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ABSTRACT 

 

Extinction learning suppresses conditioned reward responses and is thus fundamental to adapt to 

changing environmental demands and to control excessive reward seeking. The medial prefrontal 

cortex (mPFC) monitors and controls conditioned reward responses. Using in vivo multiple single-unit 

recordings of mPFC we studied the relationship between single-unit and population dynamics during 

different phases of an operant conditioning task. To examine the fine temporal relation between neural 

activity and behavior, we developed a model-based statistical analysis that captured behavioral 

idiosyncrasies. We found that single-unit responses to conditioned stimuli changed throughout the 

course of a session even under stable experimental conditions and consistent behavior. However, 

when behavioral responses to task contingencies had to be updated during the extinction phase, unit-

specific modulations became coordinated across the whole population, pushing the network into a 

new stable attractor state. These results show that extinction learning is not associated with 

suppressed mPFC responses to conditioned stimuli, but is driven by single-unit coordination into 

population-wide transitions of the animal’s internal state.  
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INTRODUCTION 

 

The medial prefrontal cortex (mPFC) plays a key role in numerous behaviors and cognitive 

functions, including action control, attention, cognitive flexibility, decision-making, and reward learning 

(Euston et al., 2012; Ridderinkhof et al., 2004; Stoll et al., 2016). Reward-driven learning guides our 

daily life activities and requires associating specific cues and environments with reward. The resulting 

conditioned reward-seeking responses are monitored and controlled by the mPFC (Botvinick et al., 

2019). Lack of such cognitive control can lead to maladaptive behaviors, such as substance abuse or 

perseveration in reward-seeking responses when reward availability has ceased. Extinction learning is 

thus critical for the ability of an organism to react to environmental changes and hence to its survival 

(Dunsmoor et al., 2015; Goldstein and Volkow, 2011; Quirk and Mueller, 2008).  

The rodent prelimbic mPFC (PL), together with the infralimbic mPFC (IL), is implicated in 

extinguishing reward-seeking behavior (Chen et al., 2013; Jonkman et al., 2009; Moorman and Aston-

Jones, 2015; Riaz et al., 2019; Sharpe et al., 2019). Both pharmacological inactivation of PL and 

optogenetic stimulation of its inhibitory network during the presentation of conditioned stimuli facilitate 

extinction (Caballero et al., 2019; Sparta et al., 2014). Similarly, optogenetic stimulation of PL 

projections to the nucleus accumbens reduces reward seeking when reward is associated with risk of 

aversive reinforcement (Kim et al., 2017).  

While such manipulations highlight the role of mPFC in extinction of reward-seeking responses, the 

neural dynamics driving extinction is largely unknown. At the cellular level, acquisition of new 

behavioral strategies is associated with changes in PL and IL activity, with the PL predicting and the IL 

following the acquisition of the new contingency (Rich and Shapiro, 2009). Furthermore, sudden 

transitions in rodent mPFC activity signal rapid behavioral shifts during rule learning (Durstewitz et al., 

2010) and mark the onset of the exploratory phase following changes in cued reward probabilities 

(Karlsson et al., 2012). In both rodents and humans, changes in mPFC activity precede behavioral 

changes both for spontaneous and enforced strategy switches (Powell and Redish, 2016; Schuck et 

al., 2015).  

Thus, while representational switches in mPFC have been studied to some degree during learning 

of new behavioral rules, it remains an open question whether similar dynamical processes are also at 

work when a previously acquired rule has to be suppressed, i.e. during extinction learning. In fact, 

while rule switching requires the formation of new stimulus-reward association, the loss of conditioned 

responses during extinction learning follows from the suppression of reward seeking per se. To 

address this question, here we analyzed in vivo multiple single-unit recordings from the rat PL area 

during maintenance and within-session extinction of a visually guided appetitive operant conditioning 

task. Furthermore, to enable a detailed analysis of fine-scale temporal relationships between single-

unit activity, population dynamics, environmental conditions, and aspects of the animal’s behavior at a 

single-subject level, we combined recently developed change-point detection methods for neural 

activity (Toutounji and Durstewitz, 2018) with a newly developed statistical model for characterizing 

the temporal unfolding of transitions in the animal’s behavior. Our analyses revealed that even when 

experimental conditions and behavioral responses were stable, single-unit coding in the mPFC was 
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not. Importantly, however, shortly before the animal started to actively suppress the previously 

acquired reward contingency, changes in single-unit activity became highly coordinated across the 

whole network, pushing the network toward a new internal state that drove extinction of reward-

seeking behavior.  

 

RESULTS 

 

PL activity remains modulated by conditioned cues during extinction learning 

We designed a visually guided appetitive operant conditioning paradigm to probe extinction of 

reward-seeking behavior in rats (see Methods and Figures 1A-1B). We chose alcohol as reward to 

investigate extinction learning of both appetitive reward seeking in general and drug-seeking 

responses in particular. Extinction therapy is, in fact, clinically used to treat substance use disorders, 

however with variable efficacy (Mellentin et al., 2017). To better understand the mechanisms leading 

to extinction of drug-seeking responses, we developed a paradigm where the amount of administered 

alcohol served as a positive reinforcer, shaping conditioned behavior, but did not lead to intoxication, 

which would have interfered with our measurements. In detail, each trial (Figure 1B) started with a 

visual cue, followed by the presentation of two levers 5 sec after cue onset, one of which, the active 

lever, directly below the cue light. Only responses to the active lever were reinforced by delivery of a 

drop of alcohol reward (40 µl, 10% v/v in water) after a 1.5 sec delay. Lever presses on the inactive 

lever had no consequences. The trial ended, following lever press or 10 sec after lever presentation 

with no response, by terminating the cue and retracting the levers. Pseudo-random inter-trial intervals 

(10, 15 or 20 sec) separated trials. Following habituation, appetitive conditioning, tetrode implantation 

(Figure 1C) and retraining (see Methods), a cohort of 10 rats underwent one maintenance session of 

60 reinforced trials (Figure 1A left). On the next day, within-session extinction began with 9 reinforced 

trials followed by 60 unreinforced trials (Figure 1A right). The switch in reward contingency was not 

signaled to the animals and other experimental conditions were kept constant throughout the session. 

The number of inactive lever presses was low and comparable in both maintenance and extinction 

(Figure S1A). Response probability (rate of active lever presses) during maintenance was high, 

indicating that rats had learned to associate the visual cues with reward (Figure 1D left). This high 

response probability dropped during within-session extinction (60 maintenance vs. last 18 within-

session extinction trials, percent of active lever presses: 87.7 ± 2.5% vs. 12.8 ± 3.1% mean ± sem, 

right-tailed Wilcoxon signed-rank test p = 9.8 10
-4

; Figure 1D), indicating that behavior was 

extinguished when the visual cues were not reinforced any more. 

 In order to inspect the timing of behavioral changes during within-session extinction, 

responses were binned in blocks of 6 consecutive trials. We observed a gradual reduction in response 

probability across the whole cohort starting at trials 16-21, and an intermittent, albeit not significant, 

increase at trials 40-45 (Wilcoxon signed-rank tests between consecutive blocks with Benjamini-

Hochberg adjusted p < 0.05 and p < 0.08, respectively; Figure 1E). We then investigated the PL 

response properties following cue and lever presentation by inspecting the z-scores of 132 and 162 

units recorded during maintenance and extinction, respectively (see Methods). Figure 1F compares 
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the average z-scored activity of significantly responding units during maintenance with significant z-

scored activity in unreinforced trials during within-session extinction. Excitatory as well as inhibitory 

rate modulations following cue light and lever presentation were comparable (uncorrected Wilcoxon 

rank-sum test; cue light maintenance vs. extinction excitatory/inhibitory p = 0.56/0.31; same for lever 

presentation p = 0.50/0.48). In order to test whether the response of PL units to task stimuli is 

predictive of the behavioral response probability (Figures 1D and 1E), we also compared activity 

during trial blocks of stable behavior in both maintenance and within-session extinction (first/last 12 

trials during maintenance and extinction; 9 reinforced trials during within-session extinction; Figure 

1G). We found no significant difference in z-score distributions, neither when comparing different 

steady-state blocks within the same session, nor when comparing corresponding blocks between the 

two sessions (uncorrected Wilcoxon rank-sum test; cue light maintenance vs. extinction early/late p = 

0.17/0.73, early vs. late maintenance/extinction p = 0.32/0.47, reinforced vs. extinction early/late p = 

0.13/0.49; same for lever presentation p = 0.68/0.53, p = 0.45/0.80, p = 0.64/0.50). These results 

demonstrate that, as behavior changes toward extinguishing the cue-reward association, PL remains 

responsive to task-related cues to a similar degree as it was when expressing the conditioned 

response. Moreover, during within-session extinction, the overall response to cues remains consistent 

across different blocks of steady-state behaviors, whether the animal responded to the task or not. 

These findings are in line with previous observations showing that the overall proportion of different 

mPFC units responding to different task aspects remains about the same despite changes in task 

rules and contingencies (Ma et al., 2016). 

 

Whole-trial PL population activity reflects behavioral changes during extinction learning 

Despite demonstrating a consistent decrease in behavioral response probability across animals, 

the above analyses do not capture trial-by-trial changes and idiosyncrasies in each animal’s behavior, 

which may conceal relevant aspects of the relationship between PL activity and extinction learning. To 

address this, we developed a new statistical model of binary-choice behavior which captures an 

animal’s response-probability dynamics by a weighted sum of sigmoidal curves (see Methods). Each 

curve is defined by the trial at which the sigmoid is at half height (behavioral change point; CP50%), a 

slope that defines the rate of change per trial, and a weight specifying the amount and direction of 

change around behavioral CP50%. Statistical model selection allowed us to specify the smallest 

number of behavioral CPs required to explain >=95% of an animal’s behavioral variance. Such 

analyses revealed that the tested cohort adopted a variety of behavioral profiles that differed in the 

degree of abruptness of behavioral changes and in the eventual occurrence of transient 

reinstatements of the conditioned behavior. We found 1 or 2 behavioral CPs with descending 

sigmoidal curves in 6 and 3 animals, respectively, and 3 behavioral CPs with two descending and one 

ascending sigmoid curves in one animal (Figures 2A and S1C). We then computed the spike counts 

during whole trials (WT) and identified population-wide change points (population CPs) from the PL 

units recorded from each animal (Toutounji and Durstewitz, 2018; see Methods). Change-point 

detection identifies significant changes in the mean neural firing rate across trials, where the trial in 

which the firing rate change reached 50% of its full amplitude is identified as the neural population 
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CP50%. In spite of the varying number of units recorded per rat, two population CPs were detected in 

all animals (Figure S1C). Visual inspection suggested that changes in response probabilities, as 

captured by the behavioral model, are often accompanied by population CPs. In order to quantify this 

relationship, we developed a statistical bootstrap procedure, based on computing a likelihood ratio 

statistic 𝜆 (see Methods). This statistic compares how strongly an animal’s change in response 

probability locks to its own population CPs versus an alternative set of population CPs detected in 

another animal. Considering all possible combinations of behavioral models and population CPs, we 

found a substantial bias toward positive 𝜆 values during extinction (𝜆ext; right-tailed Wilcoxon signed-

rank test p = 2.0 10
-10

; Figure 2B right), indicating a strong match between the behavioral model and 

the population CPs of the same animal. As control, we also computed another set of 𝜆 values (𝜆maint) 

using maintenance population CPs (Figure S1B) and related them to the same set of extinction-

behavioral models in Figure S1C. Contrasting the 𝜆ext distribution with the null 𝜆maint distribution 

(Figure 2B) further confirmed that behavior is significantly more locked to population CPs than 

expected by chance (𝜆ext > 𝜆maint; right-tailed Wilcoxon signed-rank test p = 2.0 10
-8

). Furthermore, 

the distribution of 𝜆ext for individual animals showed significantly positive values (uncorrected right-

tailed Wilcoxon signed-rank test p < 0.05) in 8 out of 10 animals (Figure 2C). The p-values for 

individual animals anti-correlated with the number of recorded units (Spearman’s rank correlation 

coefficient p = 0.03, r = -0.68; Figure 2C), indicating that the non-match may be due to under-

sampling PL units, rather than to differences in the neural mechanisms underlying extinction learning 

across animals. These analyses show that the temporal evolution of behavior during extinction 

learning is strongly reflected in population dynamics of PL neurons. 

 

PL single-unit dynamics during extinction learning is indistinguishable from that during 

maintenance 

While population CPs result from the activity of the whole set of recorded units and may reflect the 

overall dynamics of the PL network, one might expect a certain degree of heterogeneity in single-unit 

encoding. Indeed, change points estimated from single-unit whole-trial spike counts (single-unit CPs) 

did not always coincide with population CPs computed on the same task window (Figure 3A). In order 

to pinpoint more exactly during which task phases extinction-related changes happened and how 

different units were involved in them, we identified an additional set of four single-unit CPs estimated 

from the spike counts of four within-trial windows of interest (Figure 3B). The cue-light (CL) and lever-

presentation (LP) windows, defined as the 0.5 sec after stimulus onset, allowed monitoring PL network 

responses to task-related external stimuli. The delay period (DP) window, which spans the 2 sec 

preceding lever-presentation, was selected to assess potential effects of reward expectation. Finally, 

the inter-trial interval (ITI) window, between -3 sec and -1 sec before cue-light onset, allowed 

considering PL dynamics independently of specific task-related activity. Importantly, none of these 

windows included trial periods where motor responses were expected, which allowed a fair 

comparison between maintenance and extinction. 

Irrespective of the window examined, single-unit CPs during extinction learning were distributed 

across the entire session (ITI/CL/DP/LP/WT; Figure 3C). On average over all recorded units, single-
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unit CPs occurred in all windows with similar frequency, same relative change in firing rate 𝜌, and with 

balanced positive to negative sign ratio (see Methods for formal definitions of these three statistics; 

frequency: one-way ANOVA on task windows, main effect F(3,36) = 2.0 p = 0.1; Figure 3D right; 𝜌: 

one-way ANOVA on task windows, main effect F(3,36) = 1.7 p = 0.2; Figure 3E right; sign ratio: t-test 

on the fraction of positive over negative jumps against 1, uncorrected p > 0.05 for all windows; Figure 

3F right). Besides, the average PL firing rate remained constant throughout the whole session for all 

task windows (see Methods; one-way ANOVA for repeated measures to test the effect of the trial 

block on the population firing rate: ITI: F(10,90) = 0.6 p = 0.8; CL: F(10,90) = 0.7 p = 0.7; DP: F(10,90) 

= 0.9 p = 0.5; LP: F(10,90) = 1.9 p = 0.1; Figure 3G). While overall changes in firing rate across units 

were balanced, the specific changes in single-unit firing rates resulted in a reorganization of the PL 

coding throughout the session: While the unit responses within CL and LP phases remained 

unchanged on average (across the population) from the beginning to the end of the extinction session 

(cf. Figure 1G), the identity of task-responsive units varied. About 21.6% of the recorded units 

changed the trial-averaged firing rate by more than 2 standard deviations between the first and last 12 

extinction trials of the session (sensitivity index 𝑑′, see Methods; Figures 3H middle and S2B). Only 

30% of the units with significant response in the first reinforced trials of within-session extinction (40% 

and 20%, following CL and LP, respectively) were also responsive at the end of the session (cf. 

Figure 1G). Surprisingly, this degree of change in task-responsive units was also present during 

maintenance, where both experimental conditions and animal behavior were constant throughout the 

session (Figures 3D-3F left and 3H left): We found no significant difference between maintenance 

and extinction single-unit CPs for all windows (ITI/CL/DP/LP) with regard to the distribution of CP 

frequency, 𝜌, sign ratio, and the distribution of CP occurrence across the trials of each session 

(frequency: repeated measures two-way ANOVA, factors: session/window, main effects: session 

F(1,9) = 1.4 p = 0.3, window F(3,27) = 5.9 p = 0.003, interaction F(3,27) = 0.5 p = 0.7; Figure 3D; 𝜌: 

repeated measures two-way ANOVA, factors: session/window, main effects: session F(1,9) = 0.5 p = 

0.5, window F(3,27) = 1.6 p = 0.2, interaction F(3,27) = 0.4 p = 0.7; Figure 3E; sign ratio: two-way 

factors: session/window, main effects: session F(1,8) = 0.13 p = 0.7, window F(3,24) = 1.6 p = 0.2, 

interaction F(3,24) = 1.5 p = 0.2; Figure 3F; post hoc Bonferroni correction applied in all ANOVAs, no 

significance found post hoc; single-unit CP trial distribution: see Methods, 2-sample Kolmogorov-

Smirnov test for single-unit CPs in ITI: p = 0.4; CL: p = 0.4; DP: p = 0.1; LP: p = 0.4; Figure 3I, cf. 

Figure 3C). Moreover, similar to extinction, a large fraction of units changed their trial-averaged firing 

rate from the start to the end of the maintenance session (30.3%; Figures 3H left and S2A). The 

distributions of the sensitivity index 𝑑′ for units recorded in the maintenance versus extinction sessions 

were, in fact, not significantly different (2-sample Kolmogorov-Smirnov test p = 0.5; Figure 3H right). 

In summary, PL units changed their responsiveness to the task stimuli with balanced positive and 

negative single-unit CPs during both maintenance and extinction. This reorganization occurred to the 

same extent in both these sessions and therefore was not induced by changes in the experimental 

conditions. 
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PL baseline rate and task-evoked responses change in anticipation of behavioral extinction  

The above analysis revealed that, during prolonged stretches of time (every session lasted about 

30 min), PL single-units changed their responsiveness to stimuli. Such variation in firing patterns also 

occurred during maintenance and the number of single-unit CPs was comparable in the two sessions. 

Therefore, we wondered whether the observed match between population and behavioral CPs during 

extinction was due to a coordination of single-unit CP occurrences that was locked to the change in 

behavior, rather than to an overall increase or decrease in firing rates. We found that, despite the 

similarity in single-unit CP-related statistics between the two sessions, at the population level the 

number of population CPs per rat was significantly higher during extinction, irrespective of the task 

window considered (two-way ANOVA: main effect of session: F(1,72) = 67.8 p = 5.7 10
-12

, main effect 

of task window: F(3,72) = 7.0 p = 0.6. Interaction F(3,72) = 0.7 p = 0.6; Figure 4A). 

To test the hypothesis that single-unit CPs are coordinated with behavioral change, we considered 

for each animal the lag between its single-unit CPs and the onset of an extinction-learning episode. 

Extinction onset was defined as the trial correspondent to a decrease by 10% (behavioral CP10%) in 

response probability as captured by the behavioral models (see Methods and Figure 4B). We found 

that single-unit CPs computed over the whole trial locked with zero lag to behavioral CPs10% (see 

Methods and Figure 4C). A similar match was also found for single-unit CPs occurring during the CL, 

DP and LP windows (Figure 4D). To further confirm the temporal coordination between single-unit 

CPs and the learned behavior, we performed, as a control, the same analysis but matching behavioral 

CPs of extinction to the single-unit CPs of maintenance instead. Besides an increase in single-unit CP 

occurrence probability at the center of the maintenance session, which explains the non-uniform 

distribution of maintenance single-unit CPs around behavioral CPs, no fine-tuned coordination was 

found (Benjamini-Hochberg corrected bootstrap test; see Methods and Figure S3A). Behavioral 

extinction thus coincided with a coordinated change in PL-unit firing rates. Such coordination preceded 

the change in behavior. In fact, while the behavioral CP10% indicates a decrease in response 

probability from baseline of 10%, 7 out of 10 animals responded to all lever presentations until, and 

including, the first behavioral CP10% mark (Figures S4A and S4B). As a further confirmation, we found 

in all four task windows considered that the single-unit CP probability significantly increased a few 

trials prior to behavioral CP50% (Figure S3B right).  

Interestingly, also during the ITI, when the animal was not actively engaged in the task, PL firing 

rate changed in anticipation of behavioral CPs (Figure 4E). To further confirm whether behavioral 

changes could be predicted from the activity of PL neurons even before the beginning of a trial, we 

trained a classifier on PL population spike counts during the ITI window preceding trial t to predict 

whether the animal will still be committed (t < behavioral CP) or not (t > behavioral CP) to the task on 

that trial. We measured the classifier performance using Cohen’s kappa (where 𝜅 = 1 corresponds to 

a perfect prediction, 𝜅 = 0 to chance and 𝜅 = −1 to complete mismatch; see Methods). We found that, 

based on population vectors constructed from the ITI, 𝜅 = 0.45 ± 0.08 when considering behavioral 

CP50% and 𝜅 = 0.49 ± 0.07 when considering behavioral CP10%. To confirm that the observed effect 

was due to behavioral extinction and not, more generally, to random monotonic changes in firing rate 

across the session, we constructed bootstrap replica where unaltered PL population vectors were 
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used to predict the occurrence of randomly generated behavioral CPs (see Methods). PL activity 

during the ITI could predict the original behavioral CPs significantly better than the bootstrapped 

replicas (one-tailed paired t-test, p = 5.2 10
-4

; Figure 4F). A similar result was obtained when 

considering population spike counts during DP and LP (one-tailed paired t-test, Benjamini-Hochberg 

adjusted over the four task windows, p ≤ 0.012 for all task windows except CL; Figures 4F and S4C). 

PL population activity during CL was at chance level in predicting behavioral CP10% (Figure 4F), but 

above chance when predicting behavioral CP50% (one-tailed paired t-test, Benjamini-Hochberg 

adjusted over the four task windows, p ≤ 0.01 for all task windows; Figure S4C). This was in line with 

the observed lags in temporal coordination between single-unit CPs during CL and either behavioral 

CP10% or behavioral CP50% (cf. Figures 4D left and S3B right, respectively), suggesting that changes 

in PL response to cue light occurred between a drop of 10% and 50% in an animal’s response 

probability. 

The previous analyses showed that behavioral CPs were anticipated by a coordinated change in 

firing rate that affected all task windows. Moreover, the ability to predict behavior from population 

vectors did not differ between task windows (repeated measures one-way ANOVA on ∆𝜅 computed on 

the four windows: main effect F(3,27) = 1.3 p = 0.3; cf. Figure S4C). These results suggest that 

behavioral extinction corresponds to a global reorganization of network activity across all task phases, 

rather than to a modulation of unit responses to specific conditioned stimuli. Figure 4G shows raster 

plots of two exemplary units from the same animal, depicting how changes in baseline firing rate 

across the whole trial occurred in coordination with behavioral extinction, both in stimulus-responsive 

(Figure 4G right) and non-responsive (Figure 4G left) units. Firing-rate changes during the four task 

windows of interest (analyzed pairwise) correlated in about 22% of the recorded units (Spearman’s 

correlation, Benjamini-Hochberg adjusted p < 0.05; Figure 4H). Notably, despite the ITI window being 

positioned between the LP and CL windows of two successive trials, the firing rate during the ITI was 

significantly correlated for more units (30%) with that during DP than that during the CL (19%) and LP 

(14%) phases. Since changes in firing rate were better coordinated between the ITI and DP than 

between the ITI and any other task phase, we expect that single-unit CP occurrence was comparably 

better aligned between the ITI and DP windows than between the ITI and other task phases. To 

evaluate this hypothesis, we tested whether the lag between the occurrence of single-unit CPs during 

the ITI and single-unit CPs during other task windows was comparable for the three windows (see 

Methods). As expected from Figure 4H, single-unit CPs during the ITI were most coordinated with 

those during DP (repeated measures one-way ANOVA with Greenhouse-Geisser correction: main 

effect F(1.1,10.3) = 17.2 p = 0.001, post hoc with Bonferroni correction: (ITI-CL, ITI-DP) p = 0.0008, 

(ITI-LP, ITI-DP) p = 0.001, (ITI-CL,ITI-LP) p = 0.07; Figure 4I). This agrees with previous observations 

that rate changes in accordance with reward expectations were particularly prominent within delay 

phases, during which the animal neither had to process specific sensory stimuli nor to initiate specific 

responses (Leon and Shadlen, 1999; Watanabe, 1996). In our extinction paradigm, conditioned stimuli 

were identical for each trial, with only the active lever being cued throughout the session. Thus, it is 

possible that animals familiar with the task encoded reward expectation in PL neurons, not only during 

DP, but also during ITI.  
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In summary, PL encoded strategy changes by coordinating single-unit CPs in anticipation of 

behavioral changes. Single-unit CPs mark longer-term transitions in a unit’s firing rate, and hence the 

population-wide coordination of such events indicate a complete reorganization of the neural activity 

pattern as indicative of a transition between attractor states. Consistent with this idea, rate changes 

were not limited to any particular task phase, or even to the proper trial periods, but were consistent 

across all phases including the ITI, and hence marked a global transition in the prefrontal ensemble 

state, possibly driven by updates in reward expectancy. 

 

DISCUSSION 

 

Lesion (Fragale et al., 2016), pharmacological inactivation (Caballero et al., 2019; Ramanathan et 

al., 2018) and optogenetic stimulation (Marek et al., 2018; Sparta et al., 2014) studies provide 

increasing evidence that PL is a critical locus for extinction of reward-seeking behaviors and 

conditioned fear. Using an appetitive operant within-session extinction paradigm, we studied the 

dynamics of PL leading to the extinction of conditioned reward-seeking behavior in rats. By using 

newly developed process model and statistical tools for change detection to examine idiosyncrasies in 

each animal’s behavior and neuronal activity, we were able to identify and parametrize trial-to-trial 

changes in both. This revealed that fine temporal coordination in mPFC dynamics guides extinction 

learning. 

During across-session extinction, mPFC responsiveness to conditioned stimuli persists over 

subsequent unreinforced days (Moorman and Aston-Jones, 2015). We showed here that also during 

within-session extinction, the population response to conditioned task stimuli remained equally strong 

even when the animal stopped acting upon them. This sustained responsiveness did not correspond, 

however, to stability in single-unit coding. While, on the one hand, some single units in mPFC can 

maintain their response pattern across days (Brebner et al., 2020; Powell and Redish, 2014), on the 

other hand, we found that the majority of units significantly changed their average firing rate and their 

stimulus-responsiveness within tens of minutes. It is important to note that our approach captures 

longer-lasting changes in unit coding, i.e., significant jumps in firing probability between periods of 

relative stability, and not trial-to-trial variability as observed in many brain regions. Changes in unit 

coding were widespread along the session and occurred also under stable experimental conditions 

and stable behavioral responses. In fact, changes in single-unit coding do not necessarily imply 

changes in population coding, where coding properties might be preserved by redundancies in the 

ensemble representation (Hirokawa et al., 2019; Narayanan et al., 2005; Puchalla et al., 2005) or 

within consistent neural trajectories (Enel et al., 2016; Mante et al., 2013). The fact that we observed 

the same degree of single-unit changes during maintenance and within-session extinction, which imply 

different cognitive demands, may therefore suggest that these transient representations are an 

intrinsic feature of prefrontal dynamics, rather than the result of specific cognitive demands. 

Upon first inspection, we found no discernible difference between PL activity during maintenance 

and within-session extinction, specifically in regards to the rate and likelihood of single-unit facilitation 

and suppression. A more detailed analysis revealed, however, a strong temporal coordination across 
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the entire population during extinction learning, which was not present when no learning was required 

of the animal during maintenance. These two effects, the reorganization of PL activity irrespective of 

learning and the population-level temporal coordination specific to the learning phase, resonate with 

recent findings on PL plasticity during sleep in response to rule learning (Singh et al., 2019), 

suggesting that similar neural mechanisms may underlie both the formation and fading of response-

reward associations in PL. Our finding that coordinated PL reorganization anticipates change in 

behavior toward extinction lends further credence to this hypothesis. In fact, ample evidence shows 

that in rat prefrontal cortex, particularly its prelimbic subregion, neural population dynamics is 

reshaped prior to rule and reversal learning of appetitive reward-seeking strategies (Durstewitz et al., 

2010; Karlsson et al., 2012; Powell and Redish, 2016; Rich and Shapiro, 2009). In light of those 

studies, our results may suggest a causal link between PL coordination and strategy switching, 

irrespective of the particular mode of learning, i.e. whether a new rule is acquired or an old one needs 

to be suppressed. 

Network reorganization in PL during extinction learning was a global property not anchored to a 

particular cognitive phase of the task. Temporally coordinated changes in neural activity were 

observed during different trial stages, including resting periods between trials, rather than being 

confined to specific windows within the trial. In fact, irrespective of the task window considered, 

population firing rates predicted changes in animal behavior equally well. In the presence of 

ambiguous sensory information, successful action selection is based on forming a reliable model of 

the environment as represented by the animal’s belief states (Babayan et al., 2018). Lesion studies 

have shown that mPFC plays a fundamental role in the computation of belief states and in cognitive 

control (Gershman and Uchida, 2019; Ridderinkhof et al., 2004; Sharpe et al., 2019). Our results 

suggest that updating belief regarding the availability of reward following extinction may correspond to 

a shift within phase space of the network’s resting state. Theoretical and experimental works support 

the presence of attractor dynamics in PFC (Durstewitz et al., 2010; Katori et al., 2011; Wimmer et al., 

2014). Specifically, Redish and colleagues pushed forward the hypothesis that the prolonged absence 

of an expected reward would lead to the formation of a new attractor state in the mPFC representing 

the changed contingencies (Redish et al., 2007). Within this framework, a shift in phase space as 

suggested by our data may correspond either to a transition between two pre-existing attractor states, 

led by external inputs, e.g., from the hippocampus (Sotres-Bayon et al., 2012) or the amygdala 

(McGinty and Grace, 2008; Senn et al., 2014), or to the formation of a new attractor state through 

plasticity (Dunsmoor et al., 2015; Toutounji and Pipa, 2014) or neuromodulatory processes (Harris and 

Thiele, 2011). Upon inspecting single-unit spike trains during extinction trials, we observed units within 

the same network with both slow and abrupt rate changes. This may suggest a third possible scenario 

where learning slowly modulates the activity of a few neuronal assemblies, possibly upon updates of 

reward expectancy, which lead network dynamics to undergo an abrupt transition between two global 

attractors as the more slowly changing units accumulate evidence for different contingency scenarios. 

Beyond providing insights into motivational processes and learning, understanding reward 

extinction-learning mechanisms also carry translational value for addiction research. Hence, while 

seeking reward is fundamental for survival, excessive drug-seeking following cue exposure is a central 
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component of addictive behavior. One behavioristic psychological approach to treat alcoholics or drug 

addicts is cue exposure therapy (CET - i.e., extinction therapy). In CET, patients are exposed to 

relevant drug cues to extinguish conditioned responses. CET shows varying degrees of efficacy 

(Mellentin et al., 2017) and therefore it is of critical importance to understand its underlying 

neurobiological mechanisms. Our results indicate that extinction of alcohol-seeking behavior is not 

associated with a loss in mPFC responsiveness to conditioned stimuli. Instead, extinction manifests as 

a network-wide transition between two states corresponding to distinct behaviors: response (or 

consumption) and omission (or abstinence). This observation may thus suggest an alternative 

approach towards a pharmacologically driven CET that targets the relative strength and stability of the 

neural attractors representing the consumption and omission states. Such an intervention may go in 

two directions, either weakening the consumption state to facilitate extinction, thus avoiding 

maladaptive persistence in harmful behaviors, or strengthening the abstinence state to reduce the 

triggering effect of conditioned stimuli, thus reducing their valence and attenuating their ability to 

induce relapse.  
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METHODS 

 

Animals 

Two-month-old male Wistar rats (Charles River, Germany) were group-housed in standard rat 

cages under a 12h/12h reversed light/dark cycle. Food and tap water were provided ad libitum. After 

tetrode implantation, rats shared a cage in groups of two, separated by a high, perforated wall (50 cm) 

allowing snout contact. All experimental procedures were performed in accordance with the EU 

guidelines for care and use of laboratory animals and were approved by the local Committee (G-

273/12 and G30/15; Regierungspräsidium Karlsruhe, Germany). 

 

Behavioral training 

All self-administration training sessions were carried out 2 h after the beginning of the dark phase 

in operant chambers (ENV-008CT; interior: L, 30.5 cm; W, 24.1 cm; H, 21.0 cm; Med Associates Inc.; 

VT, USA). These training chambers were located inside sound-attenuating cubicles containing a 

white-noise generating fan (ENV-025F28). Training consisted of 3 steps. In step 1 only one lever was 

presented, and the rats underwent 4-5 sessions of behavioral shaping (water-deprived for 20 h before 

the first two sessions) until they reached a maximum of 50 drops (30 μl per drop) of 10% alcohol (v/v 

in water) under a fixed ratio 1 schedule in maximally 1 h. In step 2, the rats were trained to self-

administer 10% alcohol in sessions with 60 trials on a fixed inter-trial interval (15 s) schedule for five 

days. In these sessions, the lever was presented for maximally 10 s and was retracted immediately 

following lever press. In step 3, a cue light above the active lever, an inactive lever on the opposite 

side and a variable inter-trial interval (10, 15 and 20 s) were introduced. The cue light was first 

presented for maximally 15 s and, 5 s after cue light onset, levers were presented for maximally 10 s. 

Response on either lever terminated the light and caused levers to retract, but only a response to the 

active lever was deemed successful and followed by delivery of alcohol. These training sessions 

consisted of 60 trials each and lasted for 3-4 weeks. Performers with success rates > 50% were 

selected to continue training in the intended recording chamber for about another week. Rats with 

stable performance >70% on two subsequent days were selected for tetrode implantation (see 

Surgery). The recording chamber (ENV-007CT; interior: L, 30.5 cm; W, 24.1 cm; H, 29.2 cm) was 

higher than the training chamber to make room for an electrical swivel commutator (Dragonfly Inc., 

USA), allowing data acquisition in freely moving animals. In this chamber, one drop contained 40 μl 

10% alcohol and was supplied in a cup by a motor-driven liquid dipper (ENV-202M-S), causing a delay 

of 1.5 s after active lever press. Head entries through the liquid dipper’s access opening (5.08 x 5.08 

cm) were detected by interrupting an infrared beam across entrance (Med Associates Inc.; VT, USA), 

and the behavior was observed with a USB camera (Delock 95353; Conrad, Germany). 

 

Surgical and tetrode placement procedures 

Rats were anesthetized with isoflurane (1.5-2.0%). Custom-built flexDrive (Voigts et al., 2013) 

containing 8 tetrodes (12.5 µm Teflon-coated tungsten wire, California Fine Wire) was unilaterally 

implanted with a 10-degree angle towards midline into the prelimbic part of the mPFC (PL: A/P, +2.8 
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to +3.8 mm; M/L, +0.8 to +1.3 mm; D/V, -2.5 to -2.6 mm). A bone screw above the cerebellum served 

as ground. The craniotomy was stepwise sealed with three-component adhesive (Super-Bond C&B; 

MPE Dental UG, Wesseling, Germany) and two-component embedding resin (Technovit 5071; Kulzer 

Wehrheim, Germany). From the next day after surgery, tetrodes were advanced gradually every 

second day. The location of the tetrodes within PL was confirmed (Figure 1C) in fixed, 50 µm thick, 

coronal sections by Nissl staining following current passing (100 µA; 20 s) to deposit iron particles via 

a Prussian blue reaction (Ma et al., 2016). 

 

Behavioral task 

Rats with single-unit activity were retrained in the recording chamber with 60 reinforced trials for 3-

5 days until reaching > 75% average success rates on three consecutive days (n=10; 86.3 ± 1.7% 

mean ± sem). On the next day, within-session extinction began with 9 reinforced trials followed by 60 

unreinforced trials.  

 

Recording 

Multiple single-units were simultaneously recorded using a 32-channel RHD2132 amplifier 

connected to a RHD2000 USB interface board (Intan Technologies LLC, CA, USA). All channels were 

digitized with 16-bit resolution, sampled at 30 kHz and band-pass filtered between 0.1 Hz and 8000 

Hz. The time stamps for external stimuli (cue light, lever presentation), lever presses, dipper activation, 

and head entries into the liquid dipper’s access opening were transmitted from the Med Associates 

behavioral control system (Med-PC IV software, version 4.39; Med Associates Inc.; VT, USA) to the 

Intan recording system to align behavior to neural activity. 

 

Spike detection and sorting 

After band-pass filtering between 300 and 5000 Hz (4th order Butterworth filter, built-in MATLAB 

function), the median voltage trace of all channels was subtracted from each trace to reduce noise. 

Out of the three consecutive days with > 75 % mean success rate during retraining, the day with the 

highest number of single-units was chosen for further analyses (maintenance). The threshold for spike 

detection was set at 5.5 times the median absolute deviation from baseline. Detected spikes were 

sorted with a custom-built graphical user interface in MATLAB (provided by W. Kelsch, CIMH 

Mannheim) into individual cell clusters based on peak amplitude and the first three principal 

components of the waveform. Spike sorting quality and unit isolation were assessed with MLIB, a 

MATLAB (Mathworks) toolbox for analyzing spike data by Maik Stüttgen 

(https://www.mathworks.com/matlabcentral/fileexchange/37339-mlib-toolbox-for-analyzing-spike-data). 

After spike sorting, less than 1% of consecutive spikes in accepted clusters had an interspike interval 

< 2 ms. Cross-correlation analyses supported that each single-unit was isolated from other units. 

 

Data analysis 

All data were analyzed using built-in and custom-made MATLAB routines (Mathworks), so was 

model fitting. To correct for multiple comparisons, significance levels were adjusted using the 
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Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). ANOVAs were performed using the 

SPSS software (IBM). 

 

Z-scores 

We obtained single-unit instantaneous firing rate as follows: Spike trains were first convolved with a 

Gaussian kernel (s.d. = 60 ms) and the resulting time series were time-averaged within 100 ms bins. 

Binning was aligned to the cue onset of each trial. The z-scored response over the relevant block of 

trials (60 trials in Figure 1F and 12 or 9 trials in Figure 1G; see Results for details) was then 

computed for each unit by first trial-averaging (mean FR across a block of trials), followed by 

subtracting the mean and dividing by the standard deviation of baseline trial-averaged firing rate (2 

seconds prior to either CL or LP). Significant units in Figure 1F were identified as those whose 

absolute average z-scored response over 3 bins following the stimulus (CL or LP) is above 1.96, i.e., a 

value outside the 95% confidence interval of the standardized normal distribution. In Figure 1G, the 

area-under-the-curve (AUC) of the z-scored response is similarly computed as the absolute average 

over 3 bins. 

 

Behavioral change model 

We formally treat the behavior of each animal as a binary vector 𝐲 = 𝑦1, … , 𝑦𝑇, with 𝑇 the number of 

trials in a session (𝑦𝑡 = 1 for active lever press and 𝑦𝑡 = 0 for omission or inactive lever press). We 

thus use an inhomogeneous Bernoulli process 𝐱 = 𝑥1, … , 𝑥𝑇 to model response probability, 

Pr(𝑦𝑡 = 1|𝑥𝑡) = 𝑥𝑡
𝑦𝑡(1 − 𝑥𝑡)1−𝑦𝑡 . 

The time-varying response probability 𝑥𝑡 ∈ [0,1] is, in turn, modelled as a weighted sum of 𝐵 logistic 

sigmoids, 

𝑥𝑡,𝐵 = 𝛽 + ∑
𝑤𝑏

1 + e
− 

𝑡−𝑐𝑏
𝜏𝑏

𝐵

𝑏=1

, 

where 𝛽 is baseline response probability. Each sigmoid is parametrized by a weight 𝑤𝑏, a center 𝑐𝑏 

and a time constant 𝜏𝑏. Centers 𝑐𝑏 correspond to 𝐵 behavioral change points (behavioral CP50%’s). 

Model parameters are initialized using the PARCS method for any given 𝐵 (Toutounji and Durstewitz, 

2018), then inferred by constrained maximization of data log-likelihood, 

ℒ(𝐱𝐵|𝐲) = ∑ 𝑦𝑡 log(𝑥𝑡,𝐵) + (1 − 𝑦𝑡) log(1 − 𝑥𝑡,𝐵)

𝑇

𝑡=1

. 

Baseline and weight constraints are imposed to assure that response probability is bounded between 

0 and 1. Other parameter constraints (1 ≤ 𝑐𝑏 ≤ 𝑇 and 𝜏𝑏 > 0) enforce model identifiability. Model 

selection relies on an iterative procedure where, starting from 𝐵 = 0, a null model of order 𝐵 is 

compared against the order 𝐵 + 1 alternative, using the following likelihood-ratio test, 

𝜆(𝐵 + 1 ∶ 𝐵) ≔ 2(ℒ(𝐱𝐵+1|𝑦) − ℒ(𝐱𝐵|𝑦)) ~ 𝜒3
2, 

where significance level is set to 𝛼 = 0.05. The number of degrees of freedom corresponds to the 

difference in number of parameters between the two models. In Figures 2A and S1B and S1C, we 

report the best models, optimized given each animal’s behavior. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.26.964510doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.964510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

15 
 

Change-point analysis 

Both the initialization of center parameters of the behavioral models before optimization and neural 

CP (population CP/single-unit CP) detection were performed using PARCS (Toutounji and Durstewitz, 

2018; Figures 2A, 3A, S1B and S1C). For neural CPs 𝑐𝑛 the method is applied to the square-root-

transformed spike counts in each window of interest, bringing counts closer to a Gaussian distribution 

and stabilizing the variance (Kihlberg et al., 1972). An upper bound of 3 on the number 𝑁 of CPs per 

unit or population is chosen and the nominal significance level for the method’s permutation bootstrap 

procedure is set to 𝛼 = 0.2 in order to correct for the method’s conservativeness (Toutounji and 

Durstewitz, 2018). 

 

Relating behavioral model to population CPs 

In order to quantify locking between population CPs and behavior, we developed a measure for 

comparing the likelihoods that two sets of population CPs are sampled from one behavioral response 

probability distribution 𝑝b(𝑦𝑡 = 1) (Figures 2B and 2C). This distribution is the sum of 𝐵 bell-shaped 

curves (each peaking at one behavioral CP50% 𝑐𝑏 and of width that scales with 𝜏𝑏), computed by 

normalizing the first differences |Pr(𝑦𝑡+1 = 1|𝑥𝑡+1,𝑏) − Pr(𝑦𝑡 = 1|𝑥𝑡,𝑏)| to sum up to 1. Similarly, a 

neural response probability distribution 𝑝p(ΔFR𝑡 ≠ 0) is computed as the sum of 𝑁 Dirac delta 

functions, centered at the 𝑁 population CPs 𝑐𝑛. Weights are computed by averaging and normalizing 

|ΔFR𝑐𝑛
| over the whole population, such that 𝑝p(ΔFR𝑡 ≠ 0) sums up to 1. Given two neural response 

distributions 𝑝𝑖
p
 and 𝑝𝑗

p
, we compute the likelihood ratio, 

𝜆(𝑝𝑖
p

∶ 𝑝𝑗
p

) ≔ 2 log
∑ 𝑝𝑖

p
(ΔFRcn

≠ 0)𝑝b(𝑦𝑐𝑛
= 1)

𝑁𝑖
𝑛=1

∑ 𝑝𝑗
p

(ΔFRcn
≠ 0)𝑝b(𝑦𝑐𝑛

= 1)
𝑁𝑗

𝑛=1

 . 

Positive 𝜆(𝑝𝑖
p

∶ 𝑝𝑗
p

) indicates a stronger locking to the same behavior of the set 𝑖 of population CPs, 

relative to the set 𝑗. In Figure 2B right, we compute 9 𝜆(𝑝𝑖
p

∶ 𝑝𝑗
p

) for each of the 10 animals, where 𝑝b 

and 𝑝𝑖
p
 correspond to the animal’s own response probability and neural response distributions of the 

extinction session, respectively, and 𝑝𝑗
p
 to the neural response distribution of each of the other 9 

animals (𝑖 ≠ 𝑗). The resulting 10 sets of 𝜆(𝑝𝑖
p

∶ 𝑝𝑗
p

) values are used to test whether 𝜆 > 0 for each 

individual animal (uncorrected right-tailed Wilcoxon signed-rank test, p-values in Figure 2C). To 

generate the null distribution of 𝜆(𝑝𝑖
p

∶ 𝑝𝑗
p

) In Figure 2B left, we use the neural response distributions 

of the maintenance session and response probability distributions of the extinction session. 

 

Characteristics for comparing different CP sets 

We compare different sets of single-unit CPs using the statistics: frequency, # s. u. CP # units⁄ ; 

relative rate change, 𝜌 ∶= 2|FRpre s.u.CP − FRpost s.u.CP| (FRpre s.u.CP + FRpost s.u.CP⁄ ); sign ratio, 

# positive s. u. CPs # negative s. u. CPs⁄ . The firing rates FRpre s.u.CP and FRpost s.u.CP were computed over 

the periods of constant firing rates around the single-unit CP, defined by PARCS as the longest 

periods before and after a CP where no other change point was detected. Statistics for the 
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maintenance and extinction sessions are reported in Figures 3D and 3F.  

 

Sensitivity analysis 

We computed for each unit the statistic, 

𝑑′ =
�̅�2 − �̅�1

√(𝜎1
2 + 𝜎2

2)/2 
 , 

where �̅�𝑖 and 𝜎𝑖
2 are the firing rate mean and variance over a block of trials, respectively (first vs. last 

12 maintenance and extinction trials). Positive 𝑑′ indicates an increase of firing rate in block 2 

compared to block 1 measured in units of average standard deviation, and vice versa (Figure 3H and 

S2). 

 

Comparing single-unit CP distributions across sessions 

The P-P plots of Figure 3I compare the empirical distributions function (EDF) of single-unit CP 

occurrence during maintenance and within-session extinction within the five task windows considered. 

Given the different number of trials in the two sessions (60 and 69 trials, respectively), we first linearly 

time-warped extinction trials to fit within 60 bins, which we then used to compute the EDF of that 

session’s single-unit CPs. 

 

Onset of behavioral extinction  

In order to highlight the neuronal mechanisms initiating behavioral extinction, we chose a drop of 

10% in response probability to mark the onset of an extinction-learning episode (behavioral CP10%). 

These drops were defined for each 𝑐𝑏 (excluding the single behavioral CP at which response 

probability increased; Figure 2A) as the first trial 𝑡 where 1/(1 + exp (−(𝑡 − 𝑐𝑏)/𝜏𝑏) )  ≥ 0.1 (Figure 

4B). 

 

Single-unit and behavioral CP coordination 

We collected all single-unit CPs and aligned them with respect to each behavioral CP10% of the 

corresponding animal (i.e., for animals with two extinction-learning episodes, single-unit CPs were 

considered twice). The aligned single-unit CPs were then binned using a 3-trial bin. Statistical test: We 

used permutation bootstraps to test whether single-unit CP frequencies within 10 trials from the 

behavioral CPs were statistically larger than what is expected by chance. We generated bootstrap 

histogram samples by randomly shuffling the occurrence of the single-unit CPs of each animal and 

repeating the alignment procedure described above. This was done by permuting the trial order but 

keeping co-occurring single-unit CPs of different units at the same trial. Behavioral CPs were left 

unchanged. The 5000 histogram samples so obtained were then used to produce an EDF over single-

unit CP frequency per histogram bin. At each of the 7 frequency values around the behavioral CP of 

the original single-unit CP histogram a p-value was assigned on the basis of the EDF of their 

corresponding bin. In order to test significance with a higher temporal resolution than a 3-trial binning, 

we repeated the bootstrap procedure by sliding the histogram bin edges by 1 and then 2 trials. The p-

values assigned to each trial lag (center of the bin) are reported on logarithmic scale in Figures 4C, 
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4E and S3 as solid black lines. Benjamini-Hochberg’s correction for multiple comparisons was 

performed only on the p-values of the 7 bins of the displayed histogram. Asterisks mark p<0.05 (black; 

significant) and p<0.1 (gray; not significant) after correction. Control with maintenance single-unit CPs: 

To make sure that the results reported in Figures 4C-E and S3B right are not only due to random PL 

fluctuations, observed also during maintenance, we repeated the test using behavioral CPs from the 

extinction session but single-unit CPs from maintenance (Figure S3A and S3B left).  

 

Predicting behavioral CPs from PL population vectors 

We tested if the firing rate of the PL population in the four task windows examined could predict 

changes in animal behavior. For each animal, we considered the population vector 𝑉𝑡
𝑊 = [FR𝑡

1, … , FR𝑡
𝑀] 

constructed from firing rates FR𝑡
𝑖  of units 𝑖 in trial 𝑡 in the task window 𝑊. On the basis of these 

population vectors, we then trained a support vector machine classifier with linear kernel (slack 

variables minimized with L
1 

norm and box constraint = 1) to divide the trials occurring before the first 

behavioral CP from those occurring after the behavioral CP. For this analysis, we only considered the 

first behavioral CP, in order to have a comparable chance level across animals. Classifier accuracy 

was computed with a 10-fold cross-validation to avoid overfitting. Since the sample was imbalanced 

and the two classes (before/after behavioral CP) were not of equal size, we used the Cohen’s kappa 

coefficient to quantify classifier accuracy relative to chance level. Cohen’s kappa ranges between -1 

and 1 and is defined as,  

𝜅 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒

, 

with 𝑝0 the fraction of correctly classified samples and 𝑝𝑒 the expected probability of correct 

classification due to chance. Kappa values were computed on the classifier output collected over the 

10 folds for each animal and each task window (Figures 4F and S4C). Statistical test: Significance of 

the kappa coefficients was tested through bootstrap. Any monotonic change in firing rate can improve 

the performance of a classifier trained to divide temporally ordered samples. To account for this factor 

and test exclusively for the behavioral CP and population-rate coordination, we created a 

bootstrapped sample by repeatedly assigning the behavioral CP to a random trial. We then trained the 

classifier to divide trials occurring before the shuffled behavioral CP from those occurring after it. The 

procedure was repeated 100 times for each animal and each task window. The obtained 𝜅𝑏𝑜𝑜𝑡 values 

were then averaged per animal and task window, generating a reference set 

𝜿𝑏𝑜𝑜𝑡
𝑊 = [𝜅1

𝑏𝑜𝑜𝑡 , 𝜅𝑖
𝑏𝑜𝑜𝑡 … , 𝜅10

𝑏𝑜𝑜𝑡] with 𝑖 = 1 … 10 indexing the animal. Since the performance of a classifier 

highly depends on the number of units composing the population vector, we compared the set of 

original 𝜅 values with 𝜿𝑏𝑜𝑜𝑡
𝑊  with a one-tailed paired t-test. Significance was assessed with Benjamini-

Hochberg’s correction for multiple comparisons. 

 

Coordination between ITI and CL, DP, and LP single-unit CPs 

To quantify coordination between single-unit CPs detected within the ITI window and those of the 

same unit detected within other windows, we proceeded as follows: For each single-unit CP detected 
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in the ITI window, we computed the distance in trials between its occurrence and that of the nearest 

single-unit CP of the same unit detected in a different task window, e.g. DP. Absolute distance values 

were then averaged across all units of an animal (Figure 4I).  
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FIGURE LEGENDS 

 

 

 

 

Figure 1. PL activity remains modulated by conditioned cues during extinction learning. 

(A, B) Behavioral task (A) and schematics of trial timeline during maintenance (B). During reinforced 

trials, reward was delivered exclusively upon pressing the cued lever (active lever).  

(C) Histologically verified recording sites within PL of the 10 rats. 

(D, E) Percentage of active lever presses during maintenance and last 18 trials of extinction (D) and 

throughout within-session extinction (E). Dashed lines show percentages for individual animals. Solid 

line and error bars show mean ± sem. Asterisk and hash symbols mark Benjamini-Hochberg corrected 

p < 0.05 and p < 0.08, respectively. See also Figure S1A. 

(F) z-scored activity of significantly responding units (number of units shown for each curve) following 

cue light and lever presentation (see Methods). Horizontal dotted lines mark the significance threshold 

and testing window. Solid lines and shading show mean ± sem. 

(G) Area-under-the-curve (AUC) for z-scored single-unit response (see Methods) computed on trial 

blocks of steady-state behavior (early/late: first/last 12 trials during maintenance and extinction; 

reinforced: 9 reinforced trials during within-session extinction). Boxplot whiskers extend to include 

points within 1.5 the interquartile range (IQR). Horizontal dotted lines mark the significance threshold. 
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Figure 2. Whole-trial PL population activity reflects behavioral changes during extinction 

learning. 

(A) Examples of the behavioral models of 4 representative animals and their respective population 

change points (population CP) computed over the population’s whole-trial firing rate during extinction. 

Filled circles indicate the trial-specific behavioral choice. Dashed line indicates the onset of extinction 

trials. Numbers at the top-right of each panel indicate the number of recorded units. See also Figures 

S1B and S1C for behavioral models and population CPs of all animals during maintenance and 

extinction, respectively. 

(B) Distribution of likelihood ratio test statistic for relating the set of behavioral response models during 

extinction to maintenance population CPs (𝜆maint; left) and extinction population CPs (𝜆ext; right). 

Boxplot whiskers extend to include points within 1.5 the IQR. See also Figures S1B and S1C. 

(C) Number of recorded units in each rat against the p-value of its corresponding 𝜆ext distribution (see 

main text and Methods). The curve is an exponential fit that highlights the rank correlation between the 

two (Spearman’s rank correlation coefficient). Points in magenta and cyan pertain to 𝜆ext values from 

corresponding rats in (B) and Figure S1C. 
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Figure 3. PL single-unit dynamics during extinction learning is indistinguishable from that 

during maintenance. 

(A) Four examples (same animal) of single-unit firing rates based on CP detection (gray solid line) and 

corresponding single-unit CPs (gray filled circles), identified from whole-trial firing rate (black dots). 

Behavioral model and whole-trial population CPs are as in Figure 2A and S1C. 

(B) Five sets of single-unit CPs identified from single-unit firing rates within five task windows defined 

relative to light onset as: inter-trial interval (ITI; sec -3 to -1), cue light (CL; sec 0 to 0.5), delay period 

(DP; sec 3 to 5), lever presentation (LP; sec 5 to 5.5) and whole trial (WT; sec 0 to 15). 

(C) Distribution of single-unit CPs across maintenance and extinction trials (60 and 69 trials, 

respectively) for each task window, pooled from all animals. 

(D-F) Number of single-unit CPs per unit (D), relative change in firing rate (E), and positive-to-negative 

sign ratio (F), computed in four task windows. Plots show mean ± 1.96 ∙ sem (red and gray) and sd 

(blue or orange). Open circles indicate the mean for individual animals. The three quantities (D-F) are 

statistically indistinguishable when compared between sessions. Gray line in (F) marks a sign ratio of 

1, where positive and negative rate changes are balanced. 

(G) Population firing rate per task window over blocks of 6 consecutive extinction trials (trials 1 to 3 

excluded; cf. Figure 1E). Dashed line indicates the onset of extinction trials. Solid lines and error bars 

show mean ± sem. 

(H) Sensitivity analysis showing increased and decreased single-unit whole-trial firing rates of a 

representative animal during the first and last 12 trials of maintenance (left) and extinction (middle). 

Empirical distribution functions (right) of the sensitivity index 𝑑′ for all recorded single-units in 

maintenance (blue) and extinction (orange) show no significant difference, despite difference in 

behavior. Dotted lines mark the threshold of significant change in firing rate. See also Figure S2. 

(I) P-P plot comparing the empirical distribution function of single-unit CPs over maintenance and 

within-session extinction trials (cf. (C)) for the four task windows.  
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Figure 4. PL baseline rate and task-evoked responses change in anticipation of behavioral 

extinction. 

(A) Number of population CPs per animal. Plots show mean ± 1.96 ∙ sem (red and gray) and sd (blue 

or orange). Open circles indicate the numbers for individual animals. 

(B) Onset (yellow) and center (red) of an extinction episode for one representative animal. Behavioral 

CP10% and behavioral CP50% correspond to 10% and 50% drop in response probability, respectively. 

Behavioral choice and model are as in Figure 2A and S1C. Also see Figure S4A. 

(C-E) Single-unit CP distributions for different task windows (WT/CL/DP/LP/ITI) pooled across animals 

and aligned with respect to each animal’s behavioral CP10%. Single-unit CPs coordinated at extinction 

onset in all windows. Statistical test performed via bootstrap (see Methods). Asterisks mark Benjamini-

Hochberg corrected p-values with p < 0.05 (black) and p < 0.1 (gray). Black solid lines trace the log(p-

value). Horizontal dotted lines mark the log(0.05) threshold over the tested window. Also see Figure 

S3. 

(F) Classifier performance in predicting the animal’s behavioral state from population firing rates during 

four task windows (cf. Figure 3B). Significance was assessed via bootstrap (see Methods). 

Differences between data and bootstrapped Cohen’s kappa are reported by showing mean ± 1.96 ∙

 sem (red and gray) and sd (purple). Open circles indicate differences for individual animals. 

Population rates are predictive of extinction onset in ITI, DP and LP. See Figure S4C for a similar 

analysis using behavioral CP50%. 

(G) Raster plots of two representative units from the same animal, showing rate progression across 

extinction (bottom to top). Filled and open blue circles mark trials with reinforced and unreinforced 
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lever presses, respectively. Vertical gray lines indicate cue light onset and lever presentation. To the 

right, single-unit firing rates based on CP detection (cf. Figure 3A) in four task windows, color-coded 

as in Figure 3B. 

(H) Fraction of single-units for which the evolution of firing rates within one window significantly 

correlates with that within a second window. 

(I) Firing-rate changes during ITI are most coordinated with those occurring during DP. Absolute 

distance in trials between the occurrence of a single-unit CP in ITI and the closest single-unit CP of the 

same unit in CL, DP and LP. Plots show mean ± 1.96 ∙ sem (red and gray) and sd (purple). Open 

circles mark values for individual animals. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.26.964510doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.964510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

24 
 

Supplementary Figures 
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Figure S1. Behavioral and whole-trial population neural changes during maintenance and 

extinction. 

(A) Distribution of inactive lever presses per animal during maintenance (left) and extinction (right). 

See also Figure 1A. 

(B, C) Behavioral models for all animals and their respective whole-trial population CPs during 

maintenance (B) and extinction (C). Panels at the same relative position in (B) and (C) belong to the 

same animal. Numbers at the top-right of each panel indicate the number of recorded units. Magenta 

and cyan in (C) identifies the same animals color-marked in Figures 2B and 2C.  
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Figure S2. Within-session single-unit rate changes. 

(A, B) Sensitivity analysis as in Figure 3H performed on all recorded units during maintenance (A) and 

extinction (B). Vertical axis indicates the number of the animal from which the unit was recorded. 

Dashed lines mark the threshold of significant change in firing rate in units of standard deviations. 
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Figure S3. Single-unit CPs anticipate behavioral extinction. 

(A) Aligning maintenance single-unit CPs to extinction behavioral CPs10%. Coordination is lost when 

single-unit CPs and behavioral CPs belong to different sessions. See also Figures 4C-E. 

(B) Aligning maintenance (left) or extinction (right) single-unit CPs to extinction behavioral CPs50%. 

Coordination is lost when single-unit CPs and behavioral CPs belong to different sessions. See also 

Figures 4C-E. 
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Figure S4. PL population rate is predictive of behavioral extinction. 

(A) Active lever presses (filled black circles) against first behavioral CP10% (orange) and behavioral 

CP50% (red) for each animal during extinction. Dashed line indicates the onset of extinction trials. 

(B) Behavioral CPs10% anticipate behavioral extinction. Open circles show the percentage of active 

lever presses during the ten trials prior and including behavioral CP10%. Plots show mean ± 1.96 ∙ sem 

(red and gray) and sd (purple). At behavioral CP10% the rats still have not changed their conditioned 

behavior.  

(C) Classifier performance as in Figure 4F but predicting behavioral CP50%. Extinction was predicted 

form population rates equally well in all task windows. 
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