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Abstract 24 

Quantitative stable isotope probing (qSIP) estimates the degree of incorporation of an isotope 25 

tracer into nucleic acids of metabolically active organisms and can be applied to microorganisms 26 

growing in complex communities, such as the microbiomes of soil or water. As such, qSIP has 27 

the potential to link microbial biodiversity and biogeochemistry. As with any technique 28 

involving quantitative estimation, qSIP involves measurement error; a more complete 29 

understanding of error, precision and statistical power will aid in the design of qSIP experiments 30 

and interpretation of qSIP data. We used several existing qSIP datasets of microbial communities 31 

found in soil and water to evaluate how variance in the estimate of isotope incorporation depends 32 

on organism abundance and on the resolution of the density fractionation scheme. We also 33 

assessed statistical power for replicated qSIP studies, and sensitivity and specificity for 34 

unreplicated designs. We found that variance declines as taxon abundance increases. Increasing 35 

the number of density fractions reduces variance, although the benefit of added fractions declines 36 

as the number of fractions increases. Specifically, nine fractions appear to be a reasonable 37 

tradeoff between cost and precision for most qSIP applications. Increasing replication improves 38 

power and reduces the minimum detectable threshold for inferring isotope uptake to 5 atom%. 39 

Finally, we provide evidence for the importance of internal standards to calibrate the %GC to 40 

mean weighted density regression per sample. These results should benefit those designing 41 

future SIP experiments, and provide a reference for metagenomic SIP applications where 42 

financial and computational limitations constrain experimental scope.  43 

 44 

 45 

 46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2020. ; https://doi.org/10.1101/2020.02.25.965764doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.965764
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Importance 47 

 48 

One of the biggest challenges in microbial ecology is correlating the identity of microorganisms 49 

with the roles they fulfill in natural environmental systems. Studies of microbes in pure culture 50 

reveal much about genomic content and potential functions, but may not reflect an organism’s 51 

activity within its natural community. Culture-independent studies supply a community-wide 52 

view of composition and function in the context of community interactions, but fail to link the 53 

two. Quantitative stable isotope probing (qSIP) is a method that can link the identity and function 54 

of specific microbes within a naturally occurring community. Here we explore how the 55 

resolution of density-gradient fractionation affects the error and precision of qSIP results, how 56 

they may be improved via additional replication, and cost-benefit balanced scenarios for SIP 57 

experimental design. 58 

 59 

Introduction 60 

 61 

Stable Isotope Probing (SIP) of nucleic acids is one of the few non-culture dependent methods 62 

that can identify the functionality of microorganisms in their native environments, making it one 63 

of the most powerful techniques in microbial ecology (Radajewski et al. 2000; Manefield et al. 64 

2002; Radajewski, McDonald, and Murrell 2003; Neufeld et al. 2007; Chen and Murrell 2010). 65 

In SIP, a substrate labeled with a heavy isotope is added to an environmental sample. Following 66 

an incubation period ranging from hours to weeks (depending on the substrate uptake rate) the 67 

DNA (or RNA) of growing microorganisms that have consumed the isotope-enriched substrate 68 

becomes more dense due to their incorporation of the heavy isotope. Community nucleic acids 69 
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can then be extracted and separated in a density gradient using ultracentrifugation. DNA/RNA 70 

from organisms that incorporated the labeled substrate will appear in denser fractions of the 71 

gradient compared to where they would be with addition of an unlabeled substrate (Lueders, 72 

Manefield, and Friedrich 2004; Neufeld et al. 2007). While there has been some consideration of 73 

best practices for handling SIP data (Neufeld et al. 2007; Lueders et al., 2010; Hungate et al. 74 

2015; Youngblut, Barnett, and Buckley 2018; Barnett, Youngblut, and Buckley 2019; Dumont 75 

and García 2019; Barnett and Buckley 2020), there remain outstanding methodological issues 76 

and questions regarding reproducibility, sensitivity and the minimum detectable effect size, some 77 

of which we address here. 78 

A major advantage of SIP is that it can be performed on intact environmental communities, 79 

thereby taking into account microbial interactions which are missed in cultivation-based studies. 80 

Most current SIP methods require amplifying marker genes, usually 16S rRNA, from each 81 

fraction to identify substrate assimilators. However, to look at multitrophic interactions beyond 82 

co-occurrence, it is more ideal to use shotgun sequencing of whole community DNA, but the 83 

combination of SIP with metagenomic analysis quickly becomes limiting both financially and 84 

computationally. Therefore, some investigators have tried to limit shotgun sequencing either by 85 

sequencing only highly labeled fractions (Barnett and Buckley 2020), by pooling density 86 

fractions or by sequencing the unfractionated DNA and matching assembled genomes to SIP-87 

identified substrate assimilators (Dumont et al. 2006; Murrell and Whiteley 2010; Dombrowski 88 

et al. 2016; Thomas, Corre, and Cébron 2019; Sieradzki, Morando, and Fuhrman 2019). Since 89 

metagenomic sequencing leads to financial and computational costs that are much higher than 90 

those of 16S analysis, the knowledge of the minimum number of fractions that can lead to a 91 

comparable result will be crucial. 92 
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Quantitative SIP (qSIP) is a recently developed adaptation of SIP that makes substrate uptake 93 

measurements possible at the individual or population genome scale (Hungate et al. 2015; Koch 94 

et al. 2018). In qSIP, isopycnic separation of nucleic acids in cesium chloride is combined with a 95 

mathematical model to quantify isotope enrichment. This approach allows a user to measure 96 

growth and mortality rates of individual taxa in complex communities, particularly when using 97 

18O-labeled ‘heavy water’ as a substrate –since cells incorporate oxygen from water during 98 

nucleic acid synthesis, quantitatively reflecting cell division (DNA synthesis) and metabolism 99 

(RNA synthesis) (Schwartz 2007; Blazewicz and Schwartz 2011). Similarly, cell mortality rates 100 

may be quantitatively related to the degradation of unlabeled nucleic acids. By normalizing 101 

relative abundance to the total number of organisms per fraction estimated by qPCR of 16S-102 

rRNA, qSIP has been shown to be less susceptible to taxon abundance and level of enrichment 103 

compared to other SIP methods (Youngblut, Barnett, and Buckley 2018). Hence, qSIP may be a 104 

preferred approach for combining SIP and metagenomics. 105 

Designing qSIP experiments involves a tension between collecting many density fractions per 106 

sample (small fraction size) versus the costs of labor and sequencing. While early SIP studies 107 

inspected only the ‘heaviest’ fractions—considered to host the most isotopically enriched 108 

DNA— these fractions may contain unlabeled high GC-content DNA. The current practice is to 109 

examine many density fractions and perform statistical analyses comparing isotope-labeled 110 

versus unlabeled controls, to indicate the extent to which organisms have “shifted” within a 111 

density gradient in response to the isotope treatment (Hungate et al. 2015; Youngblut, Barnett, 112 

and Buckley 2018). Density shifts can be used to calculate substrate assimilation rate per taxon 113 

(atom % excess), and when using the universal substrate H218O, they can be used to infer specific 114 

growth rates (Blazewicz and Schwartz 2011; Blazewicz, Schwartz, and Firestone 2014; Papp et 115 
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al. 2018; Koch et al. 2018). However, even the most basic experiment (e.g one type of substrate, 116 

2 timepoints, 3 replicates, 10 density fractions per sample) can easily generate over 100 samples 117 

for processing and sequencing. Thus, it is critical to know how to balance experimental design to 118 

ensure high quality data at sustainable costs. Doing so becomes even more important as we 119 

transition to more ambitious applications, such as metagenomics qSIP (MG-qSIP), since shotgun 120 

sequencing adds even higher costs and the amount of data per sample quickly becomes a 121 

computational limitation.  122 

Within a replicated qSIP experiment, it is possible to evaluate statistical power - the probability 123 

of detecting a given level of isotopic enrichment. Yet, power is rarely evaluated, because, in 124 

practice, avoiding Type I errors is prioritized above avoiding Type II errors. Traditionally, many 125 

view that incorrectly inferring that a treatment is effective is more hazardous than concluding it 126 

is not effective, when in fact it is. Power analysis involves evaluating the tradeoffs among 127 

several parameters: 1) The effect size of interest, which in the case of qSIP experiments is the 128 

density shift (or amount of isotope incorporation) that the researcher wishes to detect (this can be 129 

thought of as the minimum detectable difference); 2) the acceptable α value, or acceptable 130 

probability of Type I error (for qSIP, a type I error occurs when the researcher concludes that 131 

there is isotope incorporation when in fact none occurred); 3) the acceptable β value, or 132 

acceptable probability of Type II error (for qSIP, a Type II error occurs when the researcher 133 

infers “no isotope incorporation”, when in fact some isotope incorporation actually occurred); 134 

and 4) the number of true, independent, replicates (sample size) used in the experiment. Power is 135 

defined as 1 - β. It is the probability that a true difference will be detected in a given 136 

experimental design. Applied to qSIP, power analysis can show how increasing the number of 137 

replicates increases the probability of detecting a given level of isotope incorporation. Power 138 
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analysis can also show, at constant level of power, how increasing the number of replicates 139 

decreases the threshold level of isotope incorporation that can be detected. Lastly, power analysis 140 

can clarify the tradeoffs between Type I and Type II errors, which can provide useful context for 141 

interpreting results from qSIP experiments.  142 

One way to address issues inherent to metagenomic analysis (e.g. higher amounts of DNA 143 

required for sequencing, higher sequencing costs and exponentially increased computational 144 

complexity) is to reduce the number of density fractions. In addition, adding replication with a 145 

reduced number of fractions (gradient resolution) could lead to higher accuracy while 146 

maintaining a similar effort to high gradient resolution without replication. We investigated the 147 

repercussions of reducing the number of density fractions on replicated and unreplicated datasets 148 

from marine and terrestrial microbial communities using different isotopes. 149 

Using multiple SIP datasets, we tested the robustness of qSIP with variation in density fraction 150 

size. We combined (in-silico) density fractions from real datasets and measured the effects of 151 

lower gradient resolution on per-taxon density shifts and unlabeled weighted mean density. We 152 

show that reducing the gradient resolution from an average density fraction size of 0.002 g ml-1 153 

down to 0.011 g ml-1 (50 to 9 fractions of a 5 ml tube) yields comparable shift detection with a 154 

detection limit of 0.005 g ml-1 (9% enrichment with 13C). We discuss using the small inherent 155 

variability between replicates as a way to define a shift detection limit. Finally, we show that this 156 

inherent variability is more similar between replicates centrifuged together (within spin) than 157 

between replicates centrifuged separately (between spins), stressing the need for internal 158 

standards that can be spiked into each sample rather than external standards. 159 

 160 

 161 
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Methods 162 

 163 

We used five datasets representing different ecosystems for in silico analyses: a high resolution 164 

unreplicated SIP study of 13naphthalene in seawater, two medium resolution replicated SIP 165 

experiments where 18O-water was added to soils, replicated genomic DNA from pure cultures of 166 

Escherichia coli and Pseudomonas putida, and a replicated genomic mock community 167 

comprised of high molecular weight genomic DNA of Thermoanaerobacter pseudethanolicus, 168 

Bacillus licheniformis, Bifidobacterium longum subsp. Infantis and Streptomyces violaceoruber 169 

purchased from ATCC. See table 1 for number of density fractions and number of replicates per 170 

dataset. 171 

As these experiments were performed by different laboratories, using slightly different protocols, 172 

we describe their SIP pipelines separately. However, all post-sequencing steps were performed 173 

identically for all 16S-rRNA operational taxonomic units (OTUs). 174 

 175 

Naphthalene enriched seawater dataset 176 

 177 

Surface seawater was collected from the port of Los Angeles in July 2014 and May 2015. Ten 178 

liters of water were incubated at ambient temperature with 400 nM 12C- or 13C-naphthalene for 179 

24 hours (July 2014) or 88 hours (May 2015). The water was then filtered sequentially through 180 

an 80 nM mesh, a 1 µ prefilter (Acrodisc syringe glass fiber, Pall Laboratory) and a 0.2 µ 181 

polyethersulfone (PES) Sterivex filter (Millipore). After filtration, 1.5ml Sodium-Chloride-Tris-182 

EDTA (STE) buffer was injected into the Sterivex casing and the filters were promptly sealed 183 

and stored in -80°C. 184 
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DNA was extracted from the Sterivex filters by bead beating (10 minutes), transferring the lysate 185 

into DNeasy plant kit columns (Qiagen) and following the kit protocol. The eluted DNA was 186 

stored in -80ºC until use.  187 

In preparation for ultracentrifugation, 1 µg of eluted DNA from the labeled (13C) and control 188 

(12C) incubations was mixed with CsCl solution and gradient buffer (GB) for a final density of 189 

1.725 g ml-1. The gradients were centrifuged in a Beckman NVT 65.2 rotor at 44,100 rpm for 64-190 

68 h at 20ºC. Following centrifugation each gradient was manually fractionated into 50 equal 191 

fractions of 100 µl each. The density of each fraction was determined using a handheld AR200 192 

digital refractometer by removing 10 µl per fraction. 193 

DNA in each fraction was purified and concentrated using glycogen/PEG precipitations followed 194 

by an ethanol washing and elution in Tris-EDTA buffer (TE). DNA was then quantified by 195 

PicoGreen assay (Life Technologies). The 16S-rRNA coding gene hypervariable regions V4-V5 196 

were amplified from each fraction that contained DNA using universal primers 515F-N and 197 

926R (Parada, Needham, and Fuhrman 2016). Each reaction tube contained 10 µM of each 198 

primer, 1 ng of DNA, 12 µl 5Prime Hot Master Mix and 10 µl PCR water. The thermocycler was 199 

set to 3 minutes denaturation at 95℃; 30 cycles of: denaturation 95℃ 45 seconds, annealing 200 

50℃ 45 seconds and elongation 68℃ 90 seconds; followed by a final elongation step at 68℃ for 201 

5 minutes. PCR products were cleaned using 1x Agencourt AMPure XP beads (Beckman 202 

Coulter), quantified via PicoGreen, and pooled in equimolar amounts and sequenced on Illumina 203 

MiSeq 2x300bp. Mock communities and PCR blanks were included in all sequencing runs (Yeh 204 

et al. 2018).  205 

 206 

Soil 18O-water dataset 1: spruce peatland 207 
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 208 

Soil samples (0-10cm; n=5) were collected from the Marcell Experimental Forest, located in 209 

northern Minnesota in August 2017. Samples were then air-dried in the lab to minimize O16-210 

water content. One-half gram dry weight soil was weighed into 15mL Falcon tubes and pre-211 

incubated at one of five temperatures (n=20) for approximately 48 hours in the dark: 5C, 15C, 212 

25C, or 35C. After pre-incubation, half the samples received enough natural abundance O16-213 

labeled water (n=10) to bring the sample up to 60% field capacity, and the other half (n=10) 214 

received 97-atom % O18-labeled water. Samples were placed back at their original incubation 215 

temperature and harvested after 5 (n=5) and 10 days (n=5). Lids of the Falcon tubes were opened 216 

every ~24 hours to allow for CO2 release. Samples were frozen at -80C until further processing. 217 

DNA was extracted using a PowerSoil DNA extraction kit following manufacturer’s instructions 218 

(MoBio Laboratories, Carlsbad, CA). For stable isotope probing, approximately 1 g of DNA was 219 

loaded into a 4.7 mL ultracentrifuge tube with 6.88 g of a saturated cesium chloride solution and 220 

filled with gradient buffer (200 mM Tris, 200 mM KCl, 2 mM EDTA). Samples were spun in a 221 

Beckman OptimaMax benchtop ultracentrifuge (Indianapolis, IN, USA) using a Beckman TLA-222 

110 rotor at 150,200 x g at 18C for 72 hours. Tubes were fractionated into approx. 20 fractions 223 

of 200 L each and the density of each fraction was measured with a Reichart AR200 digital 224 

refractometer (Buffalo, NY, USA). DNA was purified using a standard isopropanol precipitation 225 

method and quantified by PicoGreenTM fluorescence on a BioTek Synergy HT plate reader 226 

(Winooski, VT, USA). 227 

The V3-V4 region of the 16S rRNA gene was subsequently quantified and sequenced in samples 228 

within the density range of 1.640 – 1.746 g mL-1 (approx. 15 fractions per sample). To quantify 229 

the 16S rRNA gene, qPCR was performed in triplicate using a Bio-Rad CFX384 Touch real-time 230 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2020. ; https://doi.org/10.1101/2020.02.25.965764doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.965764
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

PCR detection system (Hercules, CA, USA) and primers Eub338F (5’-231 

ACTCCTACGGGAGGCAGCAG-3’) and Eub518R (5’-ATTACCGCGGCTGCTGG-3’) (Fierer 232 

et al. 2005). The 10 µL qPCR reactions contained 1 µL of sample and 9 µL of master mix (0.25 233 

mM of each primer, 1X Forget-Me-Not EvaGreen qPCR mix (Biotium, Fremont, CA), and 0.4 234 

mg mL-1 BSA. The PCR program used was as follows: 95°C for 2 min, followed by 40 cycles of 235 

95°C for 30s, 59°C for 10s, and 72°C for 10 sec. 236 

For sequencing, two PCR steps were used to process the samples, as in Berry et al. (2011). Each 237 

sample was first amplified using primers 515F (Parada) (5’-GTGYCAGCMGCCGCGGTAA-3’) 238 

and 806R (Apprill) (5’-GGACTACNVGGGTWTCTAAT -3’) (Apprill et al. 2015; Parada, 239 

Needham, and Fuhrman 2016). This was done in duplicate 10 µL PCR reactions containing 1 µL 240 

of DNA template and 9 µL of master mix (1 µM of each primer, 1X Phusion Green HotStart II 241 

Polymerase (Thermo Fisher Scientific, Waltham MA) and 1.5 mM MgCL2). PCR conditions 242 

were 95°C for 2 min, then 15 cycles of 95°C for 30s, 55°C for 30s and 72°C for 10 s. Initial 243 

duplicate PCR products were pooled, checked on a 1% agarose gel, 2-fold diluted, and used as 244 

template in the subsequent tailing reaction with the same primers that included the Illumina 245 

flowcell adapter sequences and a 12 nucleotide Golay barcode (15 cycles identical to initial 246 

amplification conditions). Amplicons were then purified with 0.1% carboxyl-modified Sera-Mag 247 

magnetic Speed-beads (Thermo Fisher Scientific, Freemont, CA, USA) in 18% PEG and 248 

quantified with a PicoGreenTM assay on a BioTek Synergy HT plate reader. Samples were then 249 

pooled at the same concentration, purified again with the Sera-Mag beads as described above, 250 

and quantified with the KAPA Sybr Fast qPCR kit (Wilmington, MA, USA). Libraries were 251 

sequenced on an Illumina MiSeq (San Diego, CA, USA) instrument at Northern Arizona 252 
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University’s Environmental Genetics and Genomics Laboratory, using a 300 cycle v2 reagent 253 

kit. 254 

 255 

Soil 18O-water dataset 2: Grassland 256 

 257 

A 10 x 4.5 cm soil core was collected using an AMS 15 x 4.5 cm soil core sampler from the 258 

upper layer of soil at the Buck field site at Hopland Research and Extension Center, Hopland 259 

California in February 2018, and transported on wet ice and stored at 4C for one month. The core 260 

was homogenized and split into two microcosms; half of the microcosms were wetted with 16O-261 

H2O and the other half with 97-atom% 18O-H2O and incubated for 8 days at room temperature. 262 

DNA was extracted from each sample using the PowerSoil DNA extraction kit following 263 

manufacturer’s instructions (MoBio Laboratories, Carlsbad, CA). DNA was added to cesium 264 

CsCl solution and gradient buffer (GB) for a final density of 1.725 g ml-1. The gradients were 265 

centrifuged in a Beckman VTi 65.2 rotor at 44,100 rpm for 109 h at 20ºC. Following 266 

centrifugation each gradient was fractionated into 38 equal fractions of 135 µl each. The density 267 

of each fraction was determined using a handheld AR200 digital refractometer by removing 5 µl 268 

per fraction. DNA in each fraction was purified and concentrated using glycogen/PEG 269 

precipitations followed by an ethanol washing and elution in Tris-EDTA buffer (TE). DNA was 270 

then quantified by PicoGreen assay (Life Technologies). Fractions were pooled to nine sets, 271 

encompassing 1.6900-1.7099, 1.7100-1.7149, 1.7150-1.7199, 1.7200-1.7249, 1.7250-1.7299, 272 

1.7300-1.7349, 1.7350-1.7399, 1.7400-1.7468, and 1.7469-1.7720 g/mL density ranges. DNA 273 

from each fraction—as well as unfractionated DNA from each mesocosm—was fragmented 274 

using the Bioruptor Pico sonicator (Diagenode Inc, Denville, NJ) and prepared for shotgun 275 
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metagenomic sequencing using the Kapa Hyperprep Plus kit with 3 rounds of PCR amplification 276 

(Kapa Biosystems, Wilmington, MA), and sequenced to an average depth of 7 gbp per fraction 277 

on the Illumina NovaSeq (Illumina, San Diego, CA).  278 

Reads from each library were processed for PhiX and adapter contamination using bbduk 279 

(https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/) and low-quality 280 

base pairs trimmed using sickle (https://github.com/ucdavis-bioinformatics/sickle) with default 281 

settings. Trimmed reads for all fractions from each mesocosm were assembled together with 282 

megahit (Li et al. 2015) with --k-min 21 --k-step 6 --k-max 255. Reads from each fraction from 283 

both mesocosms were mapped to each metagenomic assembly using bbmap 284 

(https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/) with fast=t 285 

ambig=random and minid=0.98. Metagenomic contigs from each assembly were binned into 286 

draft microbial genomes using metabat2 (Kang et al. 2019). Reads from trimmed libraries were 287 

mapped again to one genome bin of interest with bowtie2 (Langmead and Salzberg 2013), read-288 

depth calculated in 1kb windows across the genome bin using bedtools coverage (Quinlan 2014), 289 

and visualized with custom r scripts relative to average GC (calculated using custom python 290 

scripts). 291 

 292 

Genomic mock communities and pure cultures 293 

 294 

DNA for the genomic mock communities was purchased from ATCC, resuspended in Tris-295 

eDTA buffer, mixed in equal proportions and aliquoted into replicates. The mock communities 296 

were composed of high molecular weight DNA of Thermoanaerobacter pseudethanolicus, 297 

Bacillus licheniformis, Bifidobacterium longum subsp. Infantis and Streptomyces violaceoruber 298 
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(see sup. Table S1 for accession numbers). These genomes were selected for their 299 

distinguishable %GC content (34.5%, 46%, 60% and 73% respectively). These mock 300 

communities as well as DNA extracted from pure cultures of Escherichia coli K-12 and 301 

Pseudomonas putida KT2440 was centrifuged in a Beckman VTi 66.2 rotor at 20ºC for 120 302 

hours at 44,000 RPM. These samples were fractionated by Agilent 1260 Infinity II analytical-303 

scale fraction collector with isocratic pump followed by precipitation, washing and elution by a 304 

Hamilton Vantage pipetting robot. DNA was quantified using Quant-iT DNA High Sensitivity 305 

Assay. 306 

 307 

16S-based microbial community composition in individual fractions 308 

 309 

Each dataset was processed separately. Reads were quality-trimmed using Trimmomatic version 310 

0.33 (Bolger, Lohse, and Usadel 2014) with parameters set to LEADING:20 TRAILING:20 311 

SLIDINGWINDOW:15:25. The resulting reads were merged using Usearch version 7 (Edgar 312 

2010), clustered in Mothur following the MiSeq SOP and classified using the Silva taxonomy 313 

database version 119 (Schloss et al. 2009; Pruesse, Peplies, and Glöckner 2012; Kozich et al. 314 

2013). 315 

To track individual operational taxonomic units (OTUs) over density fractions, the relative 316 

abundance of the OTU in each fraction was multiplied by either the concentration of DNA in the 317 

same fraction (seawater) or the total 16S copy number (soil dataset 1). The results were 318 

normalized to the total abundance of that OTU over all fractions for an area of 100% under each 319 

curve. 320 

 321 
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Density shifts 322 

 323 

The weighted mean density of each OTU in labeled and control samples was calculated by 324 

multiplying density by OTU abundance (amount of DNA/16S copies * OTU relative abundance) 325 

within each fraction, summing up the products and dividing them by the sum of abundances of 326 

the OTU across all fractions. The weighted mean density shift was calculated by subtracting the 327 

weighted mean density of the OTU in the natural abundance treatment from the labeled sample. 328 

The density shifts were plotted in R (Team 2018) for the 100 most abundant OTUs in each 329 

sample.  330 

Relative error was calculated as: let r be a gradient resolution (r < original number of fractions 331 

(rmax)). The relative error is the difference between the density shift per OTU in resolution r 332 

minus the shift per OTU in rmax. 333 

 334 

Sensitivity analysis 335 

 336 

Using unlabeled replicated (N=10) samples from soil dataset 1, we calculated the weighted mean 337 

density and its standard deviation for each of the 100 most abundant OTUs. We used two 338 

standard deviations as the detection limit per OTU under the assumption that a shift that is 339 

smaller than or equal to the natural variability in the unlabeled weighted mean is not detectable. 340 

For the OTU abundance effect on WMD variability we used 320 OTUs from the same dataset. 341 

 342 

Sensitivity to number of fractions  343 

 344 
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We used datasets 1 and 2 to estimate how precision in the estimate of isotope incorporation 345 

varies with the number of density fractions collected in a qSIP experiment. We combined 346 

fractions in silico to simulate experiments with fewer fractions (f), with the following principles: 347 

1) Only adjacent fractions were combined. 2) Fraction combinations were conducted in order to 348 

create new, combined fractions that were approximately equal in size and sequencing depth (i.e., 349 

with minimal variation in the range of densities represented by each simulated fraction). For 350 

example, to simulate an experiment where only two density fractions were collected, we ran 351 

three possible scenarios: combining the lightest 8, 9 or 10 fractions into one, simulated fraction 352 

and combining the heaviest 8, 9, or 10 fractions into a second, simulated fraction (9 v 9, 8 v 10, 353 

or 10 v 8). We did this to simulate typical approaches to SIP experiments, where fractions that 354 

span similar density ranges are typically selected. For each permuted combination in the  355 

replicated dataset 2, we ran the qSIP code 356 

(https://rdrr.io/github/bramstone/qSIP/f/README.md) and estimated atom percent excess 18O 357 

for each replicate tube, and then calculated the standard deviation in that estimate across all 358 

replicates (n=5). Finally, we calculated the relative standard deviation as a function of increasing 359 

number of fractions included in the simulation compared to the original number of fractions.  360 

 361 

Power analysis 362 

 363 

We evaluated statistical power using the SPRUCE dataset. We used data from soils incubated for 364 

10 days at an intermediate temperature (15 ºC), sampled after 5 and 10 days of exposure to 18O-365 

H2O. The unlabeled control was sampled at day 0. The power analysis focused on taxa that 366 

occurred in all 15 samples (n=5 for control, 18O-H2O at day 5, and 18O-H2O at day 10), omitting 367 
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taxa in the uppermost 5th percentile for standard deviation of the estimate of weighted average 368 

density, which are likely to be rare taxa (see Figure 1). We used observed variation among taxa 369 

for day 5 and day 10 in weighted average density shift, which ranged from -0.003 to 0.033 g cm-370 

3. This captures a wide range of possible values of isotope uptake, from ~0 to ~60 atom percent 371 

excess 18O. We used resampling with replacement to estimate power. For each taxon at each 372 

sample date, N random samples were drawn (with replacement) from each the 18O-labeled and 373 

unlabeled datasets, a t-test was performed, and the P-value was recorded. This was repeated 1000 374 

times, and power was estimated as the frequency of significant t-tests among the 1000 375 

simulations. N was varied to simulate experiments with different numbers of replicates by 376 

pruning or duplicating replicates from the original dataset, ranging from N=2 to N=6. Average 377 

power was calculated across all taxa. The upper 10th percentile was also calculated to estimate 378 

power typical for more dominant taxa.  379 

 380 

Table 1: Datasets used in this study including source, number of replicates and analyses 381 

performed 382 

 383 

Dataset Replicates Fractions 

Naphthalene enriched 

seawater 

1 50 

SPRUCE peatland 5 18 

Grassland 3 9 
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E. coli and P. putida 4-6 30 

Mock community 9 48 

 384 

Results 385 

 386 

Abundance is negatively correlated to qSIP variation 387 

 388 

Density shifts, or change in weighted mean density (WMD), due to incorporation of a stable 389 

isotope labeled substrate are the basis for calculating isotope enrichment. Those shifts have been 390 

shown in-silico to be detectable with qSIP in moderately to highly abundant OTUs (>0.1% 391 

relative abundance) (Youngblut, Barnett, and Buckley 2018). First, we set out to ground-truth 392 

this finding using experimental data. We show that the variability of the unlabeled WMD is 393 

negatively correlated to the abundance of OTUs. Namely, the more abundant an OTU is - the 394 

more consistent its WMD is (Fig. 1). 395 

The physics of the behavior of DNA within density gradient centrifugation affects the number of 396 

fractions in which presence of OTUs can be detected. The long tails of DNA to density 397 

distributions are attributed to a smear of DNA along the tube wall (Youngblut, Barnett, and 398 

Buckley 2018). It stands to reason that the more abundant an OTU - the higher its representation 399 

in this smear will be. In addition, the detection limit of an OTU affects the number of fractions it 400 

will be detected in. Indeed, we show that when inspecting presence/absence of OTUs in all 401 

fractions, OTU abundance is positively correlated with the proportion of fractions in which it is 402 

present (Fig. 1). Abundant OTUs appear in almost all fractions, whereas rare OTUs appear in 403 
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few fractions, and in some cases only one fraction. These rare OTUs also have highly variable 404 

WMD values.  405 

 406 

Figure 1: The effect of OTU abundance on qSIP sensitivity 407 

OTU abundance is positively correlated to the number of fractions in which it can be detected 408 

and negatively correlated to the standard deviation of its unlabeled weighted mean density. 409 
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Coefficient of variation (standard deviation divided by the mean) of the weighted mean density 410 

of 320 from soil dataset 1. As a function of the proportion of density fractions the OTU appears 411 

in. The colors represent the abundance of the OTU in the unfractionated sample in 16S copy 412 

number. 413 

 414 

Density shifts are consistent across medium to high gradient fractionation resolution 415 

 416 

We started with an unreplicated dataset of OTUs from naphthalene-enriched seawater DNA 417 

divided into 50 fractions of which 45 had quantifiable DNA. Consecutive density fractions were 418 

consolidated in-silico (every 2-, 3-, 4 fractions etc) to represent a range of fraction sizes spanning 419 

0.002-0.02 g ml-1, and the density shift of the 100 OTUs that were most abundant in all fractions 420 

combined was examined. The estimated magnitude of the density shifts across taxa remained 421 

consistent at a fraction size of up to 0.011 g ml-1, expanding previous results that demonstrated 422 

this trend with fractions of 0.003-0.008 g ml-1 (fig. 2A) (Youngblut, Barnett, and Buckley 2018).  423 

The same data can be represented as a relative error, which is defined here as the density shift in 424 

resolution r (r < original number of fractions) compared to the density shift with maximum 425 

resolution. When the relative error is high there is a higher probability of mis-assigning taxa as 426 

incorporators when they are not and vice versa. There was a positive linear correlation (R2 = 427 

0.95) between fraction size and mean relative error (fig. 2B). Additionally, the increase in the 428 

mean relative error is accompanied by an increase in its variation, further emphasizing the risk of 429 

type II errors. 430 

 431 
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 432 

 433 

Figure 2: variation in estimated isotopic enrichment declines with smaller density fractions 434 

in unreplicated data 435 

(A) Mean fraction size, while smaller than 0.011 g ml-1 (corresponding to 9 fractions in a 5 ml 436 

ultracentrifuge tube), does not affect the density shift of OTUs. Each line represents one OTU. 437 

The plot shows the density shift (y axis) of the top 100 most abundant OTUs in seawater 438 

enriched with naphthalene. Highly enriched taxa are easily discerned even at a fraction size of 439 

0.02 g ml-1 (4 fractions), but shifts of less or not enriched OTUS, while remaining within a 440 

narrow range, may increase or decrease and negatively affect % atom excess downstream 441 

analyses. (B) Relative error was calculated as the absolute difference between density shift in a 442 

fraction size and the density shift when the mean fraction size was 0.0018 g ml-1 per OTU from 443 

the same data. RelErr = Mean(Shiftr - Shiftmax) where r is a gradient resolution lower than the 444 

maximum. 445 

 446 

However, when adding replicates, the correlation between the number of fractions on the relative 447 

standard deviation of the WMD is no longer linear. Between 2 and 11 fractions, every additional 448 
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fraction reduces the standard deviation exponentially, whereas with at least 12 fractions the 449 

difference is much smaller and linearly correlated to the number of fractions (fig. 3B). 450 

 451 

Low inherent variability determines density shift detection limit 452 

 453 

To identify statistically significant density shifts between samples treated with a labeled substrate 454 

versus a control (unlabeled substrate), it is critical to know the detection limit of density shifts. 455 

To define a detection limit, we calculated the inherent variability in weighted mean density of 456 

unlabeled DNA from various taxa in a highly replicated experiment enriching soil with 18O-457 

water (N=10). We extended this analysis to explore the impact of gradient resolution reduction 458 

on this variability. This was done by merging and averaging data from an increasing number of 459 

consecutive fractions. The initial analysis with medium resolution (fraction size 0.007 g ml-1; 11-460 

17 fractions in a 4.7 ml tube) revealed that the weighted mean density of abundant taxa varied 461 

little between replicates (fig. 3A). At a 95% confidence level (two standard deviations), the mean 462 

of replicates per taxon varied at a median value of 0.004-0.007 g ml-1 at gradient resolutions 463 

varying from 0.007-0.034 g ml-1 variation of 90% of the taxa was always lower than the fraction 464 

size. The variation remains comparable with lower gradient resolution down to a fraction size of 465 

0.027 g ml-1, and only increases significantly (ANOVA, Tukey 95% confidence level) at a 466 

fraction size of 0.034 g ml-1 (3 fractions in a 4.7 ml tube) (fig. 3A). Further analysis of the 467 

increase in standard deviation compared to the standard deviation with the original 18 fractions 468 

revealed a linear increase between 12 and 18 fractions, and an exponential increase with 2-11 469 

fractions (fig. 3B). 470 

 471 
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 472 

 473 

Figure 3: Variability in level of enrichment is negatively correlated to the number of 474 

density fractions in replicated data 475 

(A) Two standard deviations of the mean buoyant density in the 100 most abundant OTUs from 476 

the unlabeled terrestrial dataset (N=10) as a function of fraction size. Higher fraction size 477 

corresponds to lower gradient resolution. The horizontal line within the box represents the 478 

median, the box represents percentiles 25-75 and whiskers represent percentiles 10 and 90 for 479 

100 OTUs in each fraction size. The raw data is plotted on top of the boxes. (B) Relative error 480 

compared to the original 18 fractions dataset (N=5, 100 permutations) decreases as the number 481 

of fractions increases. The inset shows a linear decrease in relative error when using 12-18 482 

fractions. 483 

 484 

Additionally, the range of relative error increased with fraction size. To explore how this 485 

variation affects the detection of substrate incorporators, we calculated the putative sensitivity 486 

(proportion of true positives) and specificity (proportion of true negatives) as a function of the 487 

shift detection threshold for all gradient resolutions discussed previously. This calculation was 488 
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performed under the assumption that a density shift higher than a specific threshold in the 489 

original experimental setup (50 fractions) represented significant enrichment. The shift detection 490 

threshold is the smallest difference between labeled and unlabeled WMD that would be 491 

considered a significant density shift. As expected, both parameters were stable down to 0.011 g 492 

ml-1 density fraction resolution using a shift detection threshold 0.005 g ml-1 or higher. 493 

Specificity was > 95% for all gradient resolutions at a threshold > 0.003 g ml-1, but sensitivity 494 

was more impacted by gradient resolution > 0.013 g ml-1 (fig. 4). 495 

 496 

 497 

Figure 4: Rate of false discoveries increases at low gradient resolution or low shift detection 498 

threshold 499 

Specificity (A; rate of true positives) and sensitivity (B; rate of true negatives) calculated over 500 

the 100 most abundant OTUs from naphthalene-enriched seawater. The colors represent 501 

detection limit thresholds. 502 

 503 

In a replicated experiment, the number of replicates and desired statistical power determine the 504 

detection limit. When designing an experiment, it could be valuable to use the desired statistical 505 
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power and desired enrichment detection threshold to decide on the number of replicates. Both of 506 

these parameters would depend on the scientific purpose of the study. The higher the power and 507 

threshold, the less replicates are necessary (fig. 5). 508 

 509 

Figure 5: The number of replicates of a qSIP experiment determines the statistical power 510 

of enrichment detection and the detection limit 511 

10 atom percent enrichment (APE) by incorporation of 0.0065 g ml-1 18O labeled substrates 512 

would correspond to 12.6 APE with the same incorporation of 13C substrates or 6.3 APE with 513 

15N substrates. 514 

 515 

 516 
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Variation in mean weighted density is greater within than between spins 517 

 518 

DNA extracted from pure cultures of unlabeled Escherichia coli and unlabeled or 100% 13C-519 

labeled Pseudomonas putida was aliquoted into replicates, ultracentrifuged in CsCl and 520 

fractionated. The difference in %GC of the genomes of these organisms (i.e. distance between 521 

their peak densities) permitted calculation of their WMD even when both were unlabeled. 522 

Comparing the mean of WMD of replicates of E. coli between spins revealed negligible 523 

variation. However, the range of mean weighted densities within a spin was up to 0.004 g ml-1 524 

(fig. 6). 525 

Similar results were obtained by spinning triplicates of genomic mock communities comprised of 526 

four organisms with distinguishable genomic %GC. In these experiments between-spin variation 527 

was 0.0013-0.0025 g ml-1, whereas within-spin variation ranged up to 0.0056 g ml-1 (sup. Fig. 528 

S1, sup. table S2 (raw data)).  529 

 530 

 531 

 532 
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Figure 6: Tube-to-tube variability and effect of other taxa 533 

Variability in the weighted mean density (rounded to 3 decimal places) of unlabeled Escherichia 534 

coli (A) between spins (N=6, N=4, N=4 respectively) in the presence of labeled Pseudomonas 535 

putida at 100 atom% 13C and (B) within the same spin in the presence of unlabeled vs. labeled P. 536 

putida at 100 atom% 13C (N=6).  537 

 538 

Using genomic mock communities to explore density to GC content conversion 539 

 540 

One potential strategy for decreasing the cost of metagenomic SIP experiments is to sequence 541 

only the labeled samples and calculate an approximate density shift using the %GC of the 542 

genomic bins. The conversion of density to the GC content of a genome is a linear function of 543 

the unlabeled (12C) weighted mean. There is a canonical equation describing this function 544 

(Rickwood and Birnie 1978; Schildkraut, Marmur, and Doty 1962; Buckley et al. 2007) but it 545 

has also been determined empirically in the past by using a ladder of three bacterial taxa with 546 

varying GC contents (Hungate et al. 2015). However, if the equation was identical for each 547 

gradient in a SIP experiment, as is usually assumed, unlabeled replicates of the same organism 548 

would have had the exact same weighted mean in every run. As shown here and previously, this 549 

is not the case (Hungate et al. 2015; Morando and Capone 2016). To address this variation, we 550 

ran 9 replicates of a mock community with a wide range of known GC content, generated a 551 

calibration curve from each one and fitted an equation to it. 552 

This mock community, consisting of high molecular weight genomic DNA from 4 bacterial taxa, 553 

revealed highly correlated linear relationships (N=9, R2>0.94) between mean weighted density 554 

and %GC, but with a variance in slopes and intercepts (table 1). There was a significant 555 
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difference between the weighted mean density as calculated according to the canonical equation 556 

and the observed mean of weighted mean density per genome over all replicates (N=9, paired t-557 

test, p=0.02). For example, using the canonical equation (Schildkraut, Marmur, and Doty 1962) 558 

on replicate 1 would lead to GC content of the mock community members to appear as 38%, 559 

46.5%, 62% and 72.1% respectively. We also noticed that the difference between observed and 560 

expected mean weighted density decreased as %GC increased (table. 2). 561 

 562 

Table 2:  Observed vs. expected GC content for known genomes varies between replicates 563 

Calculated %GC (Schildkraut, Marmur, and Doty 1962), slope and intercept between replicates 564 

of the genomic mock community. The header row shows the known %GC per genome. 565 

 566 

Replicate 34.5% 45.9% 60.1% 72.7% slope intercept R2 

1 37.8% 46.9% 62.2% 72.4% 0.0904 1.6654 0.995 

2 37.8% 52% 64.3% N/A 0.0985 1.6642 0.984 

3 40.8% 48% 64.3% 75.5% 0.0934 1.6661 0.993 

4 39.8% 48% 64.3% 76.5% 0.0978 1.6639 0.995 

5 40.8% 50% 66.3% 78.6% 0.0989 1.6652 0.997 

6 NA 45.9% 53.1% 68.4% 0.0817 1.666 0.943 

7 39.8% 50% 63.3% 74.5% 0.0904 1.6677 0.999 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2020. ; https://doi.org/10.1101/2020.02.25.965764doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.965764
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

8 40.8% 51% 63.3% 75.5% 0.0889 1.6689 0.9998 

9 42.9% 52% 65.3% N/A 0.0869 1.6713 0.9998 

mean 39.8% 49% 63.3% 74.5% 0.0895 1.6678 0.9998 

 567 

Discussion 568 

 569 

SIP is a powerful tool for investigating taxon-specific microbial functions in complex 570 

assemblages. Like any method, SIP-derived measurements have some inherent variability which 571 

can be managed – within limits – to address the research questions of interest. Our results show 572 

how this can be done given a particular research question and the level of sensitivity / detection 573 

demanded by that research question. Despite the wide use of SIP, there has been little 574 

benchmarking of interpretation of its results. Here we attempted to shed light on some practical 575 

aspects of the method and discuss how to adjust it to maximize results. 576 

Variation of the mean weighted density (WMD) of the same unlabeled taxon over numerous 577 

replicates, observed even between samples processed simultaneously and in the same manner, 578 

implies that there are unpredictable physical and/or chemical factors unrelated to genomic %GC 579 

affecting SIP analyses. The variability these factors create can determine the limit of density shift 580 

detection. Both the unlabeled WMD variation and interpretation error analyses performed here 581 

imply that when using qSIP a detection limit balancing Type-I and Type-II errors may revolve 582 

around 0.005 g ml-1 in unreplicated 13C experiments when dividing the density gradient into at 583 

least 4 density fractions. Replication would lead to increased statistical power using the same 584 

detection limit. However, density-shift estimates of taxon-specific isotope incorporation are 585 
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broadly robust across a wide range of fraction sizes. For example, the relative error of high 586 

incorporators only varied by an average of 0.02% in shift from fraction size 0.002-0.011 g ml-1 587 

(N=5, 50 to 9 fractions in a 5.1 ml tube). 588 

In reality, WMD variation means that the same organism may peak at a density anywhere within 589 

a specific range. Moreover, the unlabeled mean and labeled mean of a single replicate can 590 

deviate in different directions, increasing the observed density shift and leading to a Type I error, 591 

and the potential for such deviation increases at low gradient resolution. This may explain why 592 

the variation in the relative error increases as resolution decreases. 593 

Low gradient resolution in combination with higher variability may also lead to false 594 

classification of borderline taxa as incorporators when they are not (Type I error) and vice versa 595 

(Type II error). For example, a simulation model (Youngblut, Barnett, and Buckley 2018) 596 

showed that the rate of true negatives (specificity) and true positives (sensitivity) of qSIP is 88% 597 

and >90% respectively, with virtually no effect of fraction size at the range of 0.003-0.008 g ml-598 

1. When examining the specificity and sensitivity of qSIP using real unreplicated data over a 599 

wider range of fraction sizes we found that gradient resolution and shift detection limit both had 600 

an effect. However, the reliability of qSIP remained extremely high as long as the detection limit 601 

was 0.005 g ml-1 or higher (Specificity > 90% and sensitivity > 95%) regardless of gradient 602 

resolution. This detection limit is comparable to 2 standard deviations of unreplicated unlabeled 603 

weighted mean density, further supporting that analysis. Experimental replication, even as low as 604 

3 replicates, can increase the power of this analysis to have virtually no error using a similar 605 

detection threshold.  Our analysis can be used for experimental design based on the desired 606 

statistical power. 607 
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The reduction of the number of density fractions we addressed in this study could significantly 608 

mitigate labor and sequencing costs. While helpful for amplicon-SIP, this reduction is crucial for 609 

metagenomic SIP (MG-SIP). The combination of metagenomics and SIP, first attempted over a 610 

decade ago (Dumont et al. 2006; Schwarz, Waschkowitz, and Daniel 2006), involves sequencing 611 

metagenomes instead of amplified marker genes from density fractions, and assembly of 612 

genomic bins from those metagenomes. Genomic bins that shift to a higher density can then be 613 

identified and their metabolism explored directly. Many of the obstacles that were brought up in 614 

the past with regards to MG-SIP (Chen and Murrell 2010) were addressed by the improvement in 615 

sequencing platforms and library preparation kits, such as low DNA yield, MDA biases and low 616 

throughput. Still, so far studies combining metagenomics and SIP included shotgun sequencing 617 

of labeled DNA, a few heavy fractions, or at best also sequenced 2-3 light fractions 618 

(Dombrowski et al. 2016; Fortunato and Huber 2016; Thomas, Corre, and Cébron 2019). This 619 

approach limits detection of substrate incorporators in several ways: (1) choosing which fractions 620 

to sequence relies on density shift of the entire community, which may be subtle (2) low GC 621 

genomes, even if highly enriched, may not become heavy enough to reach the heavy fractions, 622 

(3) low GC genomic islands may not be well-covered and therefore not assembled for the same 623 

reason, leading to increased genome fragmentation (sup. fig. S2), (4) depending on the density of 624 

the fractions sequenced, high GC genomes may be highly represented regardless of enrichment, 625 

(5) an organism may be abundant in the sample but not be enriched enough to reach the heavy 626 

fractions due to additional use of other substrates, in which case it could take up a good amount 627 

of the labeled substrate but not be detected and (6) abundant organisms can be found in all 628 

density fractions as demonstrated here and previously (Youngblut, Barnett, and Buckley 2018), 629 

hence they may be erroneously classified as incorporators when sequencing only heavy fractions. 630 
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We propose that sequencing all fractions should overcome all of these obstacles. A study 631 

demonstrating the feasibility of this approach using qSIP with 3 density fractions in soil has been 632 

published recently (Starr et al. 2018). The use of low gradient resolution limits detection to 633 

highly enriched taxa. However, medium gradient resolution along with the decreasing price of 634 

shotgun sequencing should still keep the financial and computational costs of MG-SIP 635 

manageable while maintaining the detection limit achievable at high resolution. Specifically, our 636 

data suggests that circa 10 density fractions (fraction size 0.011 g ml-1) the increase in error 637 

compared to higher resolution is minor. 638 

All commonly used SIP protocols rely on a linear conversion between mean weighted density of 639 

the unlabeled genome and its GC content (Schildkraut, Marmur, and Doty 1962; Buckley et al. 640 

2007; Neufeld et al. 2007; T. Lueders 2010; Murrell and Whiteley 2010). Once again, this 641 

inherent variation implies that GC content cannot be accurately converted to density with a 642 

canonical equation (Schildkraut, Marmur, and Doty 1962). Rather, we may need to create a 643 

calibration curve of %GC/WMD per tube by using an internal standard, as these equations have a 644 

very high R2 but with varying slopes and intercepts. An accurate conversion between MWD and 645 

%GC may become extremely important for SIP experiments in which metagenomes are 646 

sequenced only from the heavy fractions of labeled samples. Once genomic bins are assembled, 647 

their %GC can be converted into a theoretical unlabeled WMD which can be used to calculate 648 

the density shift, and thus the enrichment level of those bins. A reliable calculation may allow us 649 

to avoid analyzing most of the unlabeled controls, and thus save on labor and costs 650 

To demonstrate the costs of high-resolution MG-SIP, we compared the resources and yield of a 651 

simplified experiment. High resolution SIP routinely generates 40-60 density fractions. 652 

Assuming the conservative number of 40 fractions, we would generate 40 metagenomes from 653 
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each tube. As we would sequence not only the isotopically labeled fractions but also the control 654 

fractions, we would be looking at 80 metagenomes. Furthermore, for a minimum of 3 replicates, 655 

the number would increase to 240 metagenomes. Assuming shallow sequencing of 2 Gbp per 656 

metagenome, the sequencing process would yield 480 Gbp that would need to be stored, 657 

manipulated and assembled. Using the latest NovaSeq platform that produces higher yield at a 658 

lower cost per-base, we would still require 5 lanes on the sequencer. The cost of these combined 659 

with library preparation would currently revolve around $50,000 660 

(http://qb3.berkeley.edu/gsl/wp-content/uploads/2018/08/2018_2019-QB3-Genomics-661 

Rates_August.pdf). In addition, there would be a cost in labor or robot facility time for 662 

fractionation, precipitation, ethanol washing and elution. As stated, this would be a highly 663 

simplified experiment. All of these costs would increase when adding time-points or other 664 

experimental conditions such as different temperatures, other nutrients etc. 665 

Reducing the number of fractions to 10 would yield a relative error lower than 0.0005 g ml-1 666 

which is negligible considering that the standard deviation of the WMD is at least 3 times higher 667 

than that even when using an automated pipeline. Below a fraction size of 0.011 g ml-1 the mean 668 

relative error increase, as does its variability, in both replicated and unreplicated datasets. 669 

However, this increase in variability can still be mitigated by reallocating some of the funds 670 

towards replication. In fact, reducing the number of fractions even by a factor of 2 will allow for 671 

doubling the number of replicates without additional costs, while increasing the statistical power 672 

of any downstream analyses. 673 

With MG-SIP we would, in theory, already have the GC content of a genomic bin, so that it 674 

would not need to be calculated from the mean weighted density, in which case the control 675 

would be used only to calculate the density shift. That being said, we expect that the genomic 676 
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bins generated from metagenomes will not be complete, therefore they may also have some error 677 

rate in GC content calculation. When combining MG-SIP with an internal %GC/density ladder, 678 

we could significantly decrease the number of unlabeled controls sequenced and use the 679 

calibration curve from the labeled tubes with the GC content of the bin to calculate the unlabeled 680 

WMD and the density shift. The internal standard should be easily informatically separable from 681 

the sample. This could be done by creating a mock community of organisms which are highly 682 

unlikely to appear in the sample (e.g. in a soil sample use genomes of strictly marine organisms) 683 

and could be customizable per experiment. Due to the variation within spin, an external ladder (a 684 

mock community in a separate ultracentrifuge tube) would be insufficient. However, it could be 685 

argued that finding a suitable set of non-indigenous genomes distinguishable from a highly 686 

diverse environment such as soil may prove difficult. Alternatively, if highly complete genomic 687 

bins can be assembled, then their %GC would be more reliable, and their WMD can be 688 

calculated from the gradient. Such bins could be used as an internal standard for generating a 689 

WMD-to-GC formula. As the generation of high-completion bins could only be assessed post 690 

hoc, we would still recommend the use of an internal standard. 691 

The inherent variability in qSIP can stem from many steps along the way: replicate variation, 692 

bottle effects during incubation, extraction efficiencies, tube to tube variation in the gradient, 693 

amplification bias, strain heterogeneity, among-treatment shifts in community composition, and 694 

OTU clustering errors (for marker genes). Quantifying the sensitivity of qSIP to those factors 695 

will improve existing amplicon-based qSIP techniques and facilitate efficient ways of extending 696 

SIP to more ambitious applications, such as metagenome-assembled genome-based SIP. 697 

 698 

 699 
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