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Abstract

Acquiring high resolution quantitative behavioural data underwater often involves
installation of costly infrastructure, or capture and manipulation animals. Aquatic
movement ecology can therefore be limited in scope of taxonomic and ecological
coverage. Here we present a novel deep-learning based, multi-individual tracking
approach, which incorporates Structure-from-Motion in order to determine the 3D
location, body position and the visual environment of every recorded individual. The
application is based on low-cost cameras and does not require the animals to be confined
or handled in any way. Using this approach, single individuals, small heterospecific
groups and schools of fish were tracked in freshwater and marine environments of
varying complexity. Further, we established accuracy measures, resulting in positional
tracking errors as low as 1.09 ± 0.47 cm (RSME) in underwater areas up to 500 m2.
This cost-effective and open-source framework allows the analysis of animal behaviour
in aquatic systems at an unprecedented resolution. Implementing this versatile
approach, quantitative behavioural analysis can employed in a wide range of natural
contexts, vastly expanding our potential for examining non-model systems and species.

Background 1

Understanding the movement and behaviour of animals in their natural habitats is the 2

ultimate goal of behavioural and movement ecology. By situating our studies in the 3

natural world, we have the potential to uncover the processes of selection acting on the 4

behaviour in natural populations in a manner that cannot be achieved through lab 5

studies alone. The ongoing advance of animal tracking and biologging brings the 6

opportunity to revolutionize not only the scale of data collected from wild systems, but 7

also the types of questions that can subsequently be answered. Incorporating 8

geographical data has already given insights, for example, into the homing behaviour of 9

reef fish, migratory patterns of birds, or the breeding site specificity of sea 10

turtles [10,22,51]. Great advances in systems biology have further been made through 11

the study of movement ecology, understanding the decision-making processes at play 12
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within primate groups manoeuvring through difficult terrain or the collective sensing of 13

birds traversing their physical environment [41, 52]. Unravelling these aspects of animal 14

movement can also vastly improve management strategies [13,14], for example in the 15

creation of protected areas that incorporate bird migratory routes [48] or by reducing 16

by-catch with dynamic habitat usage models of marine turtles [37]. 17

Yet the application of techniques that meet the challenges of working in naturally 18

complex environments is not straightforward, with practical, financial, and analytical 19

issues often limiting the resolution or coverage of data gathered. This is especially true 20

in aquatic ecosystems, where approaches such as Global Positioning System (GPS) tags 21

allow only sparse positioning of animals that surface more or less frequently, or Pop-up 22

Satellite Archival Tags (PSATs) which integrate surface positions with logged gyroscope 23

and accelerometer data to estimate movement of larger aquatic animals [29,54]. Not 24

only does the spatial resolution of respective tracking systems, e.g. currently 4.9m for 25

GPS, limit the possibilities of behavioural analyses on a fine scale, but also excludes 26

almost all animals below a certain size class [56]. This is problematic because in aquatic 27

ecosystems, as in terrestrial systems, life is numerically dominated by small animals [3]. 28

Ultrasonic acoustic telemetry is one methodology useful for underwater tracking of 29

smaller animals and those in larger groups [29,35], but this approach is limited to a 30

stationary site through the positioning of the acoustic receivers, and the costs, 31

maintenance, and installation of these systems preclude their effective use in the 32

majority of systems and for many users. These methods also require animals to be 33

captured and equipped with tags that should not exceed 5% of the animals 34

weight [17,33,35], rendering current generation GPS and PSATs problematic for small 35

animals. While acoustic tags are small enough for injection, the increased handling time 36

associated with these invasive measures can lead to additional stress for the animals, 37

whereas the tag itself may disturb the animals’ natural behaviour [30]. Hence, 38

approaches that facilitate collection of behavioural data in smaller animals, those in 39

large groups, and those in varied aquatic habitats, are still lacking. 40

A lack of data becomes a fundamental problem if certain ecosystems, species, or 41

habitat types are underrepresented in terms of adequate research, management, or 42

discovery. Although the oceans constitute up to 90% of habitable ecosystems worldwide, 43

as little as 5% have been explored [25,40,42]. Within the oceans, coastal inshore areas 44

have the greatest species diversity, with approximately 80% of fish species (the most 45

speciose group of vertebrates) inhabiting the shallow waters of the littoral zone [46], and 46

providing over 75% of commercial seafood landings [20]. Coastal regions in both marine 47

and freshwater environments are also those that are of greatest interest for eco-tourism, 48

community fisheries, and industry, while simultaneously being most affected by habitat 49

degradation, exploitation, and anthropogenic pollution [11,12,15]. Knowledge of the 50

coastal regions is essential for establishing sanctuaries and sustainable concepts of ocean 51

preservation [21] and movement data plays a vital role in this process, in that it gives 52

detailed information about the location, preferred habitat and temporal distribution of 53

organisms [33]. Yet for reasons of animal size, species abundance, and habitat 54

complexity, most available tracking methods are poorly suited to these inshore regions. 55

Application of appropriate tracking and behavioural analysis techniques in a flexible, 56

accessible, and broadly applicable manner would alleviate these limitations in systems 57

and species coverage, improving capacity for conservation, management, and scientific 58

understanding of natural systems across scales and conditions. In pure research terms, 59

the application of quantitative behavioural and movement analyses in natural settings 60

would also help bridge the gap between quantitative lab-based research and often 61

qualitative field-based research. Recent advances in behavioural decomposition [6, 27] 62

may then be employed in field settings, vastly improving our understanding of 63

behaviour and movement in the wild. 64
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Here we present an open-source, low-cost approach based on consumer grade 65

cameras to quantify the movement and behaviour of animals of various sizes in coastal 66

marine and freshwater ecosystems. Our approach integrates two methodologies from the 67

field of computer vision, object detection with deep neural networks and 68

Structure-from-Motion (SfM). Object detection has been successfully employed in 69

terrestrial systems for animal localization, yielding highly resolved movement data 70

through e.g. drone-based videos over broad environmental contexts [28]. While these 71

aerial approaches may also be used in some aquatic systems, they are limited to 72

extremely shallow water and large animals [45]. The approach we advocate allows data 73

to be collected on any animal that can be visualized with cameras, enabling it also for 74

smaller fish and other aquatic animals. In addition to solely providing animal 75

trajectories, video-based observations also entail environmental data that adds the 76

possibility to study interactions of mobile animals with their natural habitat [52]. Our 77

approach synthesizes object detection with SfM into a coherent framework that can be 78

deployed in a variety of systems without domain-specific expertise. SfM is commonly 79

used for 3D environmental reconstructions, photogrammetry and camera tracking for 80

visual effects in video editing [5, 59], and here allows the reconstruction of 3D models of 81

the terrain through which the animals move and interact with. Our open-source 82

analysis pathway enables subsequent calculation of movement, interactions, and 83

postures of animals. Set-up costs can be as small as two commonly available action 84

cameras, and the proposed method can be taken into habitats which are otherwise 85

explored by snorkeling, diving, or with the use of remotely operated underwater vehicles 86

(ROVs). Analysis can be performed on local GPU-accelerated machines or 87

widely-accessible computing services (e.g. Google Colaboratory). Overall, this method 88

provides a low-cost approach for measuring the movement and behaviour of aquatic 89

animals that can be implemented across scales and contexts. 90

Methods 91

Three datasets of varying complexity were used to demonstrate the versatility of the 92

proposed method. These were chosen to range from single animals (Conger conger) and 93

small heterospecific groups (Mullus surmuletus, Diplodus vulgaris) to schools of 94

conspecific individuals (Lamprologus callipterus) under simple and complex 95

environmental conditions, resulting in the datasets ’single’, ’mixed’ and ’school’ 96

respectively. Moreover, we provide a dataset of four repeated trials (’accuracy’ ) to 97

validate the accuracy of our tracking approach. This dataset was used to reconstruct 98

the trajectories of a calibration wand and examine resulting tracking errors. The ’single’ 99

and ’mixed’ datasets were created while snorkeling at the surface, using a stereo camera 100

set-up at STARESO, Corsica (Submarine and Oceanographic Research Station). The 101

remaining datasets were collected via SCUBA (5-8 m) with either multi or stereo 102

camera set-ups in Lake Tanganyika, Zambia (Tanganyika Science Lodge, Mpulungu) 103

and STARESO. While the ’single’ and ’mixed’ datasets were recorded with untagged 104

fish, we attached tags made of waterproof paper (8×8 mm) anterior to the dorsal fin of 105

the individuals for the ’school’ dataset [23]. See Tab. 1 for a summary of the collected 106

datasets. For a general guideline and comments on the practical implementation of our 107

method, refer to Additional file 7. 108

Automated animal detection and tracking 109

Since all data was collected in the form of videos, image-based animal detection was 110

required for subsequent trajectory reconstruction and analyses. Firstly, the videos 111

resulting from the stereo or multi-camera set-ups were synchronized using a convolution 112
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Table 1. Summary of acquired datasets. Camera distances lists the minimum camera-to-camera distance in the setups,
tags whether individual animals were tagged, pose if animal spine pose estimation was used during tracking. Complexity lists an
estimate of overall complexity (number of individuals, environment). NA: not applicable.

Dataset Location Approach Species Setup Camera distances (m) Tags Pose Complexity
single STARESO schnorchel Conger conger stereo 0.4 no yes high
mixed STARESO schnorchel Mullus surmuletus, stereo 0.6 no yes low

Diplodus vulgaris
school Tanganyika dive Lamprologus callipterus multiple (12) 0.2 yes no medium

accuracy STARESO dive NA multiple (4) 0.6 NA NA varying

of Fourier-transformed audio signals to determine the video offsets (code available). 113

Secondly, the synchronized videos were tracked independently using an implementation 114

of a Mask and Region based Convolution Neural Network (Mask R-CNN) for precise 115

object detection at a temporal resolution of either 30 Hz (’single’, ’mixed’ and 116

’accuracy’ ) or 60 Hz (’school’ ) [1, 26]. To this end, we trained Mask R-CNN models on 117

small subsets of labeled video frames using transfer learning from a model that was 118

pre-trained on the COCO dataset with more than 200K labeled images and 80 object 119

classes [1, 38]. Our training sets contained 171, 80 and 160 labeled images for the 120

’single’, ’mixed’ and ’school’ datasets respectively. For the ’accuracy’ dataset, we 121

annotated a total of 73 images. The original image resolutions of 2704×1520 px (’single’ 122

and ’school’ ) and 3840×2160 px (’mixed’ and ’accuracy’ ) were downsampled to a 123

maximum width of 1024 px while training and predicting to achieve better performance. 124

After training, the models were able to accurately detect and segment the observed 125

animals, which was visually confirmed with predictions on validation datasets. 126

The predicted masks were either used to estimate entire poses of the tracked animals 127

(’single’, ’mixed’ ) or to calculate centroids of the tags or calibration wand ends in case 128

of the ’school’ and ’accuracy’ datasets. Established morphological image processing was 129

used to skeletonize the Mask R-CNN predictions, producing a 1 px midline for each of 130

the detected binary masks. A fixed number of points was equidistantly distributed on 131

these midlines as an estimation of the animals’ spine poses. Both the spine points and 132

the tag centroids represent pixel coordinates of detected animals in further data 133

processing. Partitioned trajectories were generated from detections with a simple 134

combination of nearest-neighbors between subsequent frames or utilizing a 135

cost-reduction algorithm (the Hungarian method), and filtering for linear motion over a 136

short time window, reducing later quality control and manual track identification for 137

continuous trajectories to a minimum. For video and image annotations, trajectory and 138

pose visualization, manual track corrections and other trajectory utility functions, we 139

developed a GUI based on Python and Qt5 within the lab (’TrackUtil’, Additional file 140

4). The code for Mask R-CNN training and inference, video synchronization, fish pose 141

estimation and automatic trajectory assignment is also available (Additional files 5 and 142

6). The training and tracking details are summarized in Tab. 2. 143

Structure from motion 144

The field of computer vision has developed powerful techniques that have found 145

applications in vastly different fields of science [19,24,58]. The concept of 146

Structure-from-Motion (SfM) is one such method that addresses the large scale 147

optimization problem of retrieving three dimensional information from planar 148

images [39]. This approach relies on a static background scene, from which stationary 149

features can be matched by observing them from different perspectives. This results in 150

a set of images, in which feature-rich key points are first detected and subsequently used 151

to compute a 3D reconstruction of the scene and the corresponding view point positions. 152

As shown in (1) and (2), a real world 3D point M ′ (consisting of x, y, z) can be 153
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Figure 1. Schematic workflow. Data processing starts with the acquisition of synchronized, multi-view videos, which
serve as input to the SfM reconstruction pipeline to recover camera positions and movement. In addition, Mask R-CNN
predictions, after training the detection model on a subset of images, result in segmented masks for each video frame, from
which animal poses can be estimated. These serve as locations of multi-view animals trajectories in the pixel coordinate
system. Subsequently, trajectories can be triangulated using known camera parameters and positions from the SfM pipeline,
yielding 3D animal trajectories and poses. Integrating the environmental information from the scene reconstruction, these
data can be used for in depth downstream analyses.

projected to the image plane of an observing camera by multiplying the camera’s 154

intrinsic matrix K (consisting of focal lengths fx, fy and principal point cx, cy), with 155

the camera’s joint rotation-translation matrix [R|t] and M ′, resulting in the 156

corresponding image point m′ (consisting of pixel coordinates u, v, scaled by s) [8]. By 157

extension, this can be used to resolve the ray casting from a camera position towards 158

the actual 3D coordinates of a point given the 2D image projection of that point with 159

known camera parameters. Due to this projective geometry, it is not possible to infer at 160

which depth a point is positioned on its ray from a single perspective. SfM is able to 161

circumvent this problem by tracking mutually-observed image points (m′) across images 162

of multiple camera view points. As a result, the points can be triangulated in 3D space 163

(M ′), representing the optimal intersections of their respective rays pointing from the 164

cameras positions towards them. By minimizing reprojection errors, which are the pixel 165

distances between the 3D points’ reprojections to the image planes and their original 166

image coordinates (u, v), SfM is also able to numerically solve the multi-view system of 167

the cameras relative rotation (R), translation (t) and intrinsic (K) matrices and to 168

retrieve the optimal camera distortion parameters (d). 169

m′ = K[R|t]M ′ (1)

s

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

r11 r21 r13 t1
r12 r22 r23 t2
r13 r23 r33 t3



x
y
z
1

 (2)

Here, SfM was incorporated into data processing in order to gain information about 170

exact camera positions, which was done using the general-purpose and open-access 171

pipeline COLMAP [49,50]. The synchronized videos were resampled as image sequences 172

with a rate of 3 Hz. In case of the ’mixed’ dataset, we removed frames that were 173

recorded when the cameras were stationary. The resulting image sequences served as 174

input into the reconstruction process during which the cameras were calibrated (K, d) 175
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and relative extrinsic parameters (R, t) computed, so that all camera projections relate 176

to a shared coordinate system. Every input image resulted in a corresponding position 177

along the reconstructed, 3D camera path of the recording, where the number of images 178

determined the temporal resolution of resolved camera motion. Since only a subset of 179

all video frames were used for the reconstructions, SfM optimized a smaller number of 180

parameters, resulting in a reduced computational load. Additionally, this could improve 181

reconstruction accuracy, as the images still had sufficient visual overlap, but increased 182

angles between viewpoints. Finally, the retrieved camera parameters were interpolated 183

to match the acquisition rate of animal tracking, assuring that reference camera 184

parameters are given for each recorded data point by simulating a continuous camera 185

path. 186

Reconstruction of animal trajectories 187

It is necessary to resolve the camera motion when tracking moving animals with 188

non-stationary cameras, since the camera motion will also be represented in the pixel 189

coordinate trajectories of the animals. With camera information (K, d) and relative 190

perspective transformations (R, t) for the entire camera paths retrieved from SfM, and 191

multi-view animal trajectories from the Mask R-CNN detection pipeline available, a 192

triangulation approach similar to SfM can be used to compute 3D animal trajectories. 193

Here, an animal’s pixel coordinates represent m′ (consisting of u and v) observed from 194

more than one known view point (R, t), and the animals 3D positions M ′ (x, y, z) can 195

be triangulated. Positions of animals observed in exactly two cameras were triangulated 196

using an OpenCV implementation of the direct linear transformation algorithm, while 197

positions of animals observed in more than two cameras were triangulated using 198

singular value decomposition following an OpenCV implementation [8, 24]. Additionally, 199

positions of animals temporarily observed only in one camera were projected to the 200

world coordinate frame by estimating the depth component as an interpolation of 201

previous triangulation results. Through the recovered camera positions, the camera 202

motion is nullified in the resulting 3D trajectories. Thus, they provide the same 203

information as trajectories recorded with a fixed camera setup (Fig. 1). Animal 204

trajectories and the corresponding reconstructions were scaled, so that the distances 205

between the reconstructed camera locations equal the actual distances within the 206

multi-view camera setup. As a result, all observations are represented on a real world 207

scale. The code for trajectory triangulation, camera path interpolation and 208

visualizations is bundled in a Python module (’multiviewtracks’ ), accessible on 209

GitHub [43]. 210

Table 2. Dataset parameters and accuracy metrics. Annotations lists how many frames were annotated for
training Mask R-CNN, rate the frames per second of each video set, i.e. the temporal tracking resolution. Resolution is
video resolution, 2.7k: 2704×1520 px, 4k: 3840×2160 px. Reconstruction metrics refer to the deviation of reconstructed
camera-to-camera distances from the actual distance, reprojection metrics to the reprojection of triangulated 3D tracks to
the original video pixel coordinates and tracking to the deviation of the tracked calibration wand length from its actual
length. In case of the ’accuracy’ dataset, the accuracy results are listed as the mean and standard deviation of the four
repeated trials. NA: not applicable.

Dataset Annotations Rate (Hz) Resolution (px) Accuracy metrics
Metric Reconstruction (cm) Reprojection (px) Tracking (cm)

single 171 30 2.7k median 0.30 11.51 NA
RMSE 1.28 20.97 NA

mixed 80 30 4k median 0.44 3.77 NA
RMSE 1.09 7.77 NA

school 160 60 2.7k median 0.06 2.57 NA
RMSE 0.30 3.78 NA

accuracy 73 30 4k median -0.14 ± 0.06 3.53 ± 1.96 0.14 ± 0.33
RMSE 1.34 ± 0.79 8.56 ± 5.21 1.09 ± 0.47
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Results 211

Here we combined Mask-RCNN aided animal detection and tracking with SfM scene 212

reconstruction and triangulation of 3D animal trajectories to obtain high resolution 213

data directly from videos taken while snorkeling or diving in the field. 214

Given that the proposed method incorporates out-of-domain and novel approaches 215

from computer vision, reliable accuracy measures are required. Therefore, a 216

ground-truth experiment (’accuracy’ dataset) was conducted in which two points of 217

fixed distance to each other, the end points of a rigid calibration wand, were filmed 218

underwater over various backgrounds using four cameras. In total, four repeated trials 219

were incorporated for the accuracy estimation. Using our approach, we were able to 220

retrieve both the 3D positions of the tracked calibration wand and the 3D trajectories of 221

the cameras throughout the trials (Fig. 2). The known camera-to-camera distances 222

within the camera array and the known length of the calibration wand allowed the 223

calculation of respective per-frame root mean squared errors (RMSEs), 1.34 ± 0.79 cm 224

(median error -0.14 ± 0.06 cm) for the camera-to-camera distances and 1.09 ± 0.47 cm 225

(median error 0.14 ± 0.33 cm) for the calibration wand length. Further, we projected 226

the triangulated 3D positions back to the original videos and computed the reprojection 227

error as a RMSE of 8.56 ± 5.21 px (median error 3.53 ± 1.96 px). 228

Figure 2. Accuracy validation. Top down view of one of the ’accuracy’ dataset trials
with the COLMAP dense reconstruction in the background (left). A calibration wand of 0.5 m
was moved through the environment to create two trajectories with known per-frame distances
(visualized as lines at a frequency of 3 Hz, the full temporal resolution of the trajectories
is 30 Hz). This allowed the calculation of relative tracking errors as the difference of the
triangulated calibration wand end-to-end distance from the its known length of 0.5 m, resulting
in the shown error distribution (normalized histogram with probability density function, right).
The per-frame tracking error is visualized as line color.

Trajectories were successfully obtained from large groups (’school’ ), small groups 229

(’mixed’ ) and single individuals (’single’ ). Additionally, the camera positions and 230

corresponding environments through which the animals were moving were reconstructed. 231

In case of the ’single’ and ’mixed’ datasets, the Mask R-CNN detection results were 232
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used to estimate fish body postures in 3D space by inferring spine points from the 233

segmented pixel masks (Fig. 3). We computed the RMSEs of the camera-to-camera 234

distances (1.28 cm ’single’, 1.28 cm ’mixed’ and -0.15 cm ’school’ ) and reprojection 235

errors (20.97 px ’single’, 7.77 px ’mixed’ and 6.79 px ’school’ ) to assess the overall 236

quality of the SfM reconstructions analogously to the calculation of reconstruction errors 237

for the ’accuracy’ dataset. The results of the accuracy estimations are listed in Tab. 2. 238

Figure 3. 3D environments and animal trajectories. A Top down view of the ’single’ dataset result. Red lines and
dots show estimated spine poses and head positions of the tracked European eel (C. conger, visualized with one pose per
second). The point cloud resulting from the COLMAP reconstruction is shown in the background. B Trajectories of M.
surmuletus (orange) and D. vulgaris (purple/blue), and the dense point cloud resulting from the ’mixed’ dataset. Dots
highlight three positions per second, lines visualize the trajectories at full temporal resolution (30 Hz) over a duration of
seven minutes. B Reconstruction results and trajectories of the ’school’ dataset, visualizing the trajectories of a small school
of L. callipterus in Lake Tanganyika. See additional files 1, 2 and 3 for high resolution images.

Discussion 239

Here we demonstrate a novel approach to collect highly resolved 3D information of 240

animal motion, including interactions with the physical environment, in aquatic 241

ecosystems. Although being based on relatively advanced computational techniques, the 242

open-source workflow we present requires little domain expertise and can be 243

implemented with low-cost consumer grade cameras. The incorporation of these 244

methods into an accessible framework will allow quantitative analyses of animal 245

behaviour and ecology across systems, scales, and user groups. Our approach allows 246

data collection while swimming, snorkelling, or with the aid of ROVs, making it 247

appropriate for general usage with minimal investment into infrastructure, equipment, 248

or training. Although analyses are computationally demanding, they can be achieved on 249

an average GPU or free cloud-based computing services. The lack of high-end hardware 250

therefore does not interfere with any of the steps required for this method. 251

Many alternative techniques for tracking of small aquatic animals do exist, however, 252

they often have the considerable drawback of tagging and handling the animals or high 253
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infrastructure costs. This is a major barrier to implementation when animals are 254

protected, difficult to catch, or too small to carry tags. In many marine protected areas 255

all three of these factors apply, meaning that many existing approaches are 256

inappropriate. Some of these drawbacks will be alleviated, for instance with 257

improvements in telemetry-based approaches [36] that reduce tag size and increase 258

range. Nevertheless, these techniques cannot simultaneously measure or reconstruct 259

local topography and environmental factors. Although here we do not provide any 260

analyses of environmental structure, this topographical information collected with our 261

approach can be directly used to answer questions on e.g. habitat segmentation and 262

environmental complexity [18,32]. 263

In highly complex social environments, encounters with numerous con- and 264

heterospecifics can strongly affect behaviour and motion [57]. Using approaches that 265

rely on tagging in these contexts will unavoidably miss or under-sample these 266

interactions because not all individuals can ever be tagged in wild contexts. In contrast, 267

our approach does not require animals to be handled or tagged, nor does specialized 268

equipment need to be deployed in the desired tracking area. Moreover, because the 269

object detection and segmentation approach can take any image input, it is not tied to 270

one particular animal form or visual scene. Our approach can therefore be used even in 271

demanding conditions such as high turbidity or low-light conditions, within certain 272

limits. While it has a lower spatial range than telemetry, underwater filming comes as 273

an unintrusive alternative, with higher spatial resolution possible when small animals 274

are moving over small areas, or when animals are highly site-specific, for example 275

damselfish or cichlids living in close association with coral or rocky reef [16,53]. 276

While our approach offers many benefits in terms of applicability and data 277

acquisition, it also suffers from some limitations. From the accuracy tests it became 278

apparent, that in cases were the background was composed of moving objects, such as 279

macrophytes or debris, the tracking accuracy severely dropped. The SfM approach relies 280

on the reconstructed components to be static, because environmental key-points are 281

assumed to have the same location over time. Moving particles and objects will result in 282

higher reconstruction errors, rendering our approach problematic e.g. when the filmed 283

animals occupy most the captured images in case of very large fish schools. Complex 284

environments, occlusions of the animals and highly variable lighting conditions are 285

detrimental to the detectability of animals. Observations at greater depths may face 286

similar problems due to the high absorption of red light, although, in this case, 287

detectability could be alleviated through image augmentation approaches such as 288

Sea-Thru [2]. The estimation of 3D animal poses strongly relies on accurate detections 289

and can therefore be compromised by poorly estimated animal shapes during Mask 290

R-CNN segmentation. In these cases, a less detailed approximation of the animals’ 291

positions such as the mask centroids are favorable and can still be reliably employed as 292

showcased in the ’school’ example. The errors in estimating animal locations and poses 293

can be partially explained by marginal detection errors of Mask R-CNN, but also by 294

inaccuracies derived from trajectory triangulation using the SfM camera positions. 295

Aware of these error sources, users can actively incorporate accuracy metrics such as 296

reprojection errors or relative camera reconstruction RMSEs into their analytical 297

pathways by using our proposed method. This enables the assessment of the overall 298

reconstruction quality and required fine scale resolution for the specific scientific 299

demands. We were able to demonstrate with the ’accuracy’ dataset, that the 300

combination of SfM and object detection yields highly accurate trajectories of moving 301

objects over large spatial scales (RMSE tracking error of 1.34 ± 0.79 cm, median error 302

-0.14 ± 0.06 cm, reconstructed areas up to 500 m2) without prior manipulation of the 303

underwater environment. Since these accuracy calculations are based on per-frame 304

deviations from known distances, such as the length of a calibration wand or 305
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camera-to-camera distances in a stereo-camera setup, they are not suited for the 306

assessment of large-scale SfM accuracy. However, rigorously ground-trouthing SfM is of 307

general interest in the field of computer vision, and various benchmarks showcase the 308

high precision of 3D reconstructions that can be achieved using current SfM 309

pipelines [7, 34]. 310

An additional requirement of our approach is associated with the need to annotate 311

images and train object detection networks. However, this initial time investment is 312

likely to be compensated by the time saved using automated detection and tracking of 313

animals in most cases. For example, this allows the classification of behavioural states 314

by quantifying the behavioural repertoire of the animal using unsupervised machine 315

learning techniques [6, 55]. The incorporation of 3D trajectory data in motion analyses 316

has already improved the understanding of the phenotype and development of animal 317

behaviours [60]. In addition, 3D pose estimation can now be achieved for wild animals, 318

enabling exact reconstruction of the entire animal [61]. There has been a shift in how 319

animal movement is analyzed in light of computational ethological approaches [9, 44, 47], 320

with patterns of motion able to be objectively disentangled, revealing the underlying 321

behavioural syntax to the observer. Automated approaches based on video, or even 322

audio, recordings may also overcome sensory limitations of other systems, allowing a 323

better understanding of the sensory umwelt of study species [31] and also facilitate novel 324

experimental designs [4, 47] that can tackle questions of the proximate and ultimate 325

causality of behaviour [9, 44,61]. These methods are gaining interest and sharply 326

contrast with the traditional approach of trained specialists creating behavioural 327

ethograms, but can usefully be combined and compared to gain further insight into the 328

structure of animal behaviour, potentially generating a more objective and standardized 329

approach to the field of behavioural studies [9]. 330

In order to incorporate these novel techniques into more natural scenarios, we aim to 331

present a complete tracking pipeline, guiding the user through each step after the initial 332

field observation. From video synchronization, object annotation and detection to the 333

final triangulation of animal trajectories, we provide a set of open-source utilities and 334

scripts. Although we heavily rely on other open-source projects (COLMAP for SfM and 335

Mask R-CNN for object segmentation), these specific approaches can be replaced with 336

other implementations by solely adopting respective in- and output data formatting for 337

specific needs. We found COLMAP and Mask R-CNN to be easily employed, as they 338

are well documented, performant and purpose-oriented. However, many alternatives 339

exist for both SfM and object detection, and the general approach of our pipeline is not 340

limited to any particular implementation, thus future-proofing this approach as new and 341

better methods are developed. 342

Conclusions 343

Computational approaches to analyze behaviour, including automated tracking of 344

animal groups, deep-learning, supervised, and unsupervised classification of behaviour, 345

are areas of research that have been extensively developed in laboratory conditions over 346

the past decade. These techniques, in combination with sound evolutionary and 347

ecological theory, will characterize the next generation of breakthroughs in behavioural 348

and movement science, yet are still difficult to achieve in natural contexts, and are 349

unobtainable for many researchers due to implementation and infrastructure costs. Here 350

we present a framework to enable the utilization of these cutting-edge approaches in 351

aquatic ecosystems, at low-cost and for users of different backgrounds. Our proposed 352

tracking method is flexible in both the conditions of use, and the study species being 353

examined, vastly expanding our potential for examining non-model systems and species. 354

In combination with the genomic revolution, allowing sequencing in a matter of days, 355
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state-of-the-art behavioural sequencing even under field conditions could revolutionize 356

the field of movement ecology and evolutionary behavioural ecology. The approach we 357

advocate here can further integrate the study of wild animal behaviour with modern 358

techniques, facilitating an integrative understanding of movement in complex natural 359

systems. 360
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