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Abstract 

Computational tools have allowed cognitive neuroscientists to move beyond measuring neural activations to 

examining neural representations. However, access to the representational content of neural activations early 

in life has remained limited. We asked whether patterns of neural activity elicited by complex visual stimuli 

(animals, human body) could be decoded from EEG data gathered from 12-15-month-old infants and adult 

controls. We assessed pairwise classification accuracy at each time-point after stimulus onset, for individual 

infants and adults. Classification accuracies rose above chance in both groups, within 500 ms. In contrast to 

adults, neural representations in infants were not linearly separable across visual domains. Representations 

were similar within, but not across, age groups. These findings suggest a developmental reorganization of 

visual representations between the second year of life and adulthood and provide a promising proof-of-

concept for the feasibility of decoding EEG data within-subject to assess how the infant brain dynamically 

represents visual objects. 
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Significance statement 

Existing studies of the infant human brain have focused on measuring average neural activations. Thus, access 

to the information that is represented in these activations, i.e. neural representations, has remained limited. 

We use machine-learning tools to probe the temporal dynamics of neural representations supporting the 

differentiation of visual images of animate objects in 12-15-month-old infants. In so doing, we establish the 

feasibility of using these tools with human electroencephalography (EEG) data from individual infants. The 

findings suggest that how human brain dynamically represents complex visual objects changes between 

infancy and adulthood. 
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Introduction 

A key question in developmental cognitive science concerns the content and properties of neural 

representations in preverbal infants: How do these representations change with brain maturation and 

experience? Because infants cannot explicitly report on their own representations, developmental scientists 

implicitly probe representations by measuring looking times and other behaviors (Aslin, 2007). These 

behavioral paradigms are limited to testing a few stimulus contrasts, given the short duration of cooperativity 

in infants (Aslin & Fiser, 2005). Neural measures such as functional near-infrared spectroscopy (fNIRS) and 

electroencephalography (EEG) additionally reveal spatial (Lloyd-Fox, Blasi, & Elwell, 2010) and temporal 

(Csibra, Kushnerenko, & Grossmann, 2008) differences in brain activation in response to experimental 

conditions, demonstrating already intricate functional specialization in the infant human brain (Dehaene-

Lambertz & Spelke, 2015). Like most behavioral measures, these neural activations typically consist of group 

averages in response to two or three stimulus conditions. Another limitation of these studies is that they focus 

on differences in the amplitude or timing of a neural signature (e.g., an average evoked component) rather 

than how reliably each signature maps onto a specific stimulus. Thus, the field of developmental cognitive 

neuroscience has remained largely based on studies of average activations, leaving open the question of the 

information that is represented in these neural signals, i.e. neural representations. Multivariate pattern analysis 

(MVPA) addresses this gap by asking whether one may extract information about (classify) relevant aspects of 

the stimuli presented from patterns of neural activations with higher than chance accuracy, which is then taken 

to suggest that neural representations support the discrimination of these stimuli (Haxby, Connolly, & 

Guntupalli, 2014; Haxby et al., 2001; Hung, Kreiman, Poggio, & DiCarlo, 2005; Isik, Meyers, Leibo, & Poggio, 

2014; King et al., 2018; Meyers, Freedman, Kreiman, Miller, & Poggio, 2008; Norman, Polyn, Detre, & Haxby, 

2006). Here we ask whether patterns of neural activation support the discrimination of stimuli that have been 

presented to a given infant on a given trial. 
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Very few studies have used information-focused methods, such as MVPA, to address this question in infants. 

Two recent studies have used group-level MVPA-related methods to uncover representations of a small 

number of stimulus classes in awake infants using near infra-red spectroscopy (Emberson, Zinszer, Raizada, & 

Aslin, 2017) and fMRI (Deen et al., 2017). These studies provided an early demonstration that information-

based analysis methods can map the geometry of neural representations in infant visual cortices at the group 

level. Here, we extend that work by using time-resolved, within-subject MVPA (Grootswagers, Wardle, & 

Carlson, 2017) of EEG data to reveal the temporal dynamics of neural representations at the level of individual 

infants. 

We focus on two classes of visual stimuli that are highly familiar to infants and easily discriminable based on 

behavioral studies - animals and parts of the body. Adults identify visual objects quickly and efficiently: the 

organization of neural representations of visual objects according to specific domains (e.g., animal versus 

human body) is evident as early as 100-200 ms post-onset in adults, reflecting robust specificity of neural 

responses along the ventral stream (Cichy, Pantazis, & Oliva, 2014; Isik et al., 2014). Infants already exhibit 

some functional specificity in their neural responses to visual objects, such as strikingly domain-specific 

cortical activations to faces (de Haan, Pascalis, & Johnson, 2002; de Heering & Rossion, 2015; Deen et al., 

2017; Halit, Csibra, Volein, & Johnson, 2004; Tzourio-Mazoyer et al., 2002), and perhaps to animate versus 

inanimate objects (Jeschonek, Marinovic, Hoehl, Elsner, & Pauen, 2010). However, whether the specificity of 

visual activations is sufficient to support robust, fast representations of visual objects and their categorical 

domains (e.g. body parts or animals) in infancy remains unknown. We sought to establish the feasibility of 

time-resolved MVPA of EEG data in 12- to 15-month-old infants, and in so doing, to probe for the first time 

the dynamics of neural representations of two types of animate visual objects using machine-learning based 

classification techniques. 
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Materials and Methods 

Participants. The final sample was comprised of  10 12-to 15-month-old infants (6 girls, mean age 435.00 ± 

20.40 days), and 8 young adults who contributed 50% or more of the maximum possible number of valid trials 

(infants: at least 80 valid trials total out of a maximum of 160, or an average of 10 valid trials per condition; 

adults: at least 128 valid trials out of a maximum of 256, or an average of 16 valid trials per condition; range: 

infants 9-19, adults 15-32). Within-subject multivariate pattern classification analyses require that each 

included participant contribute sufficient data to train classifiers, which is challenging to achieve with infants 

(Emberson et al., 2017). Here, we restricted within-subject analyses to individual participants who contributed 

at least 50% valid trials compared to the maximum possible number of trials (or at least 10 valid trials per 

condition on average for infants). An additional 12 12- to 15-month-old infants (5 girls, mean age 426.92 ± 

21.16), and 4 young adults completed the study but were excluded due to contributing too few valid trials (11 

infants, 1 adult), having more than 20% of channels identified as noisy by PrepPipeline (Bigdely-Shamlo, 

Mullen, Kothe, Su, & Robbins, 2015) during preprocessing of the raw continuous EEG (3 adults), or refusal to 

wear the EEG net (1 infant). Ages of included versus excluded infants did not significantly differ (two-sample t-

tests, ps > 0.37). A subset of participating families also completed the English MacArthur Communicative 

Development Inventories: Words and Gestures (CDI, Infant form) questionnaire (Fenson, 2002); raw CDI 

scores from this subsample is reported in Table 1 for reference, along with group average scores on word 

items corresponding to the visual stimuli used in the current study (e.g., “cat”). Briefly, all 12- to 15-month-old 

infants were reported by their caregiver to understand at least one of the words that were included in the CDI 

and could be used to describe the visual stimuli used in this study (e.g., most commonly, “dog”, “nose”, 

“mouth”, “foot”, and/or “cat”); a majority of 12- to 15-month-old infants were reported to produce at least 

one of these words (most commonly, “dog”; see Table 1 for reference). Thus, infants were generally familiar 

with the depicted objects, as reported by their caregivers.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.26.947911doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.947911
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

Table 1. Summary data from the MacArthur Communicative Development Inventories: Words and Gestures 

(CDI).  

 12-15-month-old infants 
Total N of subsample with CDI data  15 
 Also included in EEG analyses  7 
CDI raw scores (Mean ± SD)  
 Words  
  Words understood (Max: 396) 107.47 ± 64.94 
  Words produced (Max: 396) 10.60 ± 8.02 
  Total (Max: 792) 118.07 ± 67.01 
 Gestures  
  Early gestures (Max: 18) 12.87 ± 2.29 
  Late gestures (Max: 45) 19.60 ± 7.91 
  Total (Max: 63) 32.47 ± 9.16 
CDI individual word items (% Infants)  
 Understands  
  Animals bear 20.00% 
   bunny 26.67% 
   cat 46.67% 
   dog 93.33% 
   kitty 26.67% 
   teddy bear 20.00% 
  Body parts foot 46.67% 
   hand 40.00% 
   mouth 53.33% 
   nose 60.00% 
  At least one of the above 10 words 100.00% 
 Produces   
  Animals bear 0.00% 
   bunny 0.00% 
   cat 6.67% 
   dog 53.33% 
   kitty 0.00% 
   teddy bear 0.00% 
  Body parts foot 0.00% 
   hand 0.00% 
   mouth 6.67% 
   nose 0.00% 
  At least one of the above 10 words 60.00% 
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Stimuli. Stimuli were color images of 4 animals (cat, dog, bunny, teddy bear) and 4 parts of the body (hand, 

foot, mouth, or nose). The pictures were cropped, placed on a uniform gray background, and displayed with a 

visual angle of roughly 19° by 19° for infants or 8° by 8° for adults. See Bergelson & Swingley (2012) for 

details on these stimuli. 

Paradigm. Stimuli were presented in random order for 500 ms with a jittered ITI of 1-1.5 s. For infants, stimuli 

were presented using EPRIME (Schneider, Eschman, & Zuccolotto, 2002) for up to 20 repeated blocks 

corresponding to a maximum total of 160 trials. Presentation of each stimulus was triggered manually by the 

experimenter. For adults, stimuli were presented using MATLAB and Psychtoolbox (Brainard, 1997) for up to 

32 repeated blocks corresponding to a maximum total of 256 trials. Adults also saw additional trials 

corresponding to inanimate stimuli (food and clothing items) which were not seen by infants and thus were not 

included in the current analyses.   

EEG recordings. Infants’ EEG data were recorded at 1000Hz from 128-channels EGI High-Density Geodesic 

Sensor Nets, referenced online to Cz. A video of children’s behavior while looking at the display screen was 

recorded simultaneously using a camera fixed on top of the display screen and coded offline. Adults’ EEG data 

were recorded at 1000Hz from 32-channels BrainVision actiChamp caps, referenced online to the left ear. 

EEG preprocessing. Raw continuous EEG signals were processed through the PrepPipeline toolbox (Bigdely-

Shamlo et al., 2015) for noisy channel detection and interpolation, robust average-reference, and line-noise 

removal. Resulting continuous signals were filtered to 0.2-200 Hz using a Butterworth design as implemented 

in ERPLab’s “pop_basicfilter” function (Lopez-Calderon & Luck, 2014), and further processed using EEGLAB 

and custom functions (Delorme & Makeig, 2004) as described below. Filtered continuous signals were 

smoothed using a 20-ms running average, epoched from -50 to 500 ms relative to stimulus onset, and baseline 

corrected. A relatively short epoch duration was chosen in order to maximize the number of valid, artifact-free 

trials available for multivariate pattern analyses. For infants, outer rim channels were excluded from further 
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analysis to reduce the number of classification features (see Figure 2 for maps of included channels). Because 

multivariate pattern analyses rely on patterns of activity across channels, individual epochs were excluded if 

signals in any scalp channel exceeded ± 150 µV for infants or ± 80 µV for adults. For infants, videos were 

additionally coded offline to exclude trials when the child stopped looking at the screen during stimulus 

presentation for any reason (e.g., due to eye movement, head movement, or blink). For adults, individual 

epochs were additionally excluded if signals in Fp1/2 exceeded ± 60 µV (suspected blink artefact) or signals in 

horizontal EOGs exceeded ± 40 µV (suspected eye movement artefact). Horizontal EOGs were excluded from 

further analysis. 

Univariate ERP analyses. We report average event-related potentials (ERPs) in each condition and group, using 

the following regions and time-windows of interest as described in the literature for comparable paradigms: for 

infants (De Haan, 2013), ERP analyses focused on the N290 (15 occipital electrodes around Oz, O1 and O2; 

190-300ms), P400 (18 occipitotemporal electrodes around T5/P7 and T6/P8; 300-500 ms), and NC (16 central 

electrodes comprising Cz, C3 and C4; 300-500 ms); for adults, ERP analyses focused on the N170 (T5/P7 and 

T6/P8; 150–190 ms; e.g. Balas & Koldewyn, 2013). ERP analyses were performed in MATLAB. 

Multivariate EEG analyses. Time-resolved, within-subject multivariate pattern analysis was performed. An 

advantage of within-subject classification methods is that classification can leverage individual idiosyncrasies in 

neural patterns in each individual participant because classifiers do not need to generalize across different 

participants. These analyses were performed in MATLAB. Multivariate pairwise classification analyses were 

conducted using linear SVMs as implemented in libsvm 3.11 (Chang & Lin, 2011) for MATLAB, with 4-fold cross-

validation and pseudo-averaging of individual trials within each fold (Grootswagers et al., 2017). Multivariate 

patterns of channel baseline-normalized amplitude z-scores at each trial were used as features to classify trials 

according to stimulus conditions, considering each time-point post-onset and each possible pair of stimulus 

conditions (e.g., cat vs dog) independently, resulting in a time-series of pairwise stimulus classification accuracy.  
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Thus, the theoretical chance level was 50%. To train a given classifier for a given participant, for a given pair of 

stimuli, and at a given time-point, trials from each of the two stimulus conditions of the pair (e.g., cat vs dog) 

were randomly re-ordered (permuted) and separated into 4 folds (i.e., quartiles of trials for that stimulus pair). 

For each of these two conditions, trials from each of the 4 folds were separately averaged to yield 4 pseudo-

trials for each of the two conditions (Grootswagers et al., 2017; Isik et al., 2014). The first 3 of these 4 pseudo-

trials were used for training the classifier, while the remaining pseudo-trial was used for testing (i.e., 4-folds 

cross-validation). The procedure of re-ordering trials, separating into folds, and training and testing classifiers 

at every time point was repeated 200 times; classification accuracies are averaged over these instances to yield 

more stable estimates. For visualization purposes, classifier weights were transformed back into multivariate 

activation patterns using the formula proposed in Equation 6 of Haufe et al. (2014). Temporal generalization 

analyzes (King & Dehaene, 2014) were additionally conducted, by which classifiers are trained on a given time-

point post stimulus onset on the training set (e.g. +20 ms post-onset) and trained on another time point on the 

test set (e.g. +40 ms post onset). Thus, the temporal generalization classifier must generalize not only to unseen 

data from the same participant, but to a different processing stage post-stimulus; the method thus allows for 

examining whether neural representations of stimuli are sustained or reactivated over processing time (King & 

Dehaene, 2014). Statistical significance of classification accuracies against chance (right-tail test against the 

chance level of 50%) and of the paired differences in accuracy between within- and across-domain classifications 

(two-tail test against an average accuracy difference of 0%) were established using sign permutation tests with 

cluster-based correction for multiple comparisons over time-points (cluster-defining threshold p-value = 0.05, 

alpha = 0.05; similar to the procedure of e.g. Cichy, Pantazis, & Oliva (2014). 

Group representational dissimilarity analyses (RDMs). We examined group-average RDMs, comprised of 

average pairwise classification accuracy for each possible pair of visual images. For each group-average RDM, 

a split-half noise ceiling was estimated as follows. Pearson’s correlations between group average RDMs were 
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computed from random half-splits of the group data, correcting these split-half correlations using the square 

root of the Spearman-Brown formula (Lage-Castellanos, Valente, Formisano, & De Martino, 2019) and 

averaging these estimates over 100 random half-splits of the group data. Following the procedure described 

in Lage-Castellanos et al. (2019), the noise ceiling was defined to be zero (i.e., at chance) for negative split-

half correlations. The statistical significance of the resulting noise ceiling estimate against chance was 

evaluated using one-sided empirical p-values derived from null distributions obtained from 10,000 null split-

half noise ceiling estimates. Each of these 10,000 null split-half noise ceiling estimates was computed using 

the procedure as described above, but with one of the two group-average RDMs scrambled in each of 100 

random half-splits of the group data. Similarity between group-average RDMs from different age groups or 

time-windows were computed using Pearson’s correlations. Significance was evaluated based on two-sided 

parametric p-values associated with these Pearson’s correlation coefficients. All p-values corresponding to 

correlations between different group RDMs (Figure 5, lower triangle values) and to noise-ceiling estimates for 

each RDM (Figure 5, diagonal values) were corrected for multiple comparisons at the FDR level over this 

entire set of 21 correlations and noise-ceiling p-values.   

Comparison of group RDMs with extant computational models of vision. Based on the available rankings of 

Brain-Score (Schrimpf et al., 2018), we selected CORnet-S (Kubilius et al., 2018) and the pool3 layer of VGG-

16 (Simonyan & Zisserman, 2015) as potential computational models of adult high-level (inferotemporal) and 

mid-level (V4) vision, respectively. At the time of selection, CORnet-S was listed by Brain-Score as the highest 

overall ranking model and one of the highest ranking models for matching high-level visual regions 

(inferotemporal cortex); the pool3 layer of VGG-16 was listed as the highest ranking model for matching the 

mid-level visual region of V4. For VGG-16, we used the Matlab implementation that is pretrained on 

ImageNet. For CORnet-S, we used the pretrained implementation that is openly available at 

https://github.com/dicarlolab/CORnet. For each of these two models, we obtained model activations in 
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response to each of the 8 visual images used in the human experiment, then used pairwise Pearson’s 

correlations to compute Representational Similarity Matrices (RSMs) for each model based on these 

activations. In addition, we constructed a control RSM of low-level similarity using the Matlab implementation 

of SSIM (Wang, Bovik, Sheikh, & Simoncelli, 2004), an index of low-level similarity between two images that 

ranges from -1 to +1, taking a value of +1 when the two images being compared are exactly identical. Three 

model RDMs (CORnet-S, VGG-16, and control SSIM) were derived from these three RSMs by taking RDM = 1 

– RSM (Cichy et al., 2014). Because a linear relationship between model and human representational 

distances could not be assumed, these model RDMs were compared to the experimental human RDMs using 

Spearman rank-correlations (Supplementary Results and Supplementary Figure S3).  

Data and Code Availability. The datasets and code generated during this study are available at [Figshare DOI 

to be activated upon publication acceptance]. 

Results 

Event-Related Potentials (ERPs) 

To form a basis of comparison between this dataset and prior ERP work in infants, we first examined the 

observed average ERPs in each condition (animals, human body parts) and group (infants, adults) using 

commonly used regions and time-windows of interest (Figure 1). We used one-way mixed-effects ANOVAs to 

estimate the effect of domain (animal, body) on the average amplitude of the N290 (occipital ROI, 190-300ms), 

P400 (occipitotemporal ROI, 300-500 ms), and NC (central ROI, 300-500 ms) in infants. The effect of domain 

was not significant for any of these three components (all ps > 0.15). A one-way mixed-effects ANOVA further 

examined the effect of categorical domain (animal, body) on the average amplitude of the adults’ N170 

component (T5/P7 and T6/P8; 150–190 ms; e.g. Balas & Koldewyn, 2013). There was a significant effect of 

domain on the adults’ N170 (F[1,14] = 12.64, p = 0.003, 95%CI [-5.63; -1.39], d = -0.87), driven by more negative 
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N170 amplitudes in response to human body than to animal images. Cluster-corrected comparisons of the 

average waveforms at each channel ROI, unrestricted to time-windows of interest, yielded similar results (Figure 

1), with statistically significant effects of domain (body vs. animal) in ROIs in adults, and no or statistically 

marginal effects in infants. 

 

Figure 1. Average ERP waveforms in response to the visual stimuli in infants (12-15-month-olds) and young 

adults. Average ERP waveforms ± s.e.m, computed from the same data epochs that were used to perform 

within-subjects classification. In contrast to within-subjects classification, amplitudes were not z-scored, and 

were averaged over electrodes of interest. Thick (resp. thin) black horizontal lines indicate significant (resp. 

marginally significant) clusters for the difference in average amplitude in response to animals vs. body items 

(two-tailed). 
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Multivariate classification timeseries 

We next conducted time-resolved multivariate classification of the EEG data (Grootswagers et al., 2017; Isik et 

al., 2014), representing the time-course of information available in the measured neural signals that identifies 

which of the 8 visual stimuli has been presented on a given trial. Specifically, a linear support vector machine 

(SVM) algorithm was used to classify trials as containing each member of all possible pairs of visual stimuli 

(e.g., cat versus dog) and at each millisecond time-point after stimulus onset. Neural representations could 

accurately discriminate between the presented visual stimuli in both infants and adults, averaging over all 

pairwise classifications (Figure 2, left column; right-tail comparison against a chance level of 50%, cluster-

corrected sign permutation tests, cluster-defining threshold p < 0.05, corrected significance level p < 0.05). 

Results in adults replicated previous work (Isik et al., 2014) showing sustained, above-chance average pairwise 

classification of visual images emerging by 100 ms and peaking at 72.86% classification accuracy at 177 ms 

(significant cluster from 82-499 ms). In infants, classification of visual images also rose to above-chance levels 

by 100 ms, but peaked at 57.13% classification accuracy and about 150 ms later than in adults at 320 ms 

post-onset (significant clusters from 83-198 ms and from 212-361ms; additional marginally significant cluster 

from 419-499 ms). The topography of the multivariate neural patterns differentiating between all 8 visual 

images (Haufe et al., 2014) is presented in Figure 3, confirming the expected occipital topography in infants, 

and occipitotemporal topography in adults.  

To test whether neural representations discriminated pairs of visual images more strongly when those 

depicted objects came from a different categorical domain (e.g., dog versus hand) than when those depicted 

objects came from the same domain (e.g., dog versus cat), we next compared classification accuracies across 

and within domains (Figure 2, left column; two-tails comparison against the null hypothesis of 0% difference in 

accuracy, cluster-corrected sign permutation tests, cluster-defining threshold p < 0.05, corrected significance 
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level p < 0.05). Results in adults replicated previous findings (Cichy et al., 2014), showing higher classification 

accuracy across than within domains by 200 ms post-onset (peak accuracy difference of +16.95% at 201 ms; 

significant cluster for the difference in accuracy from 156-383 ms). In infants, average pairwise accuracies for 

the across-domain and within-domain classifications did not differ significantly (cluster ps> 0.1).  

Because infants had lower trial counts, it is conceivable that their datasets could have failed to reveal a 

domain effect because of the overall lower number of trials per stimulus item. Thus, we asked if the domain 

effect that was evident in the adult dataset would remain if trial counts in the adult dataset were yoked to 

those of the infant dataset. When trial counts in the adult dataset were matched to those of the infant dataset, 

a domain effect remained significant (cluster p < 0.05) in the same direction and at the same overall timing as 

in the full adult dataset (Supplementary Figure S2). Overall, it appears unlikely that lower trial counts alone 

could account for the lack of a domain effect in the neural representations of infants. However, other 

differences between the adult and infant datasets (e.g., channel counts, attention, electrode type) could have 

played a role.   

Temporal generalization 

Robust neural representations can remain active for several tens of milliseconds, for example if the task 

requires the maintenance of that representation in working memory (Quentin et al., 2019). Temporal 

generalization analyses (King & Dehaene, 2014) were run to assess the maintenance of neural representations 

of visual images over time (Figure 2, central column; right-tail comparison against the chance level of 50%, 

cluster-corrected sign permutation tests, 2-D cluster-defining threshold p < 0.05, corrected significance level p 

< 0.05). Specifically, temporal generalization analyses quantify how well a classifier trained on neural data at a 

given time point (e.g., 100 ms post-onset) can decode neural data from the same participant at another time 

points (e.g. 150 ms post-onset), repeatedly for all time points available for training and testing, thus providing 

a metric of the consistency, or maintenance, of neural representations of stimuli across distinct time points 
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(King & Dehaene, 2014). In adults, these analyses showed the maintenance (generalization) of neural 

representations supporting pairwise classification of stimuli along the temporal diagonal (i.e. for test time-

points closely bordering the times at which the classifier was trained), as previously observed (Isik et al., 2014; 

King & Dehaene, 2014). Similar results were found in infants, though classification accuracy for generalizing 

across time-points was only marginally significant (2-D cluster p < 0.1). Thus, infants’ neural representations 

that support the classification of visual images may be maintained over time to some degree by 12-15-months 

of age, but not robustly enough to reach statistical significance. However, because there were no task 

demands (i.e., the paradigm consisted of passive viewing), it is possible that adults spontaneously held neural 

representations, once robustly present after stimulus onset, in working memory whereas infants did not, 

although perhaps they could if the task demanded it (e.g., delayed match-to-sample).  

To test whether neural representations that support the differentiation of categorical domains were 

maintained over time, we next examined the difference in temporal generalization accuracy for classifying 

across-domain versus within-domain pairs of stimuli (Figure 2, right column; two-tails comparison against the 

null hypothesis of 0% difference, cluster-corrected sign permutation tests, 2-D cluster-defining threshold 

p < 0.05, corrected significance level p < 0.05). In adults, the average pairwise temporal generalization 

accuracy was significantly higher for across- than for within- domain classifications from roughly 150 ms post-

onset (2-D cluster p < 0.05). Thus, in adults, the previously described domain organization of neural 

representations is dynamically maintained over processing time. In infants, we again found no significant 

difference in average decoding accuracy for across- versus within-domain classifications, mirroring the 

timeseries results (2-D cluster ps > 0.1). 
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Figure 2. Average accuracy for the pairwise classification of visual stimuli in infants (12-15-month-olds) and 

adults. Left: Average ± s.e.m. accuracy timeseries for pairwise, within-subject classification within (e.g. cat vs. 

dog) or across domains (e.g. cat vs. hand). Thick (resp. thin) horizontal lines indicate statistically significant 

(resp. marginally significant) clusters of the difference between accuracy and the chance level of 50% (one-

tailed). Red horizontal lines indicate significant clusters for the difference in accuracy between classifications 

across vs. within domains (one-tailed). Middle: Average, within-subject time generalization accuracy for all 

pairwise classifications. Solid (resp. dotted) white lines indicate the border of statistically (resp. marginally) 

significant 2-D clusters of the difference between accuracy and the chance level of 50%. Right: Average 

difference of within-subject time generalization accuracy for pairwise classifications across (e.g. cat vs. hand) 

vs. within (e.g. cat vs. dog) domains (e.g. cat vs. dog). White lines indicate the border of statistically significant 

clusters of this difference. See also Extended Data, Figure 2-1 
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Figure 3. Multivariate channel patterns supporting pairwise classification of visual stimuli in infants (12-15-

month-olds) and young adults. Average absolute activation patterns (Haufe et al, 2014) for pairwise, within-

subject classification of visual stimuli (e.g. cat vs. dog, cat vs. hand, etc.). This method uses classifier weights 

and channel covariance to highlight channels were activation differences are contrastive between the stimulus 

classes.  

 

Representational Dissimilarity Matrices 

The foregoing results confirmed that neural representations in infants and adults supported the reliable 

decoding of visual stimuli, averaging over pairs of visual stimuli, and that there was some indication that these 

neural representations were maintained overtime. We next asked whether the underlying neural 

representations of each of these visual stimuli were consistent (a) across individuals of the same age group, (b) 

across time post-stimulus (i.e., between different temporal windows), (c) across age groups, and (d) with the 

way in which stimulus similarities are defined by computer vision algorithms (see also Supplementary Results).  
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A standard way of visualizing the dynamic geometry of visual representations is to compute a 

Representational Dissimilarity Matrix (RDM), which consists of the average pairwise classification accuracy for 

each possible pair of visual stimuli in each age group, over four broadly defined time-windows (Figure 4). As 

expected from existing work in adults (e.g. Cichy et al., 2014), RDMs in adults exhibited a clear organization 

by domain, with higher average pairwise accuracy across than within domains in the 150-190 ms and 250-400 

ms, but not 80-120 ms time-windows (two-tail paired t-test, FDR-corrected; 80-120 ms: t[7] = -0.54, p = 0.608; 

150-190 ms: t[7] = 4.03, p = 0.008; 250-400 ms: t[7] = 7.50, p = 0.004). No such pattern was evident in the 

infants’ RDMs (all ps > 0.5). 
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Figure 4. Representational dissimilarity of visual stimuli in infants (12-15-month-olds) and young adults. Group 

average accuracy for all pairwise, within-subject classifications, and 2D multidimensional scaling visualization 

(metric stress criterion). 

 

Group representational similarity analyses 

Although the organization of infants’ neural representations may not exhibit a categorical boundary between 

animals and human body parts like adults do, infants may nevertheless have a reliable neural representation, 

but one that is organized differently from that of adults.  That is, neural representations for distinguishing 

between animal and body images may not exhibit a linear domain boundary between animal and body items 

in infants but nevertheless exhibit a reliable organization that is similar amongst individuals of the same age. 

To investigate this possibility, we estimated the reliability of representational spaces measured at the group 

level. Specifically, we estimated the split-half noise-ceiling of each group-average using the upper half of the 

RDM (Figure 5, left panel, diagonal values) and compared it to an empirical chance level (see Materials & 

Methods). Pearson’s correlations between different group-average upper RDMs were additionally computed 

to assess representational similarity between different age groups, and between different time-windows 

within each age group (Figure 5, left panel, lower triangle and inset).  

After FDR-correction for multiple comparisons, (Figure 5, right panel, diagonal values), RDM noise ceilings 

exceeded the empirical chance level in each time window in adults (80-120 ms: rSHnc =  0.74, FDR-corrected p 

< 0.001; 150-190 ms: rSHnc = 0.89, FDR-corrected p < 0.001 ; 250-400 ms: rSHnc =  0.80, FDR-corrected p < 

0.001) and one of the three time-windows in infants (100-190 ms: rSHnc =  0.63, FDR-corrected p < 0.001). 

Thus, average dissimilarities of neural representations between pairs of visual images could reliably be 

estimated at the group level in these time-windows and were similar amongst distinct groups of individuals of 
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the same age. Noise ceilings did not exceed the empirical chance level in the remaining two time-windows in 

infants (FDR-corrected ps > 0.9), suggesting that these group representational dissimilarity spaces could not 

be reliably estimated in this time-windows – likely due to limitations in sample size or increased heterogeneity 

among participants.  

We next asked whether group RDMs were similar across different age groups, or across different time-

windows within each age-group. After FDR-correction for multiple comparisons, no significant positive 

correlation between RDMs from different age groups were found (FDR-corrected ps > 0.2; Figure 5, right 

panel, lower triangle values). In adults, the group average RDMs from the 150-190 ms and 250-400 ms time-

windows were significantly correlated (r =  0.63, FDR-corrected p = 0.001; Figure 5, right panel, lower 

triangle values), as could be expected from the documented maintenance of neural representations for 

discriminating visual images over this time-frame in adults (Figure 2, bottom row). Similarly, in infants, the 

group average RDMs from the 200-300 ms and 300-500 ms time-windows were also significantly correlated (r 

= 0.49, FDR-corrected p = 0.026; Figure 5, right panel, lower triangle values). Overall, within each age group, 

group RDMs corresponding to the two later time-windows (200-300 and 300-500 ms in infants  150-190 and 

250-400 ms in adults) were positively correlated with one another but not with the group RDM corresponding 

to the earlier time-window (100-190 ms in infants or 80-120 ms in adults); group RDMs did not correlate 

above chance levels between age groups.  
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Figure 5. Group representational similarity. Lower triangle: Pearson’s correlations between group-average 

Representational Dissimilarity Matrices, as a function of time-window and age group. Inset: Dendrogram 

representation of correlations between group RDMs. Diagonal: Split-half noise ceiling estimates. 

 

Comparison with models of vision 

Because at least some of the group-level RDMs could be reliably estimated, we next used Spearman’s rank-

correlations to ask whether any group-level RDMs shared similarities with the representational geometries 

predicted by two of the current best models of object vision as indexed by the Brain-Score project (Schrimpf 

et al., 2018), CORnet-S (Kubilius et al., 2018) and VGG-16 (Simonyan & Zisserman, 2015), or by a control 

measure of low-level image similarity (SSIM, Wang, Bovik, Sheikh, & Simoncelli, 2004). Two of those 

exploratory correlations passed the uncorrected threshold of statistical significance: a positive correlation 

between the CORnet-S RDM and the adult 80-120 ms RDM (Spearman r = 0.49, p = 0.010), and a negative 

correlation between the adult 250-400 ms RDM and the control SSIM RDM (Spearman r = -0.47, p = 0.012; 

Figure 6). None of these associations survived FDR-correction for multiple comparisons over the entire set of 

18 Spearman’s rank-correlations tested, and no other significant correlations were found (Figure 6). 
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Figure 6. Group representational similarity with models of vision.  Similarities between group 

Representational Dissimilarity Matrices and Representational Dissimilarity Matrices derived from three models: 

the final layer of CORnet-S (computational model of high-level vision), the pool3 layer of VGG-16 

(computational model of mid-level vision), and a low-level control index (SSIM). Similarities that passed an 

uncorrected significance threshold (uncorrected p < 0.05) are indicated on the right-side panel; none 

remained significant after FDR-correction. 

 

Discussion 

In the present study we provide a proof of concept for employing time-resolved multivariate pattern analysis 

methods with EEG data to characterize the dynamics of neural representations of visual stimuli in infants and 

to characterize group-level representational spaces across infants and adults. Neural representations of visual 

stimuli in infants support the reliable classification of 8 different visual images but appear to only modestly be 

sustained over the post-stimulus time period and do not exhibit the robust differentiation between the 

domains of animals versus human body parts that is evident in adults. Group-average representational 

spaces, as indexed by Representational Dissimilarity Matrices based on pairwise classification accuracy, were 
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found to meet a basic standard of reliability in some but not all cases. Overall, group average representational 

spaces appear similar across some time-windows within each age group, but not across age groups.  

 To our knowledge, the current study is the first to investigate the dynamics of neural representations 

of preverbal infants using a decoding framework. Neural representations supported the classification of visual 

images in 12-15-month-olds. The feasibility of estimating encoding models that directly quantify the 

association between multiple stimulus features and changes in infant EEG data has recently been 

demonstrated in the case of low-level sensory features (such as luminance or amount of motion) in audiovisual 

cartoon movies, suggesting that the approach may allow for building encoding models corresponding to 

more complex stimulus dimensions (Jessen, Fiedler, Münte, & Obleser, 2019). Here, we extend these results 

by demonstrating the feasibility of pairwise decoding of visual object stimuli in 12-15-month-olds. Together 

with recent infant fNIRS decoding analyses (Emberson et al., 2017), infant fMRI representation similarity 

analysis (Deen et al., 2017) , and infant EEG encoding models (Jessen et al., 2019), the current EEG decoding 

findings contribute to the utilization of information-based, multivariate, computational methods as a powerful 

toolkit for analyzing neural data from infants. 

Evidence for the maintenance of neural representations of visual images overtime within the first 500 

ms of processing was weak in 12-15-month-olds. It is possible that stronger evidence would have been found 

for the maintenance of representations beyond the first 500 ms of processing. For example, non-linear 

increases in response to supraliminal visual stimuli, potential neural markers of conscious access to these 

stimuli, emerge from roughly 750 ms post-onset in 12-15-month-olds versus from roughly 300 ms in adults 

(Kouider et al., 2013). Because the maintenance and reactivation of sensory representations over-time is 

thought to be characteristic of conscious access, it is conceivable that the maintenance of visual 

representations over-time could be evident later than 500 ms in 12-15-month-olds. Future research may 
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address this question by utilizing paradigms that allow for the analysis of later responses (after 500 ms) in this 

age range while preserving a high enough number of artefact-free trials for decoding.  

We examined whether decoding accuracies would be higher, overall, when classifying trials according 

to pairs of stimuli that belong to a different domain (animal versus parts of the human body) compared to 

those that came from the same domain, as had previously been reported in adults (Cichy et al., 2014). This 

pattern of results was evident in adults but absent in infants. This negative finding suggests that the visual 

cortex of infants may not represent visual images in a manner that robustly differentiates their categorical 

domain (i.e., through differences in neural activations that are consistent in pattern and timing across multiple 

trials). Reducing trial numbers in the adult dataset to those of the infant dataset did not eliminate the domain 

effect in adult classification accuracies, suggesting that factors beyond trial numbers were responsible for 

these null findings in infants. Converging results were found when estimating the effect of domain on 

univariate ERP components, with a clear effect present in adults but less so in infants. Taken together, the 

current EEG findings are aligned with the previous fMRI findings of Deen et al., (2017), according to which 

some functional domain specificity of the visual cortex is already present by the end of the first year of life but 

is less marked than in adults. Alternatively, neural representations that support differentiating animals from 

parts of the human body may be apparent in patterns of neural activity that were not considered in the 

current analysis – such as activity beyond 500 ms post-onset, or non-linear aspects of neural responses 

including evoked and induced oscillations. Technical factors beyond trial counts (such as signal quality, EEG 

equipment brand, or stimulus duration) may have contributed to the lack of a domain effect in the infant data 

but not the adult data. Future research may uncover the mechanisms by which the neural representations of 

visual objects become organized along categorical domains by adulthood and clarify the association between 

the increasingly specific parcellation of functional domains within the visual cortex and the representation of 

domains these neural networks may support.  
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We also explored the group-level Representational Dissimilarity Matrices (RDMs) implied by average 

pairwise classification accuracies for each possible pair of visual stimuli presented. No similarity was found 

between RDMs across age groups, although some similarities were found between RDMs in different time-

windows within age groups. Again, the current EEG results are aligned with those of Deen et al., (2017), who 

reported that fMRI-derived RDMs were similar within the infant group and within the adult group, but 

dissimilar between these two age groups. The noise ceiling of the current results was generally low for infant 

RDMs, as several group-level RDMs could not be reliably estimated based on the current datasets. Thus, the 

current findings likely underestimate the extent to which group-level infant representational spaces may 

resemble other group-level representational spaces within or across age groups or resemble representational 

spaces derived from model algorithms. 

The current study provides a first proof-of-concept for the use of decoding analyses from infant EEG 

signals. The high attrition rate and subsequently small sample sizes in the infant group limits the extent to 

which the current results may generalize, and likely limited the reliability with which group-level RDMs could 

be estimated. Future research utilizing similar analysis methods should attempt to decrease attrition by 

increasing the total number of valid trials collected from each infant (e.g., through changes in paradigm or 

signal processing), or by adapting analysis methods to accommodate small numbers of trials per individual 

participant and stimulus condition. The stimulus set used did not attempt to overtly correct for low-level 

differences in visual appearance between stimuli depicting different objects, nor did it attempt to elicit 

object-specific responses invariantly to changes in size, lightning, color, blur, contrast, or viewpoint. Thus, 

pairwise classification accuracies were tracking the dynamics of neural representations that support 

differentiating between different visual images (a specific picture of a cat versus a specific picture of a dog), as 

opposed to differentiating between different objects per se (multiple exemplars of cats and dogs). Future 
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research may examine whether neural representations of visual objects generalize across changes in size, 

view, or other dimensions infants as they do in adults (Isik et al., 2014). 

In conclusion, we demonstrate the feasibility of time-resolved multivariate pattern analysis methods 

with infant EEG data at the beginning of the second postnatal year, and a first characterization of the 

dynamics of neural representations supporting the differentiation of animate visual stimuli in the infant brain. 

Univariate (activation-based) and multivariate (information-based) analyses converged to suggest that the 

categorical domain differentiation of neural responses to and representations of visual stimuli depicting 

animals versus parts of the body during passive viewing, robustly observed in adults and thought to reflect 

functional organization in the visual cortex, is not fully in place by 12- to 15-months of age. Future research 

will determine if this conclusion extends to other domains of visual stimuli and illuminate developmental 

mechanisms that lead to such differentiations by adulthood.   
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Legends 

Table 1. Summary data from the MacArthur Communicative Development Inventories: Words and Gestures 

(CDI).  

Figure 1. Average ERP waveforms in response to the visual stimuli in infants (12-15-month-olds) and young 

adults. Average ERP waveforms ± s.e.m, computed from the same data epochs that were used to perform 

within-subjects classification. In contrast to within-subjects classification, amplitudes were not z-scored, and 

were averaged over electrodes of interest. Thick (resp. thin) black horizontal lines indicate significant (resp. 

marginally significant) clusters for the difference in average amplitude in response to animals vs. body items 

(two-tailed). 

Figure 2. Average accuracy for the pairwise classification of visual stimuli in infants (12-15-month-olds) and 

adults. Left: Average ± s.e.m. accuracy timeseries for pairwise, within-subject classification within (e.g. cat vs. 

dog) or across domains (e.g. cat vs. hand). Thick (resp. thin) horizontal lines indicate statistically significant 

(resp. marginally significant) clusters of the difference between accuracy and the chance level of 50% (one-

tailed). Red horizontal lines indicate significant clusters for the difference in accuracy between classifications 

across vs. within domains (one-tailed). Middle: Average, within-subject time generalization accuracy for all 

pairwise classifications. Solid (resp. dotted) white lines indicate the border of statistically (resp. marginally) 

significant 2-D clusters of the difference between accuracy and the chance level of 50%. Right: Average 

difference of within-subject time generalization accuracy for pairwise classifications across (e.g. cat vs. hand) 

vs. within (e.g. cat vs. dog) domains (e.g. cat vs. dog). White lines indicate the border of statistically significant 

clusters of this difference. See also Extended Data, Figure 2-1. 

Figure 3. Multivariate channel patterns supporting pairwise classification of visual stimuli in infants (12-15-

month-olds) and young adults. Average absolute activation patterns (Haufe et al, 2014) for pairwise, within-
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subject classification of visual stimuli (e.g. cat vs. dog, cat vs. hand, etc.). This method uses classifier weights 

and channel covariance to highlight channels were activation differences are contrastive between the stimulus 

classes.  

Figure 4. Representational dissimilarity of visual stimuli in infants (12-15-month-olds) and young adults. Group 

average accuracy for all pairwise, within-subject classifications, and 2D multidimensional scaling visualization 

(metric stress criterion). 

Figure 5. Group representational similarity. Lower triangle: Pearson’s correlations between group-average 

Representational Dissimilarity Matrices, as a function of time-window and age group. Inset: Dendrogram 

representation of correlations between group RDMs. Diagonal: Split-half noise ceiling estimates. 

Figure 6. Group representational similarity with models of vision.  Similarities between group 

Representational Dissimilarity Matrices and Representational Dissimilarity Matrices derived from three models: 

the final layer of CORnet-S (computational model of high-level vision), the pool3 layer of VGG-16 

(computational model of mid-level vision), and a low-level control index (SSIM). Similarities that passed an 

uncorrected significance threshold (uncorrected p < 0.05) are indicated on the right-side panel; none 

remained significant after FDR-correction. 

(Extended Data) Figure 2-1. Average accuracy for the pairwise classification of visual stimuli in young adults, 

estimated from all valid trials (left) or valid trial counts yoked to the infant dataset (right).  Average ± s.e.m. 

accuracy timeseries for pairwise, within-subject classification within (e.g. cat vs. dog) or across categories (e.g. 

cat vs. hand). Thick (resp. thin) horizontal lines indicate statistically significant (resp. marginally significant) 

clusters of the difference between accuracy and the chance level of 50% (one-tailed). Thick (resp. thin) red 

horizontal lines indicate significant (resp. marginally significant) clusters for the difference in accuracy between 

classifications across vs. within categories (one-tailed). In the adults’ dataset yoked to infants, participant 
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and/or trials were discarded in reverse chronological until numbers of participants and valid trials per 

participant and condition were exactly equal to (or lower than) that of the infant dataset.  
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Extended Data 

 

Figure 2-1. Average accuracy for the pairwise classification of visual stimuli in young adults, estimated from all 

valid trials (left) or valid trial counts yoked to the infant dataset (right).  Average ± s.e.m. accuracy timeseries 

for pairwise, within-subject classification within (e.g. cat vs. dog) or across categories (e.g. cat vs. hand). Thick 

(resp. thin) horizontal lines indicate statistically significant (resp. marginally significant) clusters of the 

difference between accuracy and the chance level of 50% (one-tailed). Thick (resp. thin) red horizontal lines 

indicate significant (resp. marginally significant) clusters for the difference in accuracy between classifications 

across vs. within categories (one-tailed). In the adults’ dataset yoked to infants, participant and/or trials were 

discarded in reverse chronological until numbers of participants and valid trials per participant and condition 

were exactly equal to (or lower than) that of the infant dataset. 
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