Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Increasing Host Cellular Receptor—Angiotensin-Converting Enzyme 2 (ACE2) Expression by Coronavirus may Facilitate 2019-nCoV Infection

View ORCID ProfilePei-Hui Wang, Yun Cheng
doi: https://doi.org/10.1101/2020.02.24.963348
Pei-Hui Wang
1Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Pei-Hui Wang
  • For correspondence: wphlab@163.com
Yun Cheng
2School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The ongoing outbreak of a new coronavirus (2019-nCoV) causes an epidemic of acute respiratory syndrome in humans. 2019-nCoV rapidly spread to national regions and multiple other countries, thus, pose a serious threat to public health. Recent studies show that spike (S) proteins of 2019-nCoV and SARS-CoV may use the same host cell receptor called angiotensin-converting enzyme 2 (ACE2) for entering into host cells. The affinity between ACE2 and 2019-nCoV S is much higher than ACE2 binding to SARS-CoV S protein, explaining that why 2019-nCoV seems to be more readily transmitted from the human to human. Here, we reported that ACE2 can be significantly upregulated after infection of various viruses including SARS-CoV and MERS-CoV. Basing on findings here, we propose that coronavirus infection can positively induce its cellular entry receptor to accelerate their replication and spread, thus drugs targeting ACE2 expression may be prepared for the future emerging infectious diseases caused by this cluster of viruses.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted February 27, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Increasing Host Cellular Receptor—Angiotensin-Converting Enzyme 2 (ACE2) Expression by Coronavirus may Facilitate 2019-nCoV Infection
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Increasing Host Cellular Receptor—Angiotensin-Converting Enzyme 2 (ACE2) Expression by Coronavirus may Facilitate 2019-nCoV Infection
Pei-Hui Wang, Yun Cheng
bioRxiv 2020.02.24.963348; doi: https://doi.org/10.1101/2020.02.24.963348
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Increasing Host Cellular Receptor—Angiotensin-Converting Enzyme 2 (ACE2) Expression by Coronavirus may Facilitate 2019-nCoV Infection
Pei-Hui Wang, Yun Cheng
bioRxiv 2020.02.24.963348; doi: https://doi.org/10.1101/2020.02.24.963348

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3607)
  • Biochemistry (7581)
  • Bioengineering (5529)
  • Bioinformatics (20809)
  • Biophysics (10338)
  • Cancer Biology (7988)
  • Cell Biology (11647)
  • Clinical Trials (138)
  • Developmental Biology (6611)
  • Ecology (10217)
  • Epidemiology (2065)
  • Evolutionary Biology (13630)
  • Genetics (9550)
  • Genomics (12854)
  • Immunology (7925)
  • Microbiology (19555)
  • Molecular Biology (7668)
  • Neuroscience (42147)
  • Paleontology (308)
  • Pathology (1258)
  • Pharmacology and Toxicology (2203)
  • Physiology (3269)
  • Plant Biology (7051)
  • Scientific Communication and Education (1294)
  • Synthetic Biology (1952)
  • Systems Biology (5429)
  • Zoology (1119)