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ABSTRACT (word count: 196) 27 
 28 

Background: Susceptibility to Vibrio cholerae infection is impacted by blood group, age, and 29 

pre-existing immunity, but these factors only partially explain who becomes infected. A recent 30 

study used 16S rRNA amplicon sequencing to quantify the composition of the gut microbiome 31 

and identify predictive biomarkers of infection with limited taxonomic resolution.  32 

Methods: To achieve increased resolution of gut microbial factors associated with V. cholerae 33 

susceptibility and identify predictors of symptomatic disease, we applied deep shotgun 34 

metagenomic sequencing to a cohort of household contacts of patients with cholera.  35 

Results: Using machine learning, we resolved species, strains, gene families, and cellular 36 

pathways in the microbiome at the time of exposure to V. cholerae to identify markers that 37 

predict infection and symptoms. Use of metagenomic features improved the precision and 38 

accuracy of prediction relative to 16S sequencing. We also predicted disease severity, although 39 

with greater uncertainty than our infection prediction. Species within the genera Prevotella and 40 

Bifidobacterium predicted protection from infection, and genes involved in iron metabolism also 41 

correlated with protection.  42 

Conclusion: Our results highlight the power of metagenomics to predict disease outcomes and 43 

suggest specific species and genes for experimental testing to investigate mechanisms of 44 

microbiome-related protection from cholera.  45 

 46 

KEYWORDS: Vibrio cholerae, cholera, microbiome, machine learning, metagenomics 47 
 48 
  49 
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MAIN TEXT (word count: 3407) 50 
 51 
INTRODUCTION  52 
 53 

Cholera is an acute diarrheal disease caused by Vibrio cholerae. Cholera is a major public 54 

health threat worldwide that continues to cause major outbreaks, such as in Yemen, where over 55 

1.7 million cases have been reported since 2016 (1,2). Transmission of V. cholerae between 56 

household members commonly occurs through shared sources of contaminated food or water or 57 

through fecal-oral spread (3,4). The clinical spectrum of disease ranges from asymptomatic 58 

infection to severe watery diarrhea that can lead to fatal dehydration (5). Host factors such as age, 59 

innate immune factors, blood group, or prior acquired immunity partially explain why some 60 

people are more susceptible to V. cholerae infection than others, but a substantial amount of the 61 

variation remains unexplained (6).  62 

The composition of the gut bacterial community can protect against enteropathogenic 63 

infections (7), and may explain some of the variation in V. cholerae susceptibility. Several studies 64 

have identified commensal bacteria and mechanisms that could be protective against V. cholerae. 65 

For instance, a species enriched in the gut microbiota of patients recovering from cholera, Blautia 66 

obeum, was found to interfere with V. cholerae pathogenicity through quorum-sensing inhibition 67 

in a mouse model (8). Animal and in vitro experiments have demonstrated that alteration of 68 

commensal-derived metabolite levels influenced host susceptibility by affecting V. cholerae 69 

growth or colonization (9-13).  70 

Studies of V. cholerae and the gut microbiota often focus on a limited number of bacterial 71 

species or involve patients who already have symptomatic cholera  (8,14). One study to date has 72 

characterized the gut microbiome of individuals exposed to V. cholerae to predict susceptibility 73 

to infection (15). In this study, Midani et al. developed a machine learning model to predict 74 

susceptibility based on 16S rRNA gene amplicon sequencing of the gut microbiota in a group of 75 
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household contacts of patients who have cholera, a group known to have high risk of infection 76 

(4). Midani et al showed that the microbiome composition at the time of exposure to V. cholerae 77 

can predict infection with similar or better accuracy as the commonly measured host factors 78 

known to impact susceptibility. However, 16S rRNA sequencing does not allow identification of 79 

precise strains or the underlying genetic factors of the observed relationship. 80 

 To increase our understanding of the relationship between the gut microbiome and 81 

susceptibility to V. cholerae, we used shotgun metagenomics to analyze an expanded prospective 82 

cohort of persons exposed to V. cholerae in Bangladesh. We sequenced all DNA obtained from 83 

study participant rectal swabs (rather than only the 16S rRNA gene), and this resulted in 84 

improved predictive power, including identification of specific genes associated with remaining 85 

uninfected after exposure to V. cholerae. We also examined a larger cohort of samples to predict 86 

disease severity among infected contacts, albeit with lower power and precision than our 87 

susceptibility prediction. We also highlight several microbiome metabolic functions associated 88 

with protection against cholera.  89 
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METHODS 90 

Sample collection, clinical outcomes and metagenomic sequencing 91 

As described in (15), household contacts were enrolled within 6 hours of the presentation 92 

of an index cholera case at the icddr,b (International Center for Diarrheal Disease Research, 93 

Bangladesh) Dhaka Hospital. Index patients with severe acute diarrhea, a stool culture positive 94 

for V. cholerae, age between 2 and 60 years old, and no major comorbid conditions were 95 

recruited (4,6). A clinical assessment of symptoms in household contacts was conducted daily for 96 

the 10-day period after presentation of the index case, and repeated on day 30. We collected 97 

demographic information, rectal swabs, and blood samples for ABO typing and vibriocidal 98 

antibody titers as described in the Supplementary Methods. During the observation period, 99 

contacts were determined to be infected if any rectal swab culture was positive for V. cholerae 100 

and/or if the contact developed diarrhea and a 4-fold increase in vibriocidal titer during the 101 

follow-up period (4,6). Contacts with positive rectal swabs developing watery diarrhea were 102 

categorized as symptomatic and those without diarrhea were considered asymptomatic (Figure 103 

1). V. cholerae positive contacts (by culture or 16S testing) at the time of enrollment were 104 

excluded, in addition to contacts who reported antibiotic use or diarrhea during the week prior to 105 

enrollment. DNA extraction was performed for the selected samples and used for shotgun 106 

metagenomics sequencing. Detailed information on cohorts, sequencing methods and sample 107 

processing are described in Supplemental Methods. 108 

 109 

Taxonomic/functional profiling and predictive model construction 110 

 We used MetaPhlAn2 (version 2.9) (16) for taxonomic profiling and HUMAnN2 (17) was 111 

used to profile cellular pathways (from MetaCyc) and gene families (identified using the PFAM 112 

database of protein families). See the Supplementary Methods for further details on the 113 
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bioinformatic analyses. For identification of metagenomic biomarkers of susceptibility and 114 

disease severity, we used MetAML (18), a computational tool for metagenomics-based prediction 115 

tasks and for quantitative assessment of the strength of potential microbiome-phenotype 116 

associations. We applied a random forests (RF) classifier on species, pathways and gene-family 117 

relative abundances, as well as strain-specific markers presence/absence. Models constructed 118 

using each of these different types of features were compared to each other, to a random dataset 119 

with shuffled labels, and to a model constructed with clinical/demographic data, using two-120 

sample, two-sided t-tests over 20 replicate cross-validation, as previously described (18). We 121 

used a stratified 3-fold cross validation approach, splitting our dataset into a validation set (1/3 of 122 

samples) and a training set (2/3 of samples) with the same infected:uninfected ratio. The model 123 

was first applied on all the features, then we used an embedded feature selection strategy to 124 

identify the most useful features in the model and improve its accuracy. Feature relative 125 

importance was computed using the mean decrease in impurity strategy, which calculates 126 

importance of each feature as the sum of the number of nodes (across all trees) that use the 127 

feature, proportional to the number of samples each of these nodes splits (18). Further details are 128 

described in the Supplemental Methods.  129 

  130 

Data availability. 131 

 After removal of human reads (Supplementary Methods), the sequence data has been 132 

deposited in NCBI under BioProject PRJNA608678. 133 

  134 
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RESULTS 135 

 136 

 Metagenomic sequencing of the gut microbiome in household contacts exposed to V. 137 

cholerae  138 

 We performed metagenomic sequencing of the gut microbiome in 65 contacts of cholera 139 

cases from a cohort described by Midani et al. (15), from which sufficient DNA remained for 140 

shotgun metagenomic sequencing. Of these 65 contacts, referred to as the Midani 2018 cohort, 20 141 

developed infection during the follow-up period, and 45 remained uninfected (Figure 1). Among 142 

the 20 contacts who became infected, 10 had no symptoms during the follow-up period (30 days), 143 

and were classified as asymptomatic, and 10 developed symptoms (Supplementary Methods). To 144 

increase our sample size, we surveyed an expanded cohort (Table S1) by adding 33 samples to 145 

the Midani 2018 cohort, including 10 additional pre-infection samples from timepoints of 146 

contacts in the Midani 2018 cohort, and 23 samples from 16 newly enrolled contacts from the 147 

same population and the same time period (2012-2014, Dhaka, Bangladesh). We used pre-148 

infection samples in order to identify factors predictive of disease outcomes and identify 149 

biomarkers in the microbiome of the Midani 2018 cohort, upon which we base the majority of 150 

our analyses. We also performed exploratory analyses on the expanded cohort to determine the 151 

potential for predictive models to be generalized to larger sample sizes.  152 

 We used the shotgun metagenomic DNA sequence reads from these samples to 153 

characterize four features of the microbiome: 1) relative abundances of microbial species, 2) the 154 

presence/absence of sub-species-level strains, 3) metabolic pathway relative abundances, and 4) 155 

gene family relative abundances (Table 1).  156 

 157 

Predicting susceptibility to V. cholerae infection with Random Forest  158 
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 9 

We first used an RF model to predict V. cholerae susceptibility (developing infection or 159 

remaining uninfected) from baseline microbiome features (Figure 1). In the Midani 2018 cohort, 160 

functional pathways and gene families predicted infection significantly better than random (Two-161 

sample t-tests comparing area under the curve [AUC] across 20 replicate 3 fold cross-validations; 162 

p < 0.05) compared to data with shuffled (randomized) labels, and also predicted infection better 163 

than species or strain features (Table 1, Table S2). Pathways and gene families had significantly 164 

higher mean AUCs (0.71 and 0.74, respectively) compared to species or strains (0.61 and 0.62) (p 165 

< 0.05; Table 1;Figure S1, Table S3).  166 

To determine the minimum number of metagenomic features required for accurate 167 

prediction, we repeated the analysis using smaller subsets of features. Using only 30 species, 60 168 

gene families or pathways, or 200 strains achieved similar cross-validation AUC values (Figure 169 

S2). We then trained an RF model on this reduced number of selected features, yielding improved 170 

predictions for all feature types (Figure S1; Table S4). This suggests that only a limited number 171 

of strains, species, genes and pathways in the gut microbiome at the time of exposure are 172 

sufficient to predict V. cholerae susceptibility. For example, prediction using strain level markers 173 

after feature selection yielded an AUC of 0.95 (Table S4). However, such high AUC values 174 

should be treated with caution because the models can be overfit when a supervised feature 175 

selection step is applied on the same data used to train the model (18). Because we did not have a 176 

fully independent validation cohort (e.g. from another continent) to test our model, we decided to 177 

use the features selected from the Midani cohort to make predictions on the Expanded dataset. 178 

Using the same features selected from the Midani 2018 training dataset, we made predictions on 179 

the Expanded cohort and achieved AUCs between 0.89 and 0.93 for prediction of infection using 180 

the four types of features (Table S4). Again, because the expanded cohort partly overlaps with 181 

the Midani cohort, and includes some repeated samples from the same individuals on different 182 
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study days, these results could also be prone to overfitting, but they demonstrate the potential for 183 

generalized predictions. 184 

Finally, we repeated the RF analysis using all features in the expanded dataset and found 185 

that this increased predictive performance relative to the original Midani cohort (Figure S1). 186 

Once again, genes and pathways outperformed species and strains according to all metrics, with 187 

AUC reaching ~0.88 using cellular pathways (Table 1). This improvement in the expanded 188 

cohort also highlights the importance of using larger and more balanced datasets as input to 189 

predictive models.   190 

 191 

Improved prediction compared to known factors impacting susceptibility 192 

 To put the metagenomic predictions in context, we next compared their predictive power 193 

and accuracy to clinical and demographic factors (Table S1). Three of these factors (age, 194 

baseline vibriocidal antibodies and blood group) are known to impact susceptibility to V. 195 

cholerae infection (6,15) (Table S5). The likelihood of developing infection was not predicted 196 

well using a RF model trained on the 7 features clinical and demographic factors (AUC=0.60, not 197 

significantly different from shuffled labels, p=0.66; Figure 2). Predictions were not improved 198 

using all species-level metagenomic features present at the time of exposure to V. cholerae 199 

(AUC=0.61), but significantly improved using a selected number of species (AUC=0.80, p < 1 200 

x10-7). The use of all gene families or a selected number of genes showed an increased predictive 201 

performance (AUC=0.74 and AUC=0.89 respectively; Figure 2) compared to species-level or 202 

clinical and demographic contact data (p < 1 x10-7 for all comparisons). We again note the caveat 203 

that models with selected features may be overfit and represent an upper bound for predictive 204 

power. Even without feature selection, we found that gene families clearly provide superior 205 

predictions, and adding clinical data did not improve the predictions based on microbiome 206 
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features alone (Figure 2). Together, these results demonstrate that gene families present in the 207 

gut microbiome at the time of exposure contain more information about V. cholerae susceptibility 208 

compared to species-level or clinical and demographic contact data. 209 

 210 

Disease severity is more difficult to predict than likelihood of infection 211 

 To predict symptomatic disease among infected individuals (Figure 1), we divided 212 

samples into uninfected, symptomatic and asymptomatic groups and again applied the RF 213 

approach. We used the F1 score as a performance metric since it is well suited for uneven class 214 

distributions in our uninfected/symptomatic/asymptomatic comparison. Applied to the Midani 215 

2018 cohort, this model predicted outcomes significantly better than random (shuffled labels) 216 

using species, strains or pathway data, but not gene families (Table 1; see Table S3 for p-217 

values). However, the F1 scores for the symptomatic/asymptomatic predictions were 218 

systematically lower (mean scores ranging from of 0.57 to 0.60) than for the infected/uninfected 219 

prediction (means ranging from 0.64 to 0.71). Using the expanded cohort, the scores were 220 

improved only slightly (Table 1). These results suggest that disease severity is predictable in 221 

principle, but with greater uncertainty than the simpler infection outcome. 222 

 223 

Taxonomic biomarkers of disease susceptibility and severity 224 

 Predictive features in the gut microbiome identified to a species/strain or gene level allow 225 

the possibility of experimental follow-up to investigate mechanisms of the associations we 226 

observed. We characterized the most predictive species, pathways, and gene families (Tables S6-227 

S9). The most common discriminating species in individuals that remained uninfected during the 228 

follow-up period were Eubacterium rectale, Campylobacter hominis, Ruminococcus gnavus, 229 

Bacteroides vulgatus, Veillonella parvula and members of the Prevotella and Eubacterium 230 
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genera (Figure 3A, Figure S3A and Figure S4A). Several species associated with contacts that 231 

developed V. cholerae infection belonged to the genera Bifidobacterium, Actinomyces or 232 

Collinsella, and many of the species were also associated with asymptomatic infection (Figure 233 

3B, Figure S3B and Figure S4B), including three species of Bifidobacterium (indicated with 234 

asterisks in Figure 3). The top predictive species in contacts who developed symptomatic 235 

infection were Clostridium ventriculi (formerly Sarcina ventriculi), Streptococcus parasanguinis 236 

and members of the Veillonella genera. Shigella species were also associated with the gut 237 

microbiome of persons who developed symptomatic V. cholerae infection, although persons 238 

enrolled in this study were Shigella stool-culture negative. The features identified by the 239 

multivariate RF model were confirmed using univariate statistics for the uninfected/infected 240 

prediction (Figure S5), but the overlap was poorer for the uninfected/symptomatic/asymptomatic 241 

prediction (Figure S6). This is consistent with the difficulty of correctly predicting disease 242 

severity.  243 

 244 

Identification of functional biomarkers of disease susceptibility and severity 245 

 We also identified gene families in the gut microbiome of persons who remained 246 

uninfected during follow-up (Figures S7 and S8), with some of the top gene families involved in 247 

DNA repair, transmembrane transporter activity, iron metabolism (indicated with asterisks in 248 

Figure 4), and genes of unknown function (Table S8). Long-chain fatty acid biosynthesis 249 

pathways (e.g. cis-vaccenate, gondoate and stearate) were more likely to be associated with 250 

individuals who remained uninfected, while amino acid biosynthesis pathways and catabolic 251 

pathways were associated with individuals who developed infection (Figures S9 and S10, Table 252 

S9). We identified three iron-related genes associated with individuals that remained uninfected: 253 

(1) the ferric uptake regulator Fur, a major regulator of iron homeostasis, (2) thioredoxin, a redox 254 
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protein involved in adaptation to oxidative and iron-deficiency stress, and (3) the 255 

TonB/ExbD/TolQR system, a ferric chelate transporter (19-21). In individuals who became 256 

infected and were asymptomatic, two genes involved in the conversion of riboflavin into 257 

catalytically active cofactors, the riboflavin kinase and the FAD synthetase, were found as the 258 

first and the third most discriminant features (Figure 4, Table S8).  259 

 We next asked which taxa in the microbiome likely encoded these genes. In some cases, 260 

specific taxonomic groups corresponded to discrete gene functions; for example, the Prevotella 261 

genus was the major contributor to several iron metabolism related gene families (Figure S12). 262 

In other cases, the major contributors to protective gene families were unclassified (Figure 5 and 263 

Figure S11). These results partly explain why gene families or pathway features tend to 264 

outperform species-level features in predicting infection status – because predictive gene families 265 

are distributed across many species, including several with poor taxonomic annotation or families 266 

lacking representation in taxonomic databases. 267 

  268 
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DISCUSSION 269 

Cholera continues to cause widespread disease in populations without access to safe 270 

water. The gut microbiome is a potentially modifiable host risk factor for cholera, and 271 

identification of specific genes and strains correlated with susceptibility is needed for 272 

experimental testing to understand the mechanisms of observed correlations. Compared to a 273 

previous study using a single marker gene, shotgun metagenomics provides this degree of 274 

resolution, potentially to the species and strain level, and to the level of individual genes and 275 

cellular functions. We found that gene families in the gut microbiome at the time of exposure to 276 

V. cholerae were more predictive of susceptibility compared to taxonomic or clinical and 277 

demographic information. 278 

Using a machine learning method to identify the most important factors contributing to 279 

our model, we selected 30 bacterial species from 65 samples to estimate which contacts became 280 

infected, and predicted outcomes with similar success rates as previously reported with 16S data 281 

(15). Prediction of infection was substantially improved by using gene families or metabolic 282 

pathways, highlighting the benefits of using richer metagenomic data. Selecting a subset of the 283 

most informative features further improved predictions, but using these selected features may 284 

lead to overfitting. This suggests an upper limit to predictive power that requires validation in 285 

larger, independent cohorts. 286 

Most of the top predictive biomarkers (using both species and gene families) were 287 

associated with remaining uninfected after exposure to V. cholerae, and many of these 288 

biomarkers were consistently identified (Figures 3 and 4). An example is the genus Prevotella, 289 

including several strains within Prevotella sp. 885, identified only at the genus level in a previous 290 

study(15). Prevotella species are hypothesized to be beneficial members of the microbiota in 291 
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healthy individuals in non-Westernized countries, and this species is a potential candidate for 292 

follow up experimental studies in V. cholerae susceptibility (14,22,23).  293 

Several species known to ferment mucin glycans into short chain fatty acids (SCFAs) 294 

correlated with remaining uninfected, including Eubacterium rectale, Ruminococcus gnavus and 295 

Bacteroides vulgatus (24,25). This finding is consistent with experiments of SCFAs applied to 296 

animal models. B. vulgatus has been shown to inhibit V. cholerae colonization in mice, an effect 297 

that was dependent upon SCFAs butyrate and propionate production (13). SCFAs are known to 298 

impact immune cell development and attenuate inflammation by inhibiting histone deacetylases 299 

and other mechanisms of altering gene expression (26-29).  300 

All three Bifidobacterium species associated with contacts that developed infection were 301 

also associated with asymptomatic rather than symptomatic disease (Figure 3), and prior work on 302 

this genera supports several hypotheses for this relationship. First, Bifidobacteria are known to 303 

produce the SCFA acetate that can protect against enteric infection in mice (33,34)(30). SCFAs 304 

are also known to inhibit cholera toxin-related chloride secretion in the mouse gut, reducing 305 

water and sodium loss, and have also been observed to increase cholera toxin-specific antibody 306 

responses (31-33). Bifidobacteria are also major producers of lactate, a metabolite that has been 307 

shown to impair V. cholerae biofilm formation, a function that can impact pathogen virulence 308 

(12). Lastly, B. bifidum and B. adolescentis are known to reduce the activity of the V. cholerae 309 

type VI secretion system through modification of bile acids (9).  310 

The use of metagenomics also allowed us to identify bacterial functions that could impact 311 

the ability of V. cholerae to compete and colonize the gut. For example, several gene families 312 

involved in iron transport, iron regulation, and riboflavin conversion appeared among the top 313 

twenty features associated with uninfected and asymptomatic individuals, suggesting that 314 

competition for iron might be a protective mechanism of the gut microbiota against V. cholerae, 315 
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as is the case for other pathogens (7). Iron is often a limiting redox cofactor in the gut, and 316 

bacteria have evolved strategies to solubilize and internalize iron (34,35). Riboflavin (another 317 

major redox cofactor in bacteria) and iron levels are reciprocally regulated in V. cholerae, and 318 

more generally, riboflavin may allow V. cholerae to overcome iron limitation in the gut (34,36). 319 

A gut microbiota more competitive for iron could be an important factor in resistance to V. 320 

cholerae colonization or virulence. Further work is thus needed to understand mechanisms of 321 

how the enrichment of these microbiome genes may protect people after exposure to V. cholerae.  322 

Our results are currently not generalizable beyond the study cohort in Dhaka, Bangladesh, 323 

since a similar cohort in another geographic location is not available. As with any association-324 

based study (37), it is unknown if any of the metagenomic features that correlate with protection 325 

from V. cholerae infection are causal, and many may be markers of clinical or environmental 326 

factors that themselves impact susceptibility. Further experimental characterization of 327 

metagenomic features correlated with protection from infection or symptoms are needed to 328 

understand if factors we identified impact V. cholerae pathogenesis or host responses to infection. 329 

Ultimately, the strains and functionalities identified have the potential to inform microbiota-based 330 

therapeutics to ameliorate or prevent disease. Our results show the power of metagenomic data 331 

from the gut microbiome to predict health outcomes such as susceptibility to infection and 332 

disease severity.  333 
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FIGURES AND TABLES 360 

 361 
Figure 1. Study cohort in Dhaka, Bangladesh. After presentation of a V. cholerae culture-362 

positive index case to the hospital on day 1, household contacts were enrolled on day 2. The 363 

expanded cohort includes the Midani 2018 cohort (15), with an addition of 33 samples from 364 

infected individuals (13 asymptomatic and 2 symptomatic).   365 

Household contact 
of cholera case 

Day 1

Infected

Asymptomatic

Symptomatic

no diarrhea

+ diarrhea

Uninfected

N = 45 contacts 
Day 2

N = 10 
Day 2

+ 13 contacts 
(29 samples 

from Days 2 to 10) 

+ 2 contacts 
( 4 samples  

from Days 2 to 10)

Cohort from 
Midani et al

Expanded 
cohort

N = 10 
Day 2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.960930doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.960930
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Figure 2. Metagenomic features predict V. cholerae infection better than clinical and 366 

demographic features. Random forest prediction of infection status was applied to 7 clinical and 367 

demographic features, and compared with all species and all gene families (top row), as well as 368 

30 selected species features from metagenomes and 60 selected gene family features (bottom 369 

row), or a combination of clinical, demographic and metagenomic features. Plots show receiver 370 

operating characteristic (ROC) curves (average across cross-validations) for the Midani 2018 371 

dataset. Shuffled labels represent the prediction run on a dataset with a random assignment of 372 

infection outcomes. AUC = area under the curve. 373 
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 374 

Figure 3. Most important discriminating species of the gut microbiome at the time of 375 

exposure to V. cholerae identified in the Midani 2018 dataset, classified by clinical outcome. 376 

(A) Species associated with contacts that became infected (red) or remained uninfected (yellow) 377 

during follow-up. (B) Species associated with contacts who remained uninfected (yellow), or 378 

became infected asymptomatic (green), or symptomatic (red) during follow-up. The top 25 most 379 

important features are shown here; see Table S6 for the full list. Yellow lines connect species 380 

associated with uninfected individuals in both (A) and (B); red lines connect species associated 381 

with infection in (A) and symptomatic disease in (B); grey lines connect species associated with 382 

infection in (A) but asymptomatic infection in (B). Three species of Bifidobacterium are marked 383 

with an asterisk. 384 
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 387 

Figure 4. Most important discriminating gene families of the gut microbiome at the time of 388 

exposure to V. cholerae identified in the Midani 2018 dataset, classified by clinical outcome.  389 

(A) Genes families associated with contacts that became infected (red) or remained uninfected 390 

(yellow) during follow-up. (B) Genes families associated with contacts who remained uninfected 391 

(yellow), or became infected asymptomatic (green), or symptomatic (red) during follow-up. The 392 

top 25 most important features are shown here; see Table S8 for the full list. Yellow lines connect 393 

species associated with uninfected individuals in both (A) and (B). Asterisks indicate genes 394 

involved in redox or iron metabolism. 395 
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Tables 402 
 403 

 404 

Table 1. Assessment of prediction performance for a random forest (RF) model applied to 405 

the Midani 2018 and expanded cohorts. Species abundances, strain-specific markers 406 

presence/absence, relative abundance of Pfam-grouped gene families, and MetaCyc pathways 407 

were used as features. For each dataset, we applied a binary (uninfected vs. infected contacts) and 408 

a multi-class (asymptomatic vs. symptomatic vs. uninfected contacts) classifier and reported 409 

performance metrics for each dataset. Metrics obtained by the same classifier applied to the same 410 

datasets with shuffled class labels (random assignment of labels to samples) are also reported 411 

(shuffled). The margins of errors (95% confidence intervals) are reported in parenthesis.   412 
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