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Abstract  16 

An organism’s fitness is determined by how it chooses to adapt effort in response to challenges. 17 

Actual effort exertion correlates with activity in dorsomedial prefrontal cortex (dmPFC) and 18 

noradrenergic pupil dilation, but little is known about how these neurophysiological processes 19 

guide decisions about future efforts: They may either provide anticipatory energization helping to 20 

accept the challenge, or a cost representation weighted against expected rewards. Here we 21 

provide evidence for the former, by measuring pupil and fMRI brain responses while humans 22 

chose whether to exert efforts to obtain rewards. Pupil-dilation rate and dMPFC fMRI activity 23 

related to anticipated effort level, with stronger correlations when participants chose to accept the 24 

challenge. These choice-dependent effort representations were stronger in participants whose 25 

behavioral choices were more sensitive to effort. Our results identify a process involving the 26 

peripheral and central human nervous system that guides decisions to exert effort by simulating 27 

the required energization. 28 

29 
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Introduction  30 

 31 

Should I go to the gym tonight or should I skip training? Such trade-offs between effort and reward 32 

are commonplace in our everyday lives. In fact, the ability to choose between high cost, high yield 33 

or low cost, low yield actions is crucial for survival in all animals (Bautista, Tinbergen, and Kacelnik 34 

2001). Reward signals found in the dopaminergic (DA) and core brain reward circuitry have long 35 

been identified to play a pivotal role in appetitive motivation and in guiding choices (Schultz, 36 

Dayan, and Montague 1997; Bartra, McGuire, and Kable 2013; Niv, Daw, and Dayan 2005; 37 

Beierholm et al. 2013; Varazzani et al. 2015; Schultz 2002; Walton and Bouret 2019; Ostlund et 38 

al. 2011).  By contrast, it is much less clear how decisions may be guided by effort signals. 39 

Previous work has indicated that neural signals for effort in the noradrenergic (NA) 40 

neuromodulatory arousal system (Varazzani et al. 2015; Zénon, Sidibé, and Olivier 2014) and 41 

fronto-insular network (Aridan et al. 2019; Arulpragasam et al. 2018; Kurniawan et al. 2013; 42 

Skvortsova, Palminteri, and Pessiglione 2014; Hauser, Eldar, and Dolan 2017; Meyniel et al. 2013; 43 

Prevost et al. 2010) scale monotonically with increasing task-difficulty levels (McGuire and 44 

Botvinick 2010), but how these neuromodulatory processes and neural representations 45 

functionally contribute to the choice process and goal-directed behaviour is unknown.  46 

Two possible functional roles of effort signals have been proposed. First, a prevailing view 47 

in decision theory posits that efforts incur action costs that are weighed against the rewards to 48 

compute the net value of the action (Hull 1943). Consistent with this view, several human 49 

functional magnetic resonance imaging (fMRI) studies show net value signals for reward that are 50 

subjectively “discounted” by effort (Aridan et al. 2019; Arulpragasam et al. 2018; Bernacer et al. 51 

2019; Chong et al. 2017; Prevost et al. 2010; Burke et al. 2013; Klein-Flügge et al. 2016). However, 52 

these net value signals primarily reflect the rewarding aspects of the choice options, which impairs 53 

direct interpretations whether these signals truly reflect effort and how effort per se may impacts 54 

on the choice process.  55 
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Second, consistent with the idea that effort represents resource mobilization (Hockey, G. 56 

Robert 1997), decisions may require an estimation of the energization needed to ensure that the 57 

action under consideration can be successfully achieved (Paravlic et al. 2018). A sizeable 58 

literature indicates that locus coeruleus noradrenergic (LC-NA)  activity plays an important role in 59 

changing arousal states (Pfaff, Martin, and Faber 2012; Takahashi et al. 2010; Poe et al. 2020) 60 

by providing neuromodulatory input to the entire neocortex  (Porrino and Goldman‐Rakic 1982; 61 

Chandler, Lamperski, and Waterhouse 2013; Schwarz et al. 2015), thereby facilitating 62 

energization (Varazzani et al. 2015; Jahn et al. 2018). NA activity can directly influence pupil size 63 

and is tightly linked to changes in pupil dilation (Joshi et al. 2016; Reimer et al. 2016; Gelbard-64 

Sagiv et al. 2018), making phasic, task-related pupil an accurate indicator of brain arousal states 65 

(Yüzgeç et al. 2018; McGinley et al. 2015). However, it remains unclear whether the effort signals 66 

that guide choices would also draw on the same pupil-linked NA arousal system that has been 67 

found to facilitate actual behavior energization (Varazzani et al. 2015; Zénon, Sidibé, and Olivier 68 

2014; Borderies et al. 2020; Xiang et al. 2019).  69 

Teasing apart these two scenarios is not trivial. One effective way forward is to investigate 70 

how signals that scale with effort levels differ depending on choice outcomes. Namely either  “Yes” 71 

decisions, in which we choose to engage effort (e.g., exercising at the gym) versus “No” decisions 72 

whereby we forego the effort (Kurniawan et al. 2010). In a cost scenario, stronger brain signals for 73 

effort (after controlling for rewards) would decrease the option’s net value and push individuals  74 

towards a “No” decision. Thus, a cost scenario would predict a steeper neural effort signal in “No” 75 

compared to “Yes” decisions. In an energization scenario, by contrast, a higher effort signal would 76 

trigger readiness to mobilize resources and tip individuals towards a “Yes” decision. The 77 

energization scenario would therefore predict the opposite pattern of steeper effort-related signals 78 

during “Yes” compared to “No” decisions (Fig. 1A).  79 

 80 
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 81 

Figure 1. Predictions, task design, and key measures. A) Three possible patterns of 82 

anticipatory neural responses to effort. Left: Signals coding for effort per se would scale 83 

monotonically with effort regardless of choice. Middle: Signals coding for the decision cost 84 

associated with effort should be steeper across effort levels when individuals reject the effort. 85 

Right: Signals coding the anticipatory energization needed to accept the challenge should  be 86 

steeper across effort levels when when individuals accept the effort. B) Experimental paradigm. 87 

Pre-scan: Participants received visually-guided effort training on a hand-held dynamometer. 88 

Levels 1-9 correspond to 10-90% maximum voluntary contraction (MVC). In the fMRI scanner, 89 

participants chose between an effortful option associated with variable amounts of reward and 90 

effort and a non-effortful option with smaller reward. Post-scan: Outside the scanner, eight 91 

randomly selected trials were realized and participants executed the effort they chose to obtain 92 

the reward. C) Behavioural effort sensitivity. This individual measure was derived by calculating 93 
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for each participant the slope of the probability to choose the effortful option across effort levels. 94 

D) Phasic pupil measure. Grand-mean of pupil width during decision making showed a 95 

stereotypical dilation shortly following stimulus onset, peaking right after averaged response onset 96 

(purple line), and constricting down to baseline level around stimulus offset. Pupil rate (z/s) was 97 

calculated by subtracting pupil width at response from pupil width at stimulus onset, divided by 98 

response times (RT).   99 

 100 

Here we apply this experimental logic, using an effort/reward tradeoff task in an fMRI 101 

setting, while simultaneously tracking pupil dilation, a putative marker for LC-NA firing. This 102 

combination allows us to investigate systematically to what degree the brain arousal system may 103 

encode anticipated effort during decision making as a cost or energization signal.  104 

First, we explored whether pupil-linked arousal, as measured in rate of pupil change (Joshi 105 

et al. 2016; Reimer et al. 2016), scales monotonically with increasing effort, and if such effort 106 

sensitivity in the pupil rate differs depending on choice outcome (“Yes” vs “No”).  107 

Second, at the neural level, we similarly examined whether known cortical representations 108 

of effort reflect a neural version of such choice-dependent effort signal. Based on previous work 109 

with a similar paradigm (Kurniawan et al. 2013; Skvortsova, Palminteri, and Pessiglione 2014; 110 

Meyniel et al. 2013; Prevost et al. 2010; Hauser, Eldar, and Dolan 2017), we expected these 111 

signals to be localized within the fronto-insular network, which based on its connectivity to the LC 112 

(Poe et al. 2020) may be strongly affected by NA arousal processes.  113 

Third, if such effort signaling is at all behaviorally relevant, then we expect individuals who 114 

show stronger choice-dependent effort signals in pupil and the brain to display stronger effort 115 

sensitivity in their behavior, namely in choice frequencies. In the cost scenario, we would expect 116 

behavioral effort sensitivity to be positively correlated with the difference in effort scaling of “No” > 117 

“Yes” decisions, since individuals who assign higher costs to effort should forego the effort 118 

challenge more often. The energization scenario, by contrast, would predict behavioral effort 119 

sensitivity to be positively correlated with the difference in effort scaling of “Yes” > ”No” decisions, 120 
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since those behaviorally more affected by effort would need a stronger energization signal to 121 

accept a given effort level.  122 

Fourth, we conducted a series of control analyses to ascertain that the observed effects 123 

were not driven by changes in choice difficulty and reward value of the options. Moreover, since 124 

endogenous fluctuations of arousal states may cause a general bias towards exerting effort 125 

(Murphy, Vandekerckhove, and Nieuwenhuis 2014), and since elevated emotional arousal prior 126 

to a force-production task can increase voluntary effort (Schmidt et al. 2009), we also controlled 127 

for effects of tonic pupil signals as indexed by pre-trial pupil baseline level (PBL).  128 

 129 

Results 130 

 131 

In the fMRI scanner, participants made a series of effort/reward tradeoff choices between an 132 

effortful option and a non-effortful option (Fig. 1B). On each trial, the effortful option entailed 133 

varying amounts of effort (1 of 6 levels, 40-90% maximum voluntary contraction—MVC; shown as 134 

levels 4-9) and reward (1 of 6 levels, 0.5-10 CHF; Fig. 2A). The non-effortful option entailed 135 

minimal effort (fixed at level 1) and a lower reward amount (30 or 40% of the reward amount of 136 

the effortful option). Each effort to be considered entailed 10 repetitions (‘reps’) of hand muscle 137 

contractions (3 s) and relaxations (3 s) and was implemented outside the scanner 30-60 minutes 138 

after the experiment. Indeed, during the scan participants were not provided with a hand 139 

dynamometer device and thus were fully aware that they would make successive decisions 140 

without executing the force task. We implemented this temporal separation between decisions 141 

and actual exertion to set up a hard test whether arousal effects could still be observed in cases 142 

where post-decisional motor preparation was completely absent. Given this experimental design, 143 

any phasic arousal effect could not be due to an impending motor action, and any lack of such an 144 

effect would unlikely be due to the effort task being hypothetical or trivial. We could thus investigate 145 
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whether pupil-linked arousal scales with increasing physical effort during mere mental simulation 146 

when deciding about future efforts.  147 

 148 

Systematic effort-reward trade-offs during choice 149 

 150 

Initial analyses confirmed that participants indeed systematically traded off the proposed efforts 151 

and rewards when making decisions (Fig. 2A), as expected based on previous work (Prevost et 152 

al. 2010; Kurniawan et al. 2010; Chong et al. 2017). Effortful options were selected significantly 153 

more often when they offered higher rewards and lower effort amounts (Fig. 2C; logistic regression 154 

of choice; 1=choose effortful, 0=choose non-effortful; N=49; adjusted R2 M=0.62, SEM=0.017; 155 

treward(48)=6.93, p<0.0001; tef f ort(48)=-7.25, p<0.0001). In particular, effortful options were selected 156 

/ abandoned most often when they were clearly attractive (high rewards for low effort) / unattractive 157 

(low rewards for high efforts), although the interaction effect was only marginally significant 158 

(treward*ef f ort(48)=-1.93, p=0.06). This ‘standard’ logistic regression model confirms previous findings 159 

that decisions vary as a function of the offered rewards and the required effort. Furthermore, we 160 

found evidence in response times (RT) data (Fig. 2B) that choice outcome may further reveal 161 

information about the decision process. Multiple regression of RT (z-scored) confirmed significant 162 

effects of reward and effort (N=49; adjusted R2 M=0.22, SEM=0.014; treward(48)=3.93, p=0.0003; 163 

tef f ort(48)=-5.90, p<0.0001). In addition, RTs were faster when participants selected the effortful 164 

option than when they selected the non-effortful option (tchoice (48)=-4.46, p<0.0001; other effects: 165 

tchoice*reward(48)=-5.82, p<0.0001; tchoice*ef f ort(48)=8.44, p<0.0001; tconstant(48)=6.68, p<0.0001; 166 

treward*ef f ort(48)=-0.8, p=0.41; tchoice*reward*ef f ort(48)=1.3, p=0.019).  167 

 168 
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 169 

Figure 2. Behavioral and pupil results. Choice proportions (A) and RT (B) as a function of 170 

reward and effort associated with the effortful option. C) Weights of logistic regression of choice 171 

(1=effortful; 0 non-effortful) on reward, effort, and the interaction from a ‘standard’ model based 172 

on the offers the participants see on the screen. D) Weights of logistic regression of choice on RT, 173 

pupil rate, and effort-by-pupil rate interaction from an extended model (containing the standard 174 

model, RT, pupil rate, and other variables; see Supplementary Materials). This extended 175 

regression (D) had a higher model-fit (adjusted R-squared) than the standard one (C), t(48)=5.35, 176 

p<0.0001, suggesting that pupil measures together with other task parameters such as reward, 177 

effort, and RT, can explain choice above and beyond the ‘standard’ option attributes (reward and 178 

effort). Symbols indicate significance levels against zero. Bar plots display means + 1 standard 179 

error of the mean (SEM).  180 

 181 

An energization signal in the rate of pupil change  182 

 183 

We then investigated whether pupil change rate contained information correlated with choice 184 

outcome, over and above the known effects of reward and effort. To this end, we added pupil 185 
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measures to the ‘standard’ logistic regression of choice (Fig 2C). This extended regression (Fig. 186 

2D) replicated the effects of reward and effort, (N=49; adjusted R2 M=0.65, SEM=0.018; 187 

treward(48)=6.56, p<0.0001; tef f ort(48)=-7.39, p<0.0001), and also revealed a significant reward-by-188 

effort interaction, treward*ef f ort(48)=-2.41, p=0.019. Crucially, the extended regression revealed a 189 

significant interaction between effort level and pupil rate, tef f ort*pupil_rate(48)=2.04, p=0.04 (see 190 

supplementary materials for full statistics of the extended regression).  191 

To examine whether this interaction effect reflects stronger effort representations for “yes” 192 

choices (i.e., energization) or for “no” choices (i.e., a cost signal, see Fig 1A), we directly examined 193 

the slopes of the regressions of pupil signals on anticipated effort levels during both types of choice 194 

outcomes. Averaged across both types of outcomes, the regression slope was indeed positive 195 

(one-sample t-test on averaged effort slopes across choice: t(48)=3.24, p=0.002) but importantly, 196 

it was significantly steeper when participants chose the effortful option compared to when they 197 

chose the non-effortful option, effort-by-choice interaction, t(48)=2.59, p=0.012 (Fig 3C). Thus, the 198 

pattern of effort representations in pupil signal during “yes” and “no” choices is consistent with the 199 

scenario that arousal system engagement during choice relates to energization for the future 200 

challenge that is being pondered.  201 

 202 

Neural responses in dmPFC also reflect energization  203 

 204 

To identify neural processes that may similarly reflect energization, we then examined BOLD 205 

responses during the decision process. Analysis of the brain responses time-locked to the 206 

presentation of the options (stimulus onset) revealed a significant, and structurally similar, effort-207 

by-choice interaction in dmPFC (covering both SMA and ACC; peak MNI space coordinates: [-3, 208 

18, 45]; t value, 5.32; extent: 301 voxels; p< 0.0001 FWE; Fig. 3B; GLM1). No other brain areas 209 

showed signals that survived whole-brain FWE correction (Table 1). ROI analysis within the 210 

dMPFC functional cluster illustrates that the activity related to anticipated effort strength is indeed 211 
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higher in trials where the effortful option was selected compared to foregone (Fig. 3D solely for 212 

illustration; GLM2). Thus, similar to the pupil signals described above, BOLD activity in dmPFC 213 

also shows anticipatory effort signaling in a way that is consistent with energization to overcome 214 

future physical challenges.  215 

 216 

Energization signals in pupil and dmPFC relate to behavioral effort sensitivity 217 

 218 

To investigate whether the energization signals in pupil and dMPFC activity are indeed 219 

behaviorally relevant, we tested whether the difference in effort coding (slope across effort levels) 220 

between “yes” and ”no” responses was associated with individual differences in how the 221 

anticipated degree of effort affected choice outcomes. For this analysis, we performed for each 222 

individual a simple logistic regression of choice on the associated effort levels (transformed such 223 

that a positive slope means higher likelihood to forego the option with increasing effort). The 224 

individual slopes of these regressions - our behavioral measure of effort sensitivity – were indeed 225 

positively correlated with the strength of each individual’s effort-by-choice effect in both pupil rate 226 

and dmPFC activity (taken from the ROI analysis), robust regressions bpupil_rate(47)=0.70, p=0.043; 227 

bdmPFC(47)=3.56, p=0.038; Fig. 3E-F). Thus, subjects with higher effort sensitivity (whose overall 228 

choice was more strongly affected by increasing effort) indeed showed, in both pupil rate and 229 

dMPFC activity, steeper effort coding when the effortful option was selected compared to when it 230 

was foregone. Therefore, the energization responses in pupil rate and the brain indeed appear to 231 

be relevant for guiding choices. 232 

 233 
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 234 

 235 

Figure 3. Energization signals in pupil and brain activity correlated with behavioural effort 236 

sensitivity. Consistent with the energization scenario, effort representations in pupil (A) and in 237 

the brain (B) are higher when participants accepted compared to rejected the effortful option 238 

(Choice “effortful” versus “non-effortful”). This significant effort-by-choice interaction effect is 239 

evidenced by higher effort beta weights when participants chose the effortful versus the non-240 

effortful option in pupil (C) and in extracted BOLD signal change within dmPFC functional ROI (D; 241 

displayed solely for illustration purposes; no statistical test was done). Both the pupil (E) and 242 

neural (F) energization signals were positively correlated with individual behavioural measure of 243 

effort sensitivity as shown in Fig 1C. Panel A: Dots with error bars represent means + 1 SEM. 244 

Lines are linear fits of the means (using the MATLAB polyfit(x,y,1) function). Panel B: Glass-brain 245 

image and sagittal slice showing that BOLD amplitude in dmPFC is uniquely correlated with effort-246 

by-choice regressor. Panels C & D: Boxplots display the median (central line), 25 th and 75th 247 

percentiles (bottom and top edges), and non-outlier low and high extreme values (bottom and top 248 

error bars). Blue lines show subjects whose effort slope is higher in effortful choice than in non-249 

effortful choice, red lines show subjects who have the opposite effect. Panels E & F: Each data 250 

point represents a subject. P-values represent significance level from robust regressions.  251 

 252 

Energization effects in pupil rate are independent of reward value, decision difficulty, or 253 

tonic arousal 254 
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 255 

It is theoretically possible that the effects we observed in pupil rate were driven by differences in 256 

reward or difficulty level of trials where effort is accepted versus rejected. Indeed, increases in 257 

pupil size have been observed for rewarding stimuli (Schneider et al. 2018) and trials that require 258 

greater cognitive control (van der Wel and van Steenbergen 2018). These effects might be 259 

confounded with the energization effect we reported, particularly because in some cases, high 260 

effort trials may be associated with high rewards, hence making the decision to either select or 261 

forego the effortful option more difficult. Our behavioral results had already contradicted these 262 

alternative explanations, since they were derived with statistical models that had accounted for 263 

any variance associated with reward levels and RT (an indirect proxy for decision difficulty (Kiani, 264 

Corthell, and Shadlen 2014)) (see Supplementary Materials). Nevertheless, to show more directly 265 

that the energization effect is clearly independent of reward and difficulty, we repeated the pupil 266 

analyses depicted in Figure 3 but now on the residuals of pupil rate after partialing out the effects 267 

of rewards and of RT (orthogonalization of pupil rate relative to these variables, one at a time). 268 

Once again, these control analyses revealed the effects already shown in top row of Figure 3, 269 

namely (1) stronger effort signals in residual pupil rate when participants accepted versus rejected 270 

the effortful option; tresid_reward(48)=2.59, p=0.012; tresid_RT (48)=2.53, p=0.014 and (2) significantly 271 

positive associations between the pupil energization effect (effortful>non-effortful) and the 272 

behavioral effort-sensitivity parameter (robust regression bresid_reward(47)=0.71, p=0.043; 273 

bresid_RT(47)=0.68, p=0.048; (Fig. S4). Furthermore, to rule out an alternative explanation that the 274 

pupil is merely coding for any option attribute that participants experienced as result of their choice 275 

(in our case the other option attribute was reward), we replaced these analyses with a reward-by-276 

choice interaction (instead of effort-by-choice). These control analyses yielded no significant 277 

reward-by-choice effects in the pupil data or the correlation with behavioral measure of reward 278 

sensitivity (Supplementary Materials, Fig S5). Thus, the energization effect we identified in pupil 279 

rate is independent of reward value, decision difficulty, or a reward-by-choice interaction, and thus 280 
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reflects different neural mechanisms to those underlying conflict-driven pupil dilations and 281 

behavioral adjustments (Ebitz and Platt 2015).   282 

To ascertain that our novel effect is also independent of ongoing background arousal, we 283 

defined the average pupil diameter during 500 ms prior to the presentation of the options as an 284 

index of pre-trial pupil baseline level (PBL). We did not find a relationship between PBL and choice 285 

frequencies (Supplementary material; Fig S2-3). This absence of a link between PBL and effort-286 

based choice did not reflect more complex interactions with other experimental factors or 287 

influences from the previous trial, as ascertained by logistic regressions of choice on PBL, RT, 288 

reward, effort, and the interactions. Direct test of effort-by-choice interaction effect on PBL also 289 

yielded non-significant results (Supplementary Materials; Fig S2-3). Taken together, we thus 290 

found no evidence that ongoing background arousal state biases subjects to accept high-effort 291 

options, thus confirming the specificity of the energization effect for phasic arousal responses 292 

during the choice process. 293 

 294 

Energization effects in dMPFC are independent of neural representations of other task 295 

parameters 296 

 297 

Importantly, we made sure that the observed energization effects in the dmPFC are indeed novel 298 

and separate from known neural correlates of effort-based decisions. To this end we had included 299 

the effort-by-choice interaction as a regressor together with main effects of choice, reward, effort, 300 

pupil rate, and RT in the same model without any orthogonalization (see methods). This allowed 301 

us to identify neural representations that are unique to each of the task parameters, ensuring that 302 

the effort-by-choice interaction cannot be explained by any combination of the other factors and 303 

allowing us to inspect our data for several known neural representations active during effort-based 304 

decisions (Fig 4). 305 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.02.25.964676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.964676
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 14 of 42 

 

Consistent with previous demonstrations of the role of the dorsolateral prefrontal regions 306 

in executive function (Grueschow, Kleim, and Ruff 2020), we observed higher activity for choosing 307 

the effortful options compared to the non-effortful options in the left medial frontal gyrus. We also 308 

replicated previous findings of positive modulation of reward within the brain valuation system 309 

(Bartra, McGuire, and Kable 2013; Burke et al. 2013), with peak activity at the ventral striatum, 310 

and negative modulation of effort in the insula (Prevost et al. 2010). Moreover, we found slower 311 

button responses to be associated with higher activity in inferior frontal gyrus and faster responses 312 

to be associated with higher activity in a fronto-parietal network that is often implicated in task 313 

engagement (Dosenbach et al. 2008; Cole et al. 2013). Finally, we found faster pupil rate to be 314 

associated with lower amplitudes of BOLD responses to the presentation of the stimuli in the 315 

middle temporal gyrus. By contrast, faster pupil rate is associated with higher BOLD amplitudes 316 

in a large-scale network within the occipital cortex (extending to precuneus), consistent with 317 

established involvement of this network in visual processing (Goodale and Milner 2018). Thus, our 318 

brain results show that the energization signal in dmPFC is a conceptually new choice signal that 319 

is clearly distinct from previously observed effects of reward, effort, choice outcome, RT, and pupil 320 

signals (all reported effects survive whole-brain FWE correction, full statistics in Table 1). 321 

 322 
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 323 

Figure 4. Neural representations of choice, reward, effort, RT, and pupil rate. These plots 324 

show whole-brain statistical parametric maps for neural representations of choice (effortful > non-325 

effortful), reward, effort, RT, and pupil, p<0.05 FWE corrected. These established effects were 326 

derived with the same statistical model also used to identify the energization signals displayed in 327 

Figure 3; the latter signal is therefore specific and unrelated to these classic effects reported in 328 

the literature. 329 

 330 

Discussion 331 

 332 

We investigated how the brain employs neural effort representations to guide choice. We directly 333 

tested two competing hypotheses on whether such neurobiological signal for effort reflects a cost 334 

or energization signal. Consistent with the latter, our results show that effort representations in 335 

both arousal system activity (as measured via rate of pupil dilation) and dmPFC activity are 336 

enhanced for decisions to exert a sizeable amount of effort. This indicates that during decision 337 

making, effort is represented by the peripheral and central nervous system in a way that may 338 

relate not to a “decision cost” but rather to simulating the energization needed to exert the effort 339 

in the future. Importantly, our results control for general arousal effects that could have been driven 340 
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by reward value, decision difficulty, or background tonic arousal, thereby emphasizing the 341 

functional specificity of this energization signal.  342 

Our results emphasize that phasic pupil-linked arousal during the decision process is tightly 343 

related to the amounts of effort that an individual agrees to invest, but they also raise the question 344 

what neural mechanisms may lie at the heart of this link between pupil and behavior. While the 345 

temporal sluggishness of the BOLD signal makes it difficult to provide a conclusive answer, we 346 

outline at least two plausible possibilities based on recent advances. First, simulating the required 347 

energization could trigger a “bottom-up” arousing influence that pushes decisions towards 348 

accepting effort. This would be consistent with the widely held view (Glimcher 2009) that the 349 

strength of neural representations for decision attributes directly influence choice – for instance, it 350 

has been shown that intensifying encoded rewards through simulation of future episodic events is 351 

linked with decisions that promote higher long-term pay-offs (Benoit, Gilbert, and Burgess 2011; 352 

Peters and Büchel 2010; Dassen et al. 2016; Bulley and Gullo 2017) and even with increases in 353 

prosocial behavior (Gaesser, Keeler, and Young 2018). Given this assumption, the arousal signal 354 

we observed in this study might either down-modulate anticipated effort costs or shift the decision 355 

rule (de Gee, Knapen, and Donner 2014), implying that a sufficiently strong arousal signal could 356 

bias a decision towards taking on the physical challenge. As for neural implementation, phasic LC 357 

activity is known to transmit feedforward information to ACC via ascending projections to prefrontal 358 

areas (Porrino and Goldman‐Rakic 1982; Schwarz et al. 2015; Chandler, Lamperski, and 359 

Waterhouse 2013), providing a plausible pathway for such bottom-up influences. Nervous readout 360 

of the autonomous arousal activation could provide a signal that the organism is indeed ready to 361 

take on the physical challenge, instantiating an additional mechanism to bias choices.  362 

Second, simulated energization could simply be a byproduct of choice, implying a top-363 

down influence from the cortical decision circuit to the arousal system. Decision outcomes could 364 

be relayed in the form of cortical descending input from the PFC into LC. ACC/dmPFC activity has 365 

been coupled with pupil diameter (de Gee et al. 2017; Ebitz and Platt 2015), and the timing of 366 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.02.25.964676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.964676
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 17 of 42 

 

pupil modulation by ACC in some cases precedes that by LC (Joshi et al. 2016). Existing tracing 367 

data in rodents and monkeys also show afferent PFC projections as the main direct cortical 368 

influence on LC (Arnsten and Goldman-Rakic 1984; Dalsass et al. 1981). Intracranial stimulation 369 

in human ACC leads to subjective accounts of changes in arousal states, such as increased heart 370 

rate, coupled with the anticipation of challenges and a strong motivation to overcome difficult 371 

obstacles (Parvizi et al. 2013). This interpretation is also closely linked, though not identical, with 372 

the proposal that ACC computes the expected value of mobilizing mental resources (Shenhav, 373 

Cohen, and Botvinick 2016). Taken together, these observations are consistent with the idea of a 374 

top-down influence from dmPFC to the NA arousal system (Aston-Jones and Cohen 2005; 375 

Grueschow, Kleim, and Ruff 2020) that may serve to transmit information about the commitment 376 

to overcome great physical demand, thus resulting in speeded upregulation of arousal states to 377 

prepare the organism for the future challenge associated with the recent choice. Future studies 378 

may need to employ neuroimaging methods with higher temporal resolution to disambiguate these 379 

two hypotheses. Such studies may also employ pharmacological manipulation to increase NA 380 

tone activity, bio/neuro-feedback with pupil/LC activity, and mental simulation training (Steinmetz, 381 

Tausen, and Risen 2018) to increase arousal in a bottom-up fashion.  382 

In our study, future efforts were signaled by the pupil-linked arousal system and dmPFC 383 

activity during choices that preceded actual exertion by about one hour. These results may seem 384 

at odds with those of monkey studies employing LC electrophysiology and NA pharmacology, 385 

which clearly showed effort sensitivity in the NA-system only during force production, but not 386 

during cues just moments prior to the effort (Jahn et al. 2018; Varazzani et al. 2015). The 387 

differences between our results and these datasets may reflect the very different time-periods 388 

separating choices from effort execution: In a paradigm such as ours, where the decisions pertain 389 

to efforts that have to be exerted sometime in the future (within 1 hour), the brain may need to 390 

perform a mental estimation of the amount of resources that will have to be mobilized in order to 391 

make the decision. This kind of simulation may not be needed, or may even be counterproductive, 392 
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when decisions and exertions occur within seconds of one another. These methodological 393 

differences are not specific to our case but are rather a reflection of the state of the literature: 394 

Many monkey studies presented forced or choice cues that directly preceded actual exertions, 395 

whereas many human studies presented choice cues involving efforts that are delayed or even 396 

hypothetical. We clearly need studies that systematically investigate how the different timecourses 397 

present in these experiments affect effort coding in the NA arousal system and throughout the 398 

brain.  399 

What would be the cognitive purpose of imagining or simulating behavior energization 400 

associated with a choice? Such simulation may contribute to metacognitive processes that 401 

evaluate the quality of our ongoing decisions to optimize future decision making (Fleming and Daw 402 

2017). For an example from another domain, there is evidence that actual experience of choice 403 

and success in obtaining a food item influences how we value the food item in the future (Vinckier 404 

et al. 2018). Effort simulation may thus serve as a rich milieu for ‘scene construction’ (Hassabis 405 

and Maguire 2007) in which subjects evaluate the quality of their decision, which has the potential 406 

to shift future valuation. In our context, the source of simulation may include drawing from memory 407 

how much cognitive control needs to be mobilized (Shenhav, Cohen, and Botvinick 2016) in order 408 

to keep exerting physical effort rather than quitting, or retrieving the memory of previously incurred 409 

metabolic signal that accumulated the longer subjects exerted physical effort (Meyniel et al. 2013). 410 

Future experiments may directly test this conjecture by devising mental simulation paradigms in 411 

which participants imagine these specific elements of the force task, namely the sensations of 412 

mental fatigue or pain, and assessing how vividness ratings of these imagined bodily sensations 413 

would correlate with brain activity and choice. Furthermore, a mental simulation paradigm that 414 

manipulates agency might reveal stronger simulation signals for one’s own decisions compared 415 

to experimenter-imposed decisions, which would lend evidence for the use of simulation for self-416 

evaluation (Fleming and Daw 2017).  417 
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Irrespective of these considerations, our results highlight that choices may be jointly guided 418 

by DA and NA systems for reward and effort processing, respectively. The majority of effort studies 419 

so far have reported a net value representation (reward discounted by effort) within the core brain 420 

valuation network (Prevost et al. 2010; Aridan et al. 2019) and in dmPFC (Klein-Flügge et al. 2016; 421 

Bernacer et al. 2019; Chong et al. 2017; Prevost et al. 2010; Burke et al. 2013; Arulpragasam et 422 

al. 2018). These fMRI results are consistent with animal data showing reduced willingness to 423 

choose a high-effort/high-reward option when dopamine is depleted (Salamone et al. 2007) and 424 

with the overarching dopaminergic role in motivational reward processing (Walton and Bouret 425 

2019). Our present data concur with these previous studies, in showing reward coding within the 426 

brain valuation network (Prevost et al. 2010; Aridan et al. 2019) and notably NA-linked pupil 427 

dilations and dmPFC brain representations for physical effort (Kurniawan et al. 2013; Meyniel et 428 

al. 2013; Skvortsova, Palminteri, and Pessiglione 2014; Zénon, Sidibé, and Olivier 2014; 429 

Varazzani et al. 2015). This potential “partnership” of DA-coding for reward and NA-coding for 430 

effort does not seem to concur with the classical (but possibly simplistic) view that DA-linked 431 

reward processing is discounted in a subtractive fashion by NA-linked effort cost representations. 432 

We emphasize that our behavioral data and some aspects of our neural results are in line with 433 

previous computational suggestions that an option may be selected based on a trade-off between 434 

reward and effort (Fig 2). However, to our knowledge, prior work in humans has not examined 435 

how the effort sensitivity observed in the NA arousal system directly relates to choice. Here we 436 

were able to scrutinize this functional role using concurrent pupil-fMRI in an effort discounting task. 437 

Our results suggest that NA may play a complementary function to DA. Future studies may build 438 

on our results to further characterize the interaction between DA and NA, using the pupil rate 439 

measure in order to quantify energization signals that guide human decision making.  440 

Variations in arousal states (measurable by pupil activity) - such as locomotion and 441 

sleeping - are coupled with oscillatory state changes in brain networks (Takahashi et al. 2010) that 442 

are thought to result from noradrenergic innervation to the cortex (Schwarz et al. 2015). However, 443 
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there are also observations that arousal states may relate to movement during wakefulness and 444 

REM sleep, which are guided by cholinergic neuromodulatory projections from the basal forebrain 445 

to the cortex (Saper et al. 2010). This raises the concern whether we can truly draw the 446 

conclusions that our arousal effects evident in the pupil signals originate from LC-NA 447 

neuromodulation. While we cannot fully rule out potential effects of cholinergic activity in our study, 448 

a recent analysis with pupil activity and noradrenergic and cholinergic projections shed light on 449 

this issue, demonstrating that pupil rate in mice is more tightly linked with NA projections to the 450 

cortex, whereas activity in the cholinergic pathways more closely matched absolute pupil diameter 451 

(Reimer et al. 2016). Relatedly, a recent pharmacological study using clonidine to upregulate NA 452 

signaling in humans shows increased tonic pupil diameter during task-free intervals (Gelbard-453 

Sagiv et al. 2018), but unfortunately does not report task-related phasic pupil rate, or a comparison 454 

with cholinergic signalling. Thus, data from mice generally support the view that our effects in pupil 455 

rate may reflect phasic arousal variations that most likely originated from NA-LC activity, but more 456 

investigation in humans are needed to replicate these findings.  457 

Our results may have relevance for the diagnosis and therapy of brain disorders with 458 

deficits in motivated behavior. Committing to effort is a first step for success in motivated behaviors 459 

and the inability to commit to effort may bring about a cascade of clinical symptoms of apathy with 460 

a core feature of lack of self-initiated actions (Kurniawan, Guitart-Masip, and Dolan 2011; Husain 461 

and Roiser 2018; Le Heron, Apps., and Husain 2018). Recent neurocomputational work on effort-462 

reward tradeoffs has identified promising phenotyping approaches of motivation disorders; these 463 

reflect key involvement of the fronto-subcortical circuitry and neuromodulatory systems including 464 

dopamine, serotonin, and noradrenaline (Meyniel et al. 2016; Pessiglione et al. 2018; Berwian et 465 

al. 2020). A specific role for noradrenaline is suggested by the finding that motivation deficits in 466 

depression that are inadequately treated by serotonergic antidepressants – including fatigue and 467 

loss of energy – have been shown to significantly improve following administration of NA (and 468 

dopaminergic) agents (Nutt et al. 2007). This highlights the critical yet overlooked role of NA in 469 
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motivation regulation in depression (Moret and Briley 2011). Chronic exercise in mice also has 470 

been shown to increase LC-NA derived neuropeptide galanin that later conferred stress resilience 471 

(Tillage et al. 2020), providing further evidence of an adaptive role of NA-related energization 472 

signal. Our study contributes to this large body of work, by showing that the pupil-brain arousal 473 

system is sensitive to deliberations regarding sizable intensities of physical effort. Future work 474 

should further incorporate autonomic arousal and noradrenergic systems in quantitative models 475 

of motivation deficits (Pessiglione et al. 2018), particularly for dissociating arousal effects linked 476 

to anticipated effort from those that may reflect expected reward.  477 

 478 

 479 

Materials and Methods 480 

Participants 481 

Fifty-two right-handed participants (29 females, mean age=22.3 (3) years) volunteered to 482 

participate in this study. We determined the sample size using power analysis based on the small 483 

to medium effect size (d=0.2-0.5) reported in past studies in the laboratory relating pupil size and 484 

biases in choice behavior (Raja Beharelle, et al., in prep; Grueschow et al., in prep). Participants 485 

received between 80-100 CHF (depending on the realized choices and performance) for their 486 

participation. Participants were screened for MRI compatibility, had no neurological or psychiatric 487 

disorders, and needed no visual correction. Data from one subject were excluded because of eye 488 

tracker data loss. Inclusion of this subject in the behavioral analysis did not change the statistical 489 

results, but for consistency, we excluded this data set from all analyses. We then screened 490 

subjects based on their mean choice proportion for the effortful option, p(choose effortful), to be 491 

within 0.1 and 0.9, and excluded data from one subject whose choice rate was 0.95. The final N 492 

was 49.  493 

 494 

Procedure 495 
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Force calibration. Upon arrival, participants were seated in the behavioral testing room, filled the 496 

MRI screening and consent forms, and received general instructions on the force task and MRI 497 

safety. Maximum voluntary force (MVC) level for each hand was obtained by averaging the top 498 

33% force values produced during three 3-s squeezes. Continuous encouragement was given 499 

vocally during each entire squeeze period (e.g., “keep going, keep it up”).  500 

 501 

Force training. Guided by a vertical bar on-screen (Fig. 1B), participants were trained to do hand 502 

squeeze sets at levels 10-90% MVC (displayed as levels 1-9). This dynamometer effort task 503 

mimics a typical hand force exercise at the gym, with a cycle of repetitions (‘reps’) of muscle 504 

contractions (3 s) and relaxations (3 s) for each level. To prevent muscle fatigue, these were done 505 

alternating between left and right hand. During training, one set consisted of 5 repetitions and 506 

there were in total 10 squeeze sets (10*5=50 reps) to be evaluated by a certain criterion. Levels 507 

1-8 were presented once, pseudorandomly assigned to either left and right, and level 9 twice, 508 

once for each hand. The order of force levels was also pseudo-randomised. Half of the subjects 509 

practiced on levels 1, 3, 5, 7, 9 with left hand and 2, 4, 6, 8, 9 with right hand, and vice versa for 510 

the other half of subjects. The criterion was to maintain force above the target for at least two of 511 

the 3-s rep (non-consecutively). At the end of each training round, participants received a 512 

summary of their performance and were asked to repeat each unsuccessful force production. 513 

Overall, all participants underwent at most three training rounds (M=2.22, SD=0.46). After the last 514 

round, 38 participants successfully completed all 50 reps, whereas 11 participants had a few 515 

unsuccessful reps (M=4.3%, SD=3.5%). These results suggest that the training was very 516 

successful.  517 

Following a 5-minute break, they proceeded with a subjective rating task in which they had 518 

to squeeze for each hand once at levels 1, 3, 5, and 9 for 5 s without knowing the difficulty levels . 519 

They were told that in some trials it would be easy to raise the bar to reach the target, which in 520 

this task was always displayed at the midline, while in other trials it would be harder to do it. After 521 
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each 5-s squeeze, they then rated on a continuous visual analogue scale how effortful the grip 522 

was for them. They were instructed that the leftmost and rightmost point in the scale should refer 523 

to level 0 (merely holding the dynamometer) and level 10, respectively. The force training was 524 

successful as indicated by a close relationship between subjective and objective effort, mean 525 

pearson’s r=0.93, SEM=0.0073, t(46)=127.63, p<0.0001. 526 

Prior to scanning, participants made five practice decisions and we made sure that 527 

participants fully comprehended the task. The effort discounting task was done in the fMRI 528 

scanner. Participants were aware that the effort they were considering now consisted of one set 529 

of 10 reps (instead of 5). To prevent participants from taking decisions based on anticipated 530 

muscle fatigue, only a random selection of eight decisions were actually realized in the behavioral 531 

testing room after the scan, and participants were fully aware of this. Participants then filled some 532 

questionnaires, were debriefed, given payment, and thanked for their participation before leaving 533 

the lab. 534 

 535 

Effort discounting task 536 

In the scanner, participants were given a series of choices between an effortful and a non-effortful 537 

option. On each trial, the effortful option entailed varying effort (1 of 6 levels, levels 4-9) and reward 538 

amounts (1 of 6 levels, 0.5-10 CHF; Fig. 2A). The non-effortful option entailed minimal effort (fixed 539 

at level 1) and a lower reward amount (30 or 40% of the reward amount of the effortful option). To 540 

rule out risk as a potential confound (namely that accepting a level 9 offer gives a higher risk of 541 

task failure compared to accepting a level 4) we ensured that the effort training at all levels was 542 

successful (overall failure rate during training, M=0.9%, SD=2.4%),  543 

We used a factorial design with six effort and six reward levels (36 cells) for the effortful 544 

option, and two reward levels for the non-effortful option. There were 3 trials in each cell, resulting 545 

in 6 x 6 x 2 x 3 = 216 trials. Trials were split in three fMRI runs of 72 trials (9 mins) and trial order 546 

was pseudorandomised per subject and run. The non-effortful option entailed effort fixed at Level 547 
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1 and smaller rewards (30-40% of the larger reward), giving a clear incentive to choose the non-548 

effortful option if the larger effort was not worth the reward.  549 

During a fixation period of 3-6 s (drawn from a gamma distribution with shape parameter 550 

0.8 and scale parameter 1, mean 3.7s), the text indicating reward and effort levels was masked 551 

with a series of letters “X” (Fig. 1A). Following this period, the colour of the + sign at the centre 552 

changed and the effort and reward of each of the two options were presented on either side of the 553 

fixation point for a fixed duration of 3 s. This prompted the subjects that they were able to press 554 

either the left or the right key to indicate their choice. To provide decision feedback, this key 555 

response was promptly followed by a change in colour for the selected option. Regardless of key 556 

press, the stimuli remained on-screen for 3 s before the next fixation period was presented. If 557 

participants failed to respond during this period, the trial was coded as missing and no reward was 558 

gained. Amongst 49 participants, 13 had 1 missing trial, 5 had 2-5 missing trials, and 1 had 34 559 

(15%) missing trials. Exclusion of this last subject did not change any result, so we decided to 560 

include them.  561 

 562 

Pupillometry 563 

Participants’ right or left eye (depending on feasibility) was monitored using MR-compatible 564 

infrared EYElink 1000 eye-tracker system (SR Research Ltd.) with 500 ms sampling rate. 565 

Participants were instructed not to blink during the presentation of the options. Pre-processing of 566 

the pupil data was performed in MATLAB (version 2017a, MathWorks, Natick, USA). Data 567 

indicating eye blinks were replaced using linear interpolation. The data were visually inspected to 568 

ensure that all artefacts had been successfully removed. Pupil data were z-transformed within 569 

each run to control for variability across runs and across subjects. Pupil rate of dilation (unit: z/s), 570 

our measure of arousal, was calculated by subtracting pupil size at button response from pupil 571 

size at stimulus onset, divided by RT. Pre-trial pupil baseline level (PBL) was calculated by 572 

averaging pupil size from 500ms - 1ms before stimulus onset.  573 
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To ensure constant screen luminance level, we kept roughly the same number of pixels 574 

throughout the events by replacing the text indicating reward and effort levels with a series of Xs 575 

and by using text hues that were isoluminant to the grey background (RGB grey: 178.5, 178.5, 576 

178.5; green: 50, 100, 10; purple: 118, 60, 206; blue: 53 77 229). Ensuring readability, we selected 577 

these hues out of 17 theoretically isoluminant hues where relative luminance was calculated as a 578 

linear combination of the red, green, and blue components based on the formula: Y = 0.2126 R + 579 

0.7152 G + 0.0722 B. This formula follows the function that green light contributes the most to 580 

perceived intensity while blue contributes the least (Stokes, et al.; 581 

https://www.w3.org/Graphics/Color/sRGB). Green was always fixed as the base hue and blue and 582 

purple were randomly assigned trial-by-trial to highlight the selected offer (Fig. 1A).  583 

Additionally, in a control experiment, we recorded luminance-driven pupil dilation without 584 

any cognitive task during presentation of fixation screens with a series of Xs as fixation period and 585 

Ys to replace the text that would have indicated the effort and reward levels in the main 586 

experiment, each period lasting for 3 s. Participants were instructed to keep their eyes open but 587 

were not required to press any key. Just like in the main experiment, green was the base hue 588 

during fixation whereas blue and purple were used to highlight the text on one side of the screen. 589 

All stimuli were in the same text format as in the main task (Fig. 1). Order of hue and side 590 

assignment were all counterbalanced and pseudorandomised. We found no difference in mean 591 

pupil diameter during the presentation of these control stimuli in different hues, confirming that the 592 

pupil response in the main task was not driven by differences in text luminance (Fig. S1). 593 

 594 

fMRI acquisition and analysis 595 

Functional imaging was performed on a Philips Achieva 3T whole-body MR scanner equipped 596 

with a 32-channel MR head coil. Each experimental run contained 225-244 volumes (voxel size, 597 

3x3x3 mm3; 0.5 mm gap; matrix size, 80x78 (FoV: [240 140 (FH) 240]; TR/TE 2334/30 ms; flip 598 

angle, 90°; parallel imaging factor, 1.5; 40 slices acquired in ascending order for full coverage of 599 
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the brain). We also acquired T1-weighted multislice gradient-echo B0 scans which were used for 600 

correction of deformations (voxel size, 3 x 3 x3 mm3; 0.75 mm gap; matrix size, 80x80; 601 

TR/TE1/TE2 ⫽ 400/4.3/7.4 ms; flip angle, 44°; parallel imaging; 40 slices). Additionally, we 602 

acquired a high-resolution T1- weighted 3D fast-field echo structural scan used for image 603 

registration during postprocessing (170 sagittal slices; matrix size, 256x256; voxel size, 1x1x1 604 

mm3; TR/TE/TI ⫽ 8.3/3.9/1098 ms). 605 

We used Statistical Parametric Mapping (SPM12; Wellcome Trust Centre for 606 

Neuroimaging, London, http://www.fil.ion.ucl.ac.uk/spm) for imaging analyses. Five preprocessing 607 

steps included (1) realignment and unwarping, (2) slice-timing correction, (3) coregistration and 608 

normalization, (4) smoothing, and (5) correction for physiological noise. First, we re-aligned all 609 

functional volumes to the first volume to correct for inter-scan movement. Images were unwarped 610 

using field maps to remove unwanted variance due to field inhomogeneity (Andersson et al., 611 

2001). Second, unwarped functional images were slice-time corrected (to the acquisition time of 612 

the middle slice). Third, each subjects’ T1 image was co-registered (as reference image) with the 613 

mean functional image (as source image) using segmentation parameters performed on both 614 

images (Ashburner and Friston, 2004). These images were then normalized using the inverse 615 

deformation procedure and spatially re-sampled to 3 mm isotropic voxels. Fourth, all images were 616 

smoothed using a Gaussian kernel (FWHM 8mm). Finally, we performed correction for 617 

physiological noise via RETROICOR (Glover et al., 2000; Hutton et al., 2011) using Fourier 618 

expansions of different order for the estimated phases of cardiac pulsation (3rd order), respiration 619 

(4th order) and cardio‐respiratory interactions (1st order) (Hutton et al., 2011). We created the 620 

corresponding confound regressors using the PhysIO Toolbox (Kasper et al., 2009)  621 

(https://www.translationalneuromodeling.org/tapas). 622 

We performed random-effect, event- related statistical analyses. For each subject, we first 623 

computed a statistical general linear model (GLM) by convolving series of stick functions (time-624 

locked to the stimulus onsets and with the trial-wise RT as each event’s duration) with the 625 
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canonical hemodynamic response functions and their first derivatives (temporal derivative). We 626 

also added to these GLMs 18 physiological regressors and 6 motion parameters. At the second 627 

level, we then tested the significance of subject-specific effects (as tested by t-contrasts at the first 628 

level) across the population. For these analyses, we used a grey matter mask as an explicit mask, 629 

created by averaging across subjects and smoothing (8mm) all participants’ normalized grey 630 

matter images (wc1*.nii) from the ‘segment’ procedure.  631 

We built two first level GLMs without any orthogonalization. To identify unique variance 632 

associated with each of our trial parameters, we generated GLM1 using the stimulus onset as a 633 

single regressor with choice (1: effortful, -1: non-effortful), reward and effort levels of the effortful 634 

option, RT, pupil rate, and effort-by-choice (all non-binary variables were z-scored) as trial-wise 635 

parametric modulators. We then entered the contrast images of each parametric modulator vs 636 

baseline into second level one-sample t-tests. To illustrate the effort-by-choice interaction effect, 637 

we generated GLM2 with two regressors containing the stimulus onsets for choose effortful and 638 

choose non-effortful trials. Each regressor contained reward and effort levels of the effortful option, 639 

RT and pupil rate (all z-scored) as trial-wise parametric modulators. We then entered the contrast 640 

images of the effort parametric modulator for [choose effortful > choose non-effortful] into second 641 

level one-sample t-tests.  642 

 643 

Statistics 644 

Statistical analyses for behavioral and pupil data were done with MATLAB 2017 645 

(www.mathworks.com). We conducted (multiple) logistic or linear regressions separately for each 646 

participant and entered the regression weights of each predictor from all participants into a one-647 

sample t-test. All continuous predictors were z-scored across trials within each participant. This 648 

approach allows for the intercept (constant) to vary across participants. Goodness-of-fit is the 649 

adjusted R2 for regressions. We used robust regression to evaluate the association between two 650 

variables. All statistical tests were two-tailed. For inference about the brain data, we used a cluster-651 
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defining threshold of p<0.001 and only report suprathreshold voxels that survive cluster-level 652 

family-wise error (FWE) corrected p<0.05. 653 

 654 

  655 
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Table 1. MNI coordinates and statistics for GLM1: effort-by-choice, choice, reward, 656 

effort, pupil rate, and RT modulation. All effects are from t-tests. P values are at cluster-657 

level FWE correction.  658 

          MNI Coordinates 

Effect Brain region k t-value p-value x y z 

Effort-by-choice 
(positive 

modulation) 

L Superior Medial 
Gyrus 301 5.324 <0.0001 -3 18 45 

L ACC   4.786   -6 27 27 

Effort-by-choice 
(negative 

modulation) 

L Postcentral Gyrus 4085 6.382 <0.0001 -33 -42 57 
R Superior Frontal 
Gyrus   6.248   24 -6 66 

R Postcentral Gyrus   6.242   30 -42 57 

  
L Middle Temporal 
Gyrus 147 4.688 0.009 -60 -30 -3 

  
L Middle Temporal 
Gyrus   4.151   -57 -51 -6 

Choice (Effortful > 
non-effortful) 

L Middle Frontal 
Gyrus 146 4.749 0.02 -30 30 36 

Choice (Non-
effortful > effortful) 

no supra-threshold 
clusters             

Reward (positive 
modulation) 

L Caudate Nucleus 1320 7.417 <0.0001 -9 9 0 

R IFG (p. Orbitalis)   6.752   36 21 -9 

  L IFG (p. Orbitalis)   5.662   -30 24 -3 

  
R Middle Frontal 
Gyrus 464 7.237 <0.0001 39 21 27 

  
L Inferior Parietal 
Lobule 1046 6.61 <0.0001 -36 -63 51 

  L Precuneus   4.949   -3 -66 42 

  
L Middle Occipital 
Gyrus   4.948   -30 -78 27 

  
R Middle Temporal 
Gyrus 211 5.767 0.003 60 -30 -6 

  
R Middle Temporal 
Gyrus   3.781   57 -9 -18 

  R Fusiform Gyrus 900 5.57 <0.0001 24 -81 -9 

  L Fusiform Gyrus   5.044   -24 -78 -9 

  L Cerebelum (Crus 2)   5.018   -12 -81 -27 

  
L Middle Temporal 
Gyrus 149 5.489 0.012 -60 -21 -15 

  
L Superior Frontal 
Gyrus 478 5.06 <0.0001 -21 36 48 

  
L IFG (p. 
Triangularis)   4.857   -39 21 24 

  
L Middle Frontal 
Gyrus   4.756   -36 12 57 
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L Superior Orbital 
Gyrus 115 5.021 0.03 -30 51 3 

  
R Inferior Parietal 
Lobule 597 4.922 <0.0001 33 -72 24 

  
R Inferior Parietal 
Lobule   4.839   39 -60 48 

  
R Middle Temporal 
Gyrus   4.706   54 -48 12 

  L ACC 167 4.484 0.007 -6 42 12 

Reward (negative 
modulation) 

no supra-threshold 
clusters             

Effort (positive 
modulation) 

R Rolandic 
Operculum 151 5.503 0.008 48 3 12 

L Linual Gyrus 365 4.482 <0.0001 -15 -84 3 

  
L Middle Occipital 
Gyrus   4.352   -30 -90 15 

  L Calcarine Gyrus   4.073   3 -75 15 

  R Calcarine Gyrus 117 4.313 0.022 30 -69 15 

Effort (negative 
modulation) 

no supra-threshold 
clusters             

Pupil rate (positive 
modulation) 

R Precuneus 8334 7.993 <0.0001 6 -78 42 

L Calcarine Gyrus   7.485   -3 -90 0 

  
R Superior Frontal 
Gyrus 1081 6.774 <0.0001 21 -9 69 

  
R Middle Frontal 
Gyrus   6.639   45 -9 57 

  
L Posterior-Medial 
Frontal   6.041   -18 -12 72 

  R Temporal Pole 307 6.500 <0.0001 54 15 -6 

  R Insula Lobe   4.806   36 9 12 

  L Rectal Gyrus 287 5.715 <0.0001 -15 12 -9 

  R Caudate Nucleus   4.519   9 6 3 

  R Olfactory cortex   4.220   21 9 -15 

  L Temporal Pole 225 4.854 0.001 -57 9 -3 

  L IFG (p. Opercularis)   4.283   -42 9 15 

  L IFG (p. Orbitalis)   3.563   -30 27 -3 

  
R Superior Temporal 
Gyrus 

138 4.600 0.013 57 -39 27 

Pupil rate 
(negative 

modulation) 

L Middle Temporal 
Gyrus 123 5.914 0.02 -51 -36 -3 
L Inferior Temporal 
Gyrus   3.581   -60 -12 -21 

  L Angular Gyrus 196 5.628 0.003 -54 -63 36 

  
L Superior Medial 
Gyrus 280 5.168 <0.0001 -6 48 45 

  
R Superior Medial 
Gyrus   4.652   3 30 60 

  
L Middle Frontal 
Gyrus 96 4.703 0.044 -33 24 51 
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RT (positive 
modulation) 

L Cuneus 273 7.335 0.001 3 -93 24 

R Cuneus   6.818   6 -84 42 

  R Paracentral Lobule   6.657   6 -48 75 

  R IFG (p. Orbitalis) 219 5.795 0.003 45 36 0 

RT (negative 
modulation) 

R Fusiform Gyrus 11871 
-

14.006 <0.0001 36 -75 -9 

L Fusiform Gyrus   
-

12.751   -36 -69 -9 

  
L Middle Occipital 
Gyrus   

-
11.346   -36 -87 6 

 659 
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Supplementary Materials and Methods 960 

 961 

Controlling for luminance-driven pupil response 962 

 963 

To rule out brightness-induced pupil dilation and to validate our selection of theoretically 964 

isoluminant stimuli, we recorded pupil response during a control experiment at the end of the fMRI 965 

scan. Here, the same participants received similar visual stimulation as in the main experiment, 966 

but without informative cues or any need for making a choice. Participants were firs t presented 967 

with the same fixation screen (Fig 2A; screen with “XXX”) with letters written in green for 3 s. This 968 

was followed by the same screen but with all Xs replaced by Ys, and in either one of the sides 969 

(counterbalanced), the letters were printed in either purple or blue ink (to mimic the visual change 970 

found in the main experiment) for another 3 s period. All three color hues are theoretically 971 

isoluminant, as described in the Methods section. There were 20 trials for each side and each 972 

hue, summing to 80 trials. We confirm that indeed the hue selection in a task without any reward-973 

effort decision making did not evoke meaningful luminance-driven pupil variance (Fig S1). First, 974 

the scale of pupil response variance in the main task was at least 6 times larger than that in the 975 

control experiment. Second, if any, the deflection in pupil response to cue onset was negative, as 976 

opposed to that found in the main task. Third, this control experiment revealed no difference in 977 

averaged pupil size across the entire stimulus duration between the two isoluminant hues (purple 978 

and blue) used in the main task, paired-samples t-test: t(46)=0.29, p=0.76 (2 missing data). These 979 

results confirm that the pupil dilation observed in the main task was primarily driven by meaningful 980 

cognitive considerations provoked by the choice task, in this case by effort-reward tradeoffs, and 981 

not by task-irrelevant physical differences in the stimuli. 982 

 983 

 984 
Fig. S1. Pupil during main versus control experiment. A) Pupil time course in main and in 985 

control task for stimuli in blue and purple ink, subtracted by pupil baseline level (PBL). Inset: B) 986 

Zoomed-in pupil time course and C) averaged pupil size across 3 s, showing no difference in pupil 987 

responses between blue and purple. Bar plots display means + 1 standard error of the mean 988 

(SEM). 989 

 990 

 991 
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Controlling for other variables in extended regression of choice (Fig 2D) 992 

 993 

Here we supplement the statistical results of the regression of choice reported in the main text 994 

(Fig 2D). In this extended regression, we also accounted for variables including RT (tRT(48)=-3.40, 995 

p=0.0013), pupil baseline level (PBL), tPBL(48)=0.25, p=0.80, and many others (tpupil_rate(48)=-1.02, 996 

p=0.31; treward*PBL(48)=0.22, p=0.82; tef f ort*PBL(48)=-0.31, p=0.75; treward*ef f ort*PBL(48)=-0.61, p=0.54; 997 

treward*pupil_rate(48)=-0.78, p=0.44; treward*ef f ort*pupil_rate(48)=1.21, p=0.23; tconstant(48)=4.37, p=0.0001).  998 

Importantly, the extended regression had a higher model-fit (adjusted R-squared) than the 999 

standard regression that only contained reward, effort, and reward-by-effort, t(48)=5.35, p<0.0001, 1000 

suggesting that pupil measures together with other task parameters such as reward, effort, and 1001 

response time, can explain choice above and beyond the ‘standard’ option attributes (reward and 1002 

effort). 1003 

 1004 

 1005 

Calculation of effort slope 1006 

 1007 

To calculate the effort slope in all our analyses (e.g., Fig 3), for each subject we first averaged the 1008 

pupil rate (z-scored within subject) in each of the 6 effort levels separately for trials where subjects 1009 

chose the effortful option and those where they chose the non-effortful option. We then ran a 1010 

simple regression of the averaged pupil rate on effort levels (levels 4-9), separately for each choice 1011 

outcome. Without any missing data, the effort slope should be estimated based on 6 pairs of data 1012 

points. However, choice was clearly affected by effort level (Fig 1C), thus one concern is that for 1013 

some subjects, there might have been too many empty cells (e.g., if options with effort levels 7-9 1014 

were never selected by a participant). If this were the case then there would have unequal number 1015 

of data points to estimate the effort slope in one choice outcome versus another. To address this 1016 

concern, we found that on average there were > 5 pairs of data points in both choice outcomes 1017 

(Mnon-ef f ortful=5.59, SD=0.67, Mef fortful=5.61 SD=0.7), and importantly there was no significant 1018 

difference between the two choice outcomes, t(48)=0.13, p=0.89. This result assured us that the 1019 

estimation of effort slopes between the two choice outcomes was comparable.  1020 

 1021 

 1022 

Control analysis for pupil baseline level (PBL)  1023 

 1024 

To investigate how other aspects of the arousal system function may relate to choice in our 1025 

experimental design, we conducted a whole set of other analyses. First, we examined choice 1026 

proportions as a function of PBL median/tertile/quartile splits. We did not find any choice 1027 

differences across PBL bins, Fs<1.2, ps>0.3 (Fig S2A). Second, we ran a logistic regression of 1028 

choice on PBL, RT, reward, effort, and the interactions. We found no effect of PBL or any 1029 

interactions with PBL (Fig S2B). Third, we inspected whether regressing out influences of previous 1030 

trial from PBL would improve regression of choice of the current trial. To do this, we first ran a 1031 

linear regression of the current trial’s PBL with reward, effort, choice, RT, and ITI of previous trial 1032 

(t-1) as regressors. Then we took the residual variance of this regression and used it as a 1033 

regressor together with RT, reward, effort, reward-by-effort interaction to fit choice of current trial. 1034 

This analysis shows no significant effect of the residual PBL (PBL*) on explaining choice of current 1035 

trial (Fig S2C). Together, these analyses show no contribution of background (tonic) arousal states 1036 
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to choice rate, suggesting that the results reported in the main text were specific to effort-specific 1037 

representations during the decision process (within-trial).  1038 

 1039 

 1040 
Fig. S2. No effects of endogenous arousal fluctuations on choice rate. A) Choice proportion 1041 

for the effortful option as a function of pre-trial pupil baseline level (PBL) bins. Bar plots display 1042 

means + 1 standard error of the mean (SEM). B) Weights of logistic regression of choice on 1043 

reward, effort, RT, PBL, and the interactions. B Weights of logistic regression of choice on reward, 1044 

effort, RT, and residual variance of PBL after regressing out influences from previous trial (t-1). 1045 

Bar plots display means + 1 standard error of the mean (SEM). Abbreviations: c=constant, 1046 

PBL=pupil baseline levels, RT=reaction time, R=reward levels, E=effort levels, PBL*=residual 1047 

PBL. 1048 

 1049 

In addition, we also directly tested for an effort-by-choice effect in PBL (Fig S3), revealing a non-1050 

significant choice difference (effortful vs non-effortful) of the effort slopes in PBL, t(48)=0.45, 1051 
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p=0.65. The behavioral measure of effort sensitivity was not significantly associated with the effort-1052 

by-choice effect either, robust regression b(47)=0.35, p=0.39. These results confirm that the 1053 

choice-modulated effort representations reported in the main text are primarily expressed in how 1054 

fast the pupil dilates but not in endogenous pre-trial pupil fluctuations. 1055 

 1056 

 1057 

 1058 

Fig. S3. No evidence for energization signals in pupil baseline level (PBL). Non-significant 1059 

effort-by-choice interaction results and non-significant  correlation with behavioral effort sensitivity 1060 

for PBL. Bar plots display means + 1 standard error of the mean (SEM).  1061 

 1062 

 1063 

Control analysis for effects of value (Fig 3) 1064 

 1065 

To rule out the alternative explanation that pupil rate in this experiment could be simply signalling 1066 

value, we tested for a reward-by-choice effect in pupil rate (Fig S5), revealing a non-significant 1067 

choice difference (effortful vs non-effortful) of the reward slopes, t(48)=0.22, p=0.82. The 1068 

behavioral measure of reward sensitivity was not significantly associated with the reward-by-1069 

choice effect either, robust regression b(47)=0.54, p=0.22. Together with the analyses on pupil 1070 

rate residuals reported in the main text (Figs S4), these results confirm the pupil rate’s role in 1071 

anticipated energization, signaling effort amounts that one has committed to rather than signaling 1072 

reward value.  1073 

 1074 
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 1075 

Fig. S4. Energization signal in pupil rate is independent of reward value and RT. Analyses 1076 

with residual pupil rate after regressing out the effect of reward (A) and RT (B). We replicated the 1077 

effects reported in Fig 3, showing significant effort-by-choice interaction results and correlation 1078 

with behavioral effort sensitivity for residual pupil rate after regressing out (one at a time) the effect 1079 

of reward and RT. Bar plots display means + 1 standard error of the mean (SEM). See main text 1080 

for statistical results. 1081 

 1082 

 1083 
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 1084 

Fig. S5. No evidence for choice-modulated reward signals in pupil rate. Non-significant 1085 

reward-by-choice interaction results and non-significant correlation with behavioral reward 1086 

sensitivity in pupil rate. Bar plots display means + 1 standard error of the mean (SEM).  1087 
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