 

Phenotypic correlation coefficients were significant at α = 0.001  742 

aDH populations; Env 1, Env2 and Env 3=Celaya,2014, Tlaltizapan, 2017 and Tlaltizapan 2017, 743 

respectively. 744 

aZAM panel; Env 1, Env2 and Env 3= Agua Fria, 2012, Celaya, 2012 and Agua Fria 2013, respectively. 745 

 746 

Table 4 Correlations (mean ± SD) between observed and genomic estimated breeding values for 747 

kernel Zn in the three environments for three GBLUP models for cross-validations CV1 and CV2 of 748 

the ZAM panel 749 

    Prediction accuracy in CV1 

Population Environment M1a M2 M3 

 

Agua Fria, 2012 -0.01± 0.04 0.33 ± 0.01 0.34 ± 0.02 

ZAM panel (923) Celaya, 2012 0.004 ± 0.04 0.43 ± 0.01 0.47 ± 0.01 

 

Agua Fria, 2013 -0.001 ± 0.03 0.34 ± 0.01 0.35 ± 0.01 

 Average -0.001± 0.03 0.37 ± 0.01 0.39 ± 0.01 

    Prediction accuracy in CV2 

 Population  Environment aM1 M2 M3 

 Agua Fria, 2012 0.71 ± 0.00 0.71 ± 0.00 0.72 ± 0.00 

ZAM panel (923) Celaya, 2012 0.64 ± 0.00 0.68 ± 0.00 0.72 ± 0.00 

 

Agua Fria, 2013 0.67 ± 0.00 0.67 ± 0.00 0.69 ± 0.01 

  Average 0.67 ± 0.00 0.69 ± 0.00 0.71 ± 0.00 

aModels: M1= Environment +Line; M2 = Environment + Line + Genomic; M3 = Environment + Line + 750 

Genomic + Genomic × Environment 751 
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Table 5 Correlations (mean ± SD) between observed and genomic estimated breeding values for 752 

Zn in the three environments for three GBLUP models for cross-validation CV1 of DH populations  753 

Population Environment 

Prediction accuracy in CV1   

M1a M2 M3 

  Celaya, 2014 -0.05 ± 0.10 0.52 ± 0.04 0.51 ± 0.04 

DH1 Tlaltizapan, 2015 -0.02 ± 0.12 0.52 ± 0.05 0.51 ± 0.05 

 Tlaltizapan, 2017 -0.01 ± 0.10 0.56 ± 0.05 0.55 ± 0.05 

  Average -0.03 ± 0.10 0.53 ± 0.04 0.52 ± 0.04 

     

  Celaya, 2014 0.05 ± 0.08 0.47 ± 0.03 0.50 ± 0.04 

DH2 Tlaltizapan, 2015 0.03 ± 0.08 0.45 ± 0.03 0.45 ± 0.03 

 

Tlaltizapan,2017 0.04 ± 0.08 0.35 ± 0.03 0.35 ± 0.04 

  Average 0.04 ± 0.06 0.43 ± 0.03 0.44 ± 0.02 

aModels: M1= Environment +Line; M2 = Environment + Line + Genomic; M3 = Environment + Line + 754 

Genomic + Genomic × Environment 755 

Table 6 Correlations (mean ± SD) between observed and genomic estimated breeding values for 756 

Zn in the three environments for three GBLUP models for cross-validation CV2 of DH populations 757 

Population Environment 

Prediction accuracy in CV2 

M1a M2 M3 

 Celaya, 2014 0.67 ± 0.02 0.68 ± 0.02 0.68 ± 0.03 

DH1 Tlaltizapan, 2015 0.70 ± 0.02 0.71 ± 0.02 0.70 ± 0.02 

 

Tlaltizapan, 2017 0.67 ± 0.02 0.70 ± 0.02 0.69 ± 0.02 

  Average 0.68 ± 0.01 0.70 ± 0.01 0.69 ± 0.01 

     

  Celaya, 2014 0.46 ± 0.016 0.53 ± 0.02 0.56 ± 0.02 

DH2 Tlaltizapan, 2015 0.50 ± 0.020 0.55 ± 0.02 0.55± 0.02 

 

Tlaltizapan, 2017 0.40 ± 0.023 0.43 ± 0.02 0.43 ± 0.02 

  Average 0.45 ± 0.02 0.50 ± 0.01 0.51 ± 0.01 
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aModels: M1= Environment +Line; M2 = Environment + Line + Genomic; M3 = Environment + Line + 758 

Genomic + Genomic × Environment 759 

FIGURES 760 

 761 

Figure 1 Box plots for kernel Zn (μg/g) in the ZAM panel in three environments (Agua Fria, 2012, Celaya, 762 

2012 and Agua Fria, 2013) 763 

  764 

Figure 2 Box plots for kernel Zn (μg/g) for (A) DH1 and (B) DH2 in three environments (Celaya 2014, 765 

Tlaltizapan, 2015 and Tlaltizapan, 2017) 766 

 767 

A B 
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  768 

     769 

Figure 3 Scree plots (A and C) and loadings of the first two eigenvectors (B and D) of the covariance 770 

matrices derived from markers for the ZAM panel (A and B) and for the DH populations (C and D) 771 
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