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Highlights 

• EEG microstate parameters are strongly related to vigilance levels and can predict them 

• We find that vigilance Granger-causes changes in parameters of microstates  

• Duration and occurrence of EEG microstates are differentially modulated by vigilance level  
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Abstract 

The momentary global functional state of the brain is reflected in its electric field configuration and cluster 
analytical approaches have consistently shown four configurations, referred to as EEG microstate classes 
A to D. Changes in microstate parameters are associated with a number of neuropsychiatric disorders, 
task performance, and mental state establishing their relevance for cognition. However, the common 
practice to use eye-closed resting state data to assess the temporal dynamics of microstate parameters 
might induce systematic confounds related to vigilance levels. Here, we studied the dynamics of 
microstate parameters in two independent data sets and showed that the parameters of microstates are 
strongly associated with vigilance level assessed both by EEG power analysis and fMRI global signal. We 
found that the duration and contribution of microstate class C, as well as transition probabilities towards 
microstate class C were positively associated with vigilance, whereas the sign was reversed for microstate 
classes A and B. Furthermore, in looking for the origins of the correspondence between microstates and 
vigilance level, we found Granger-causal effects of vigilance levels on microstate sequence parameters. 
Collectively, our findings suggest that duration and occurrence of microstates have a different origin and 
possibly reflect different physiological processes. Finally, our findings indicate the need for taking vigilance 
levels into consideration in resting-sate EEG investigations. 
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Introduction 

The topographical distribution of brain electrical potentials reflects the large-scale brain activity which 

can be effectively measured using multichannel scalp EEG (Fallgatter et al 1997, Fallgatter et al 2001, 

Hallez et al 2007, Lehmann & Skrandies 1984). Intriguingly, these topographical configurations do not 

change randomly but remain quasi-stable for a short period of time of around 80 milliseconds before 

rapidly switching to another quasi-stable topography. These reoccurring stable geometrical patterns are 

referred to as EEG microstates (Lehmann et al 1987). Clustering approaches have consistently revealed 

four prototypical topographies which are sufficient to explain around 80% of variance in resting-state 

recordings (Khanna et al 2014, Khanna et al 2015, Koenig et al 2002, Michel & Koenig 2017), where the 

polarity can invert reflecting oscillations of the dominant generators.   

As expected, the temporal characteristics of EEG microstate sequences change in response to a large 

number of external and internal stimulations.  These include but are not limited to content of spontaneous 

thoughts (Lehmann et al 2010), behavioral (Dimitriadis et al 2015, Milz et al 2016, Seitzman et al 2017) 

and global brain state (Faber et al 2005, Katayama et al 2007) as well as pharmacological manipulations 

(Schiller et al 2019). These characteristics are different in patients suffering from neuropsychiatric 

disorders, such as schizophrenia, depression, dementia and multiple others (for a review seeKhanna et al 

2015, Michel & Koenig 2017).  

An important but often neglected aspect of these works, however, is that most of these studies were 

conducted using eyes-closed resting state EEG recordings alone. During typical eyes-closed rest, subjects 

tend to sequentially transit from complete wakefulness towards drowsiness. Tagliazucchi and Lafus in 

2014 showed that likelihood of subjects falling asleep during eyes-closed recordings is high, and 

approximately half of the participants loose wakefulness after 10 minutes (Tagliazucchi & Laufs 2014). 

Transition from complete wakefulness to sleep onset is characterized by strong occipital alpha power 

increase immediately after closing the eyes that is followed up by anteriorization of alpha power focus 

(De Gennaro et al 2005) and subsequent increase of delta and theta activity indicating further transition 

to drowsiness (Olbrich et al 2009, Strijkstra et al 2003). As classification of EEG microstate classes is 

strongly dependent on the power of alpha frequency (Lehmann et al 1987), it is reasonable to hypothesize 

that the temporal characteristics of EEG microstates might be affected by vigilance changes. Since patients 

suffering from neuropsychiatric disorders are known to have altered vigilance regulation pattern (Hegerl 

& Hensch 2014, Olbrich et al 2012, Strauss et al 2015), this hypothesis, should it get confirmed, can have 

strong implications in interpreting EEG microstate alterations in a clinical context (for a related topic see 

Zanesco et al 2020). 

To test this hypothesis, we investigated the relation of the characteristics of EEG microstate parameters 

with vigilance levels using two independent data sets of simultaneous eyes-closed EEG/fMRI resting state 

recordings. These datasets allowed us to 1) test the association of EEG microstate parameters with 

vigilance estimates based on EEG as well as fMRI metrics, and 2) assess potential causal relationship 

between vigilance loss and changes in temporal dynamics of EEG microstate characteristics. 

1. Methods 
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1.1 Data Acquisition  

The analysis was performed on two independent data sets of simultaneous EEG/fMRI recordings. The first 

study is registered at ClinicalTrials.gov, number NCT02602275 (date of registration: 28/10/2015) and 

approved by the ethics committee of the University of Magdeburg as well as the Competent Authority 

(Federal Institute for Drugs and Medical Devices). The second study was approved by the Ethics 

Committee of the University of Tübingen, Germany. A written informed consent was signed by each 

participant prior to any study participation. 

 
Data set 1 

The first data set includes 12-min eyes-closed resting-state recordings of 39 healthy male volunteers 

(mean age 43.7 ± 9.8) over one session of simultaneous EEG and 3-Tesla fMRI. EEG data were acquired 

using the BrainAmp MR system (Brain Products) with a 64-channel EasyCap. One channel placed on the 

back was used for ECG detection. AFz was used as reference electrode and FCz as ground electrode. The 

sampling rate was 5000 Hz. To increase the quality of EEG in simultaneous EEG-fMRI recordings, EEG cap 

was augmented with six carbon wire loops (CWLs) (van der Meer et al 2016). Four CWLs were placed on 

the outer surface of the EEG cap at the left and right frontal and left and right posterior locations, and two 

CWLs were attached to the cables connecting the EEG cap to the EEG amplifier (BrainAmpMR Plus). 

Imaging data were acquired on a 3 Tesla Philips whole body MRI system (Philips Medical Systems, 

Hamburg, Germany). First, structural T1-weighted images for spatial normalization were measured using 

a turbo field echo (TFE) sequence (274 sagittal slices covering the whole brain, flip angle = 8°, 256 x 256 

matrix, voxel size = 2.5 × 2.5 × 3 mm³). Whole brain BOLD resting-state data were acquired over 34 axial 

slices using an echo planar imaging (Randerath et al) sequence (TR = 2,000 ms, TE = 30 ms, flip angle = 90°, 

96 × 94 matrix, field of view = 24 cm, voxel size = 2.5 × 2.5 × 3 mm³) . 

Data set 2 

The second data set includes 10-min eyes-closed resting-state recordings of 20 healthy male volunteers 

(mean age 26.8 ± 7.6) over one session of simultaneous EEG and 3-Tesla fMRI. EEG data were acquired 

with the same parameters as in data set 1. Imaging data were acquired on a 3 Tesla Siemens Prisma whole 

body MRI system (Siemens Medical Solutions, Erlangen, Germany). First, structural T1-weighted images 

for spatial normalization were measured using a three‐dimensional magnetization‐prepared rapid 

gradient echo (MP‐RAGE) sequence (192 sagittal slices covering the whole brain, flip angle = 9°, 256 x 256 

matrix, voxel size = 1 × 1 × 1 mm³, PE-GRAPPA factor 2). Whole brain BOLD resting-state data were 

acquired over 30 axial slices using an echo planar imaging (Randerath et al) sequence (TR = 1,800 ms, TE 

= 35 ms, flip angle = 79°, 64 × 64 matrix, field of view = 19.2 cm, voxel size = 3 × 3 × 4 mm³). 

 

1.2 Data Preprocessing 

Electroencephalography 

First, gradient artifacts were removed from the EEG data by a motion informed template subtraction 

realized by the Bergen EEG-fMRI toolbox (Moosmann et al 2009) using a MRI template waveform obtained 

from 25 MRI artifacts in a sliding window manner (Allen et al 2000). Next, EEG data was first bandpass 
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filtered between 0.3Hz to 200Hz and down-sampled to 1000Hz. The helium pump and ballisto-cardiac 

(BCG) artifacts were then removed using the Carbon-wire loop technique (van der Meer et al 2016). Next, 

the data were segmented into 2s and 1.8s epochs for the data set 1 and 2 respectively (i.e. equivalent to 

the TR of the BOLD resting-state scans), and the epochs containing muscle and head movement artifacts 

(outliers in spectral power between 110 and 140 Hz) were removed. The channels that contained more 

than 50% of epochs with artifacts were interpolated using routines provided by EEGLAB (Delorme & 

Makeig 2004). Finally, ICA decomposition of the EEG data was performed and components reflecting eye 

movements, continuous muscle activity and residual MRI-artefacts were removed. Six subjects from data 

set 1 and one subject from data set 2 were excluded from further analysis because of their low EEG quality 

or technical problems during data acquisition. 

Functional MRI 

fMRI data were preprocessed using SPM12 (FIL, Wellcome Trust Centre for Human Neuroimaging, UCL, 

London, UK) toolbox. The first three volumes of each recording were excluded from the analysis. The 

functional corrections included slice time correction and realignment to the first image. The structural T1-

weighted volume was registered to the mean functional image and segmented, in order to normalize 

functional and structural images to the Montreal Neurological Institute (MNI) template brain. Finally, 

normalized functional volumes were smoothed with a three-dimensional Gaussian kernel of 6 mm full-

width-half-maximum. Global signal time course was then estimated by averaging the z-scored time-series 

across all voxels with a gray matter tissue probability of at least 60% (based on tissue probability maps 

from the SPM12 toolbox). Finally, the global signal time-series were smoothed by calculating the mean 

values within a non-overlapping window of 3 TR. 

Microstate extraction 

EEG microstate analysis was performed separately for each dataset using the EEGLAB plugin for 

Microstates version 1.1, developed by Thomas König 

(http://www.thomaskoenig.ch/index.php/software/microstates-in-eeglab). Artefact-free EEG data were 

re-referenced to average reference, bandpass filtered between 2 and 20 Hz and further down-sampled to 

250 Hz. The Global Field Power (GFP) was calculated as the root of the mean of the squared potential 

differences at all electrodes from the mean of instantaneous potentials across electrodes. Since the 

topography remains stable around peaks of the GFP, they are the best representative of the momentary 

map topography in terms of signal to-noise ratio (Koenig et al 2005). All maps marked as GFP peaks were 

extracted and submitted to a modified k-means clustering algorithm to deduce four classes of map 

topographies (microstates) that maximally explain the variance of the GFP peak map topographies. These 

four classes of map topographies were then submitted to a full permutation procedure (Koenig et al 1999) 

to compute mean classes across participants. Using the mean microstate classes across subjects as 

templates, for all participants the EEG topographies at the moments of GFP peaks were assigned to one 

of these four microstates based on maximal Pearson correlation. Successive GFP peak maps assigned to 

the same class were recognized as belonging to one microstate. Time points between GFP peaks were 

assigned to the microstate class of the temporally closest GFP peak (Figure 1A). In each epoch the time 

points before the first and after the last detected GFP peak were excluded because microstates cannot be 
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determined in these points. For each microstate class and each epoch, four parameters were estimated 

i.e. duration (i.e. mean time spent in the current MS class), occurrence (i.e. frequency of appearance of 

the current MS class), contribution (i.e. percentage of total time of recording spent in the current MS 

class), and transition probability. As the observed transition probability might be affected by differences 

in occurrence between microstate classes, we also estimated a random transition probability model as 

described by Lehmann et al.  (Lehmann, Faber et al. 2005). The resulting transition probability was 

calculated as the difference between the observed transition probability and the one estimated from the 

random transition probability model. To get rid of the fast fluctuations, the time course of the microstate 

parameters was smoothed by calculating the mean value within a non-overlapping window of 3 TR 

(resulting in 6 s and 5.6 s window length for data set 1 and 2 respectively). 

1.3 Estimation of vigilance level  

To obtain the temporal dynamics of vigilance fluctuation, power spectral density of EEG was estimated 

for each channel using a sliding Hamming window (Data set 1: 1457 points, 5.8s temporal width, and 

65.7% overlap. Data set 2: 1311 points, 5.2s temporal width, and 65.7% overlap). The temporal resolution 

of the spectrogram was equivalent to the TR of fMRI resting state scans (i.e.  2s and 1.8s for the data set 

1 and 2 respectively). Next, we estimated the global spectrogram by computing the root mean square 

(rms) value across all channels at each frequency. Then, vigilance time-series were calculated as rms 

amplitude in the alpha frequency band (7-13 Hz) divided by the rms amplitudes in the delta and theta 

frequency band (1-7 Hz) at each time point. The similar approach was used by (Falahpour et al 2018). To 

omit the fast fluctuations, the vigilance time-series were smoothed by calculating the mean value within 

a non-overlapping window of 3 TR.  

2. Results 

2.1 EEG microstates  

Four EEG microstate classes (Figure 1B) explained on average 77.8 ± 2.9% and 76. 1 ± 3.6% of the total 

topographic variance across participants for data sets 1 and 2 respectively. Figure 1C shows mean 

duration, mean occurrence, and mean contribution for two datasets. The parameters of microstates are 

well in line with ranges reported in the literature (Khanna et al 2015, Kikuchi et al 2011, Kindler et al 2011, 

Milz et al 2016). 
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Figure 1: Microstate extraction and the parameters (A) Schematic representation of the microstate extraction procedure: 1) 

Global Field Power (GFP) is calculated at each time point of the multichannel EEG recording. 2) The head-surface potential maps 

at the peaks of the GFP curve are extracted and submitted to the clustering algorithm to reveal the dominant topographies (EEG 

microstates). 3) The original maps at peaks of the GFP curve are assigned to one of the microstate classes A, B, C, or D based on 

the degree of the spatial similarity with the microstate maps. (B) Head-surface topographies of the four EEG microstate classes 

for data set 1 (on the left) and data set 2 (on the right) during eyes closed resting. C: The microstate parameters for the four 

microstate classes (mean ± standard deviation). 

 

2.2 Correlation between vigilance level and microstate parameters  

We analyzed the association between microstate and vigilance on two levels. First, the correlation 

between vigilance level and microstate parameters were calculated by estimating the Pearson correlation 

between mean vigilance and mean microstate parameters (see Figure 2). Mean vigilance and microstate 

parameters were estimated by averaging the time-series across all time points on the single subject level. 

We observed significant positive association of mean vigilance level with mean duration and contribution 

of microstate class C. Also, there was a negative association of mean vigilance level with occurrence and 

contribution of the microstate class A and B (see Appendix Table A.1 for details). Consistent with these 

findings, we also found a significant association of probability of transitions towards microstate class C 

from microstates class A but also microstate class D (see Appendix Table .2 for details). Interestingly, the 

higher vigilance level was characterized by increased duration of the microstate class C and decreased 

occurrence of the microstate classes A and B. Also, the pathway of the transitions between different 

microstate classes was altered together with changes in vigilance level, with higher probability for 

transitions towards microstate class C. 
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Figure 2: Association of the mean vigilance level and mean values of the EEG microstate parameters of the four microstate classes 
during eyes closed resting for the two data sets.  A: Top panel: duration, middle panel: occurrence, bottom panel: contribution. 
Each dot represents data of one subject. Data for the first dataset are presented in circles and solid lines, data for the second 
dataset are presented in crosses and dashed lines. Mean duration and contribution of the microstate class C are positively, while 
occurrence and contribution of the microstates class A and B were negatively associated with vigilance level in both investigated 
datasets.  B: The transition probabilities of the transitions between the four microstate classes. Red arrows represent positive 
association with vigilance level, blue – negative. The thickness of the line and the number of the stars corresponds to the p-value 
(p < 0.001 – thick / ***, 0.001 < p < 0.01 – medium / **, 0.01 < p < 0.05 – thin / *, trend level (p < 0.065) - dashed). For both data 
sets mean transition probabilities towards microstate class C were positively, while transition probabilities from microstate class 
D towards microstate class A were negatively associated with vigilance levels. 

Second, we looked into temporal correlations between microstate parameters and vigilance level. For 

each subject the correlation between the vigilance time-series and the time courses of each of the 

microstate parameters were calculated. We used one-sample t-tests on the Fisher z-transformed 

correlation coefficients to estimate the group level effects. In line with the findings in the previous section, 

we observed significant positive association of the vigilance time course and time courses of the duration 

and contribution of the microstate class C. The time courses of the occurrence and contribution of the 

microstate class A and B were negatively associated with vigilance (see Appendix Table B.1 for details). 

However, we also observed (Figure 3 A), that the time course of the duration of the microstate class D 

was positively associated with vigilance time-series. Also, we observed a positive correlation between the 

vigilance time course and the time courses of the transition probability for the transitions from the 

microstate class A towards microstate class C and from the microstate class B towards microstate class D. 

The time course for of the probability of transitions from microstate class C towards microstate class B 

was negatively associated with the vigilance time-series (see Appendix Table B.2 for details). 
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Figure 3 Association between the vigilance time-series and the time courses of the EEG microstate parameters during eyes closed 

resting for the two data sets. A: Top panel: duration, middle panel: occurrence, bottom panel: contribution. Bars show group 

average Fisher z-transformed correlation coefficients for the first (black) and second dataset (white), error bars represent 

standard deviation of the mean. Stars correspond to the significance levels (p < 0.001 - ***, 0.001 < p < 0.01 – **, 0.01 < p < 0.05 

– *). Time courses of the duration and contribution of the microstate class C as well as duration of the microstate class D were 

positively, while time courses of the occurrence and contribution of the microstates class A and B were negatively associated 

with change of vigilance level in both investigated data sets. B: The transition probabilities of the transitions between the four 

microstate classes. Red arrows represent positive association, blue – negative. The thickness of the line corresponds to the p-

value (p < 0.001 – thick, 0.001 < p < 0.01 – medium, 0.01 < p < 0.05 – thin, trend level (p < 0.065) - dashed). For both data sets 

time courses of the transition probabilities for transitions from microstate class A towards microstate class C as well as transitions 

from microstate class B towards microstate class D were positively, while the time course for of the probability of transitions from 

microstate class C towards microstate class B was negatively associated with vigilance time-series. 

2.3 Multivariate pattern classification of the full vigilance time-series based on the 

microstate parameters 

To test if the univariate correlations in section 3.2, allow for a temporal reconstruction of the vigilance 

level, we used support vector machine regression to predict the vigilance time-series based on the 

parameters of the microstates. We used 2-fold cross-validation on the subject level and repeated the 

cross-validation 100 times. To test against the null distribution, we randomly swapped microstate 

parameter time courses across different subjects and repeated the prediction procedure 1000 times. For 

both data sets, correlation between estimated and measures vigilance time-series were significantly 

above chance level (Figure 4). 
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Figure 4: Prediction of the vigilance time-series based on the EEG microstate parameters using Support Vector Regression (SVR). 

A: correlation between estimated and real vigilance time-series for train (light gray) and test (dark gray). Error bars represent the 

standard deviation of the mean over 100 repetitions of the train and test procedure.  B: null distribution for the first dataset. 

Vertical red line represents the mean test correlation between estimated and real vigilance time-series. C: null distribution for 

the second dataset. Vertical red line represents the mean test correlation between estimated and real vigilance time-series. D: 

example of the vigilance time-series prediction for a 10 min interval. Original data are shown in light gray and predicted in dark 

gray. 

2.4 Correlation between time course of microstate parameters and BOLD global signal 

Vigilance levels are known to be associated with fMRI global signal (Falahpour et al 2018, Wong et al 2016, 

Wong et al 2013). Here, we investigated the association of the temporal dynamics of the microstate 

parameters with the global signal. To do this, vigilance and microstate parameters’ time-series were 

convolved with the canonical hemodynamic response function to account for the hemodynamic delay. 

For each subject the correlation between the vigilance time-series and the time course of the fMRI global 

signal as well as the correlation between each of the microstate parameters and the time course of the 

fMRI global signal was calculated. We used one-sample t-tests on the Fisher z-transformed correlation 

coefficients to estimate the group level association.  

We observed a significant negative correlation between the time course of vigilance levels and the time 

course of the global signal for both datasets (Figure 5 B). Additionally, we found a significant correlation 

between the duration and contribution of the microstate class C and contribution of microstate class A 

with the global signal (see Figure 5 A and Appendix Table C.1 for details). Interestingly, parameters of 

microstate class B did not show associations with the global signal. Along the same line, associations 

between the global signal time course and the time course of transition probabilities of microstates were 

weak and inconsistent across the two datasets (Figure 5 C and Appendix Table C.2 for details). 
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Figure 5: Association between the fMRI global signal time-series and the time course of the EEG microstate parameters during 

eyes closed resting for the two datasets.  A: Top panel: duration, middle panel: occurrence, bottom panel: contribution. Bars 

show group average Fisher z-transformed correlation coefficients for the first (black) and second dataset (white), error bars 

represent standard deviation of the mean. Stars correspond to the significance levels (p < 0.001 - ***, 0.001 < p < 0.01 – **, 0.01 

< p < 0.05 – *). Time courses of the duration and contribution of the microstate class C were negatively, while time course of the 

contribution of the microstate class A were positively associated with time course of global signal in both datasets. B: Association 

of the vigilance time-series and the global signal time-series for the for the first (black) and second dataset (white). Bars show 

group average Fisher z-transformed correlation coefficients, error bars represent the standard deviation of the mean. Stars 

correspond to the significance levels (p < 0.001 - ***, 0.001 < p < 0.01 – **, 0.01 < p < 0.05 – *). Time courses of the vigilance and 

global signal were negatively correlated in both datasets. C: The transition probabilities of the transitions between the four 

microstate classes. Red arrows represent positive association, blue – negative. The thickness of the line corresponds to the p-

value (p < 0.001 – thick, 0.001 < p < 0.01 – medium, 0.01 < p < 0.05 – thin). 

2.5 Causal effects of vigilance on microstate parameters 

To estimate the temporal dynamics of the interplay between microstate parameters, vigilance 

fluctuations and global signal fluctuations, we calculated Granger causality (GC) which is a well-established 

measure of lag-based predictive causality. To this end, we used the MVGC toolbox (Barnett & Seth 2014). 

We calculated GC between time courses of the microstate parameters and vigilance time-series. For each 

participant within the two datasets, for each microstate class and each microstate parameter, we first 
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estimated the optimal lag based on the Bayesian information criterion (BIC). As for most of the subjects 

(85.6% and 85.9% for the first and second dataset, respectively) the optimal model order (lag steps) was 

1, we used this value for all other subjects. We then calculated time-domain pairwise-conditional GC 

values with a model order of 1 using the source and target pairs microstate parameter/vigilance. To 

estimate directionality, we obtained delta GC values, contrasting direction and modality. Hence, to 

estimate the extent to which the duration-based time-series of microstate A Granger-causes the vigilance 

time-series, GC values for the direction Vig → MSAduration were subtracted from GC values for the direction 

MSAduration → Vig.  For statistical analyses, we bootstrapped the distribution of mean GC values with 50000 

repetitions using bootci in Matlab2018a. We then calculated p-values by summing cases for which the 

bootstrapped mean GC value, depending on the direction of the effect, exceeded or went below zero and 

divided the sum by the number of iterations. Finally, to obtain two-tailed p-values we multiplied these 

values by two. We found that changes in vigilance cause changes in the temporal characteristics of 

microstate parameters (for details see Table 1). 

 Duration (ms) Occurrence (Hz) Contribution (%) 

 Data set 1 

(Vig → A) – (A → Vig) p = 0.016* p < 0.001*** p = 0.006** 

(Vig → B) – (B → Vig) p = 0.516 p = 0.093 p = 0.151 

(Vig → C) – (C → Vig) p = 0.061 p = 0.305 p = 0.420 

(Vig → D) – (D → Vig) p < 0.001*** p = 0.005** p = 0.102 

 Data set 2 

(Vig → A) – (A → Vig) p = 0.054 p < 0.001*** p = 0.024* 

(Vig → B) – (B → Vig) p = 0.056 p = 0.002** p = 0.003** 

(Vig → C) – (C → Vig) p = 0.052 p = 0.026* p = 0.019* 

(Vig → D) – (D → Vig) p = 0.018* p = 0.226 p = 0.892 

Table 1: This table lists the results (two-tailed p-values of the bootstrapped statistics) of the causal relationships between time 

courses of the microstate parameters and vigilance time-series. Significant results (p < 0.05) are marked in bold. Stars correspond 

to the significance levels (p < 0.001 - ***, 0.001 < p < 0.01 – **, 0.01 < p < 0.05 – *). Changes in vigilance levels had causal effect 

on the changes of the parameters of microstates. 

3. Discussion 

The temporal dynamics of microstates has been shown to reflect many cognitive processes and to be 

associated with a large number of psychiatric disorders. Here, looking into two independent datasets, we 

found that the temporal structure of microstates covaries with the vigilance level as measured using EEG 

frequency power but also fMRI based global signal. Importantly, we found evidence that microstates and 

vigilance levels are causally related and the changes in vigilance cause changes in the parameters of 

microstates. The observed associations had predictive power, and temporal dynamics of vigilance could 

be, to some extent, reconstructed based on the microstate parameters. The parameters of EEG 

microstates were highly associated with vigilance and global signal. In particular, we consistently found a 

relation between the duration of microstate C to both vigilance levels and global signal. We found as well 

that occurrence but not the duration of microstate class A was correlated with the vigilance level. This 

suggests that duration and occurrence of microstates manifest different psychophysiological mechanisms. 
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This view gets support from recent research that suggests that psychiatric disorders only affect one of 

these two microstates selectively (Michel & Koenig 2017). Importantly, to estimate the vigilance levels, 

we follow with the definition and algorithm described in (Falahpour et al 2018). Compared to alternative 

approaches like VIGALL (Hegerl & Hensch 2014, Olbrich et al 2009, Strauss et al 2015), the approach used 

here has the benefit that it produces continuous measures of vigilance and does not require 

electrooculography data. 

Role of Microstates A and B  

We found negative associations between the occurrence of microstates A and B with the vigilance level. 

This observation goes in line with recent studies which link the presence of these two microstates to 

primary sensory processes. Microstate class B was suggested to be associated with the visual resting state 

network (Britz et al 2010, Custo et al 2017), a claim which was further supported by an increase in duration 

of the microstate class B in eyes-open rest (Seitzman et al 2017) and was shown to be associated with 

visual imagery thoughts (Lehmann et al 1998). The sources of the microstate class A seem to be in the 

temporal areas and can be associated with the auditory resting state network (Britz et al 2010, Custo et 

al 2017). While it does not affect our interpretation, it is noteworthy that a recent study (Milz et al 2016), 

however, contrary to the studies above, reported evidence that microstate class A could be related to 

visual and microstate class B to verbalization processes.  

Role of Microstate C 

The functional role of the microstate class C is still unclear (Michel & Koenig 2017). Recent studies suggest 

a relation of microstate class C to cognitive control processes (Britz et al 2010). However, the decrease of 

the duration of microstate class C in serial subtraction tasks (Bréchet et al 2019, Seitzman et al 2017) and 

visualization tasks (Milz et al 2016) puts forward the hypothesis that it might reflect task-negative network 

activity (Michel & Koenig 2017). Our observation of a positive association of the duration of the microstate 

class C with vigilance favors the role of this microstate in cognitive control processes. Also, microstate 

class C is characterized by frontal to occipital topography with posterior predominance of activity. Taken 

together with the fact that induction of the different microstates is mainly determined by strength of the 

power in the alpha band (Milz et al 2017), an increased contribution of the microstate class C may reflect 

higher occipital alpha power. Loss of vigilance is characterized by a gradual shift of alpha power from the 

occipital towards frontal brain regions followed by a decrease in power in the alpha band and an increase 

in power in delta and theta frequency ranges that characterize drowsiness states (Olbrich et al 2009). 

Thereby the highest occipital alpha power is typically associated with the most vigilant state. Thus, it is 

not surprising, that we observe strong positive associations of the parameters of this microstate with 

vigilance. 

Role of microstate D 

We observed a positive association between the duration of the microstate class D and the vigilance level. 

This could be explained by a number of recent studies suggesting that microstate class D is characterized 

by sources in middle and superior frontal areas as well as superior and inferior parietal areas (Britz et al 

2010, Custo et al 2017) and has been hypothesized to be associated with the dorsal attention network. 

This hypothesis is further supported by the observation that occurrence and duration of this microstate 
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increased during serial subtraction task (Bréchet et al 2019, Seitzman et al 2017). We note however that, 

somewhat contrary to this hypothesis, (Milz et al 2016) reported the highest duration and occurrence of 

the microstate class D during rest in comparison with a number of cognitive tasks. This suggests that 

microstate class D might reflect focus switching and reflexive aspects of attention. While we cannot reject 

or confirm any of these two based on these results, we find it noteworthy that both theories indirectly 

implicate the relation between microstate D and the vigilance state. 

Relation to the fMRI global signal 

In line with recent studies (Falahpour et al 2018, Wong et al 2016, Wong et al 2013)  we found a negative 

association between vigilance and the fMRI global signal.  We additionally found that fMRI global signal 

was associated with the duration and contribution of microstate class C and the contribution of microstate 

class A. However, parameters of microstate class B as well as transition probabilities between microstate 

classes did not show any association with the global signal. This suggests that the change in vigilance may 

likely affect brain dynamics on multiple levels where the mechanisms that affect microstate parameters 

and global signal are essentially different. 

The potential mediating role of cingulate cortex 

It is interesting to note that an increasing number of recent studies, using source reconstruction 

techniques, suggest that the cingulate cortex is a common source for all microstate classes (Custo et al 

2017, Pascual-Marqui et al 2014). In line with these findings, multimodal imaging EEG-fMRI studies 

provided evidence that attenuation of vigilance levels leads to an increase in activity of the anterior part 

(Olbrich et al 2009) while caffeine intake leads to alterations of BOLD activity in the posterior part of the 

cingulate cortex (Falahpour et al 2018). Taken together, considering the role of cingulate cortex and 

arousal, these studies suggest the activity of the cingulate cortex to mediate the causal relation between 

vigilance level and appearance of microstates sequences. 

Prediction accuracy 

We found that the observed association between parameters of the microstates and vigilance time series 

has predictive power. Using support vector machine regression, we could predict vigilance fluctuations 

with accuracy which is statistically significant but not numerically high. This suggests that vigilance levels 

and EEG microstate parameters are not reflecting necessary the same processes. Such view receives 

further support from observations that next to the power in the alpha frequency band, microstates are 

additionally related to delta, theta, and higher frequency bands (Khanna et al 2015). Taken together, and 

considering that vigilance level is a more fundamental characteristic of the organism, which is also partially 

modulated by the body, we speculate that the time course of microstates is influenced by vigilance 

through multiple systems.  

Analysis of microstates in psychiatric disorders 

The finding that parameters of EEG microstates have temporal dynamics which are partly modulated by 

vigilance state has far reaching implications when microstates are studied in the context of psychiatric 

disorders. Patients suffering from psychiatric disorders often show abnormal sleep behavior and/or 
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altered temporal vigilance structure. In light of the findings presented in this paper, the potential changes 

found in microstates could be essentially related to changes in vigilance which might or might not be a 

symptom or manifestation of the neural mechanism of the disorder, but indicate a rather straightforward 

change in sleep behavior.  

4. Conclusion 

We provided evidence for correlations and, crucially, causal relations between the fluctuations of vigilance 

level and temporal dynamics of the EEG microstates within the first 10 minutes of rest. We found that 

duration and contribution of microstate class C were positively, while occurrence and contribution of 

microstate classes A and B were negatively associated with vigilance. Changes in vigilance caused changes 

in EEG microstate parameters. The observed findings highlight the importance of taking vigilance levels 

into consideration in EEG microstate parameter investigations. We suggest that the cingulate cortex may 

be a potential mediator of the observations we made and the fact that EEG microstates reacted to the 

changes in vigilance level potentially by integrating multiple neural mechanisms. 
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8. Appendix A: Association of the mean vigilance level and mean values of the 

microstate parameters 

 A B C D 

Data set 
1 

Duration r = -0.10 p = 0.579 r = -0.02 p = 0.907 r = 0.61 p = 2x10-4 r =  0.46 p = 0.007 

Occurrence r = -0.60 p = 2x10-4 r = -0.44 p = 0.009 r = 0.17 p = 0.342 r = -0.10 p = 0.566 

Contribution r = -0.40 p = 0.019 r = -0.35 p = 0.046 r = 0.65 p = 4x10-5 r =  0.07 p = 0.686 

Data set 
2 

Duration r = -0.19 p = 0.440 r = -0.25 p = 0.308 r = 0.75 p = 2x10-4 r =  0.37 p = 0.115 

Occurrence r = -0.48 p = 0.037 r = -0.57 p = 0.010 r = 0.45 p = 0.055 r = -0.09 p = 0.699 

Contribution r = -0.41 p = 0.083 r = -0.48 p = 0.040 r = 0.67 p = 0.002 r =  0.08 p = 0.731 
Table A.1: This table lists the results (r-values and p-values) of all preformed correlations between the mean vigilance level and 

mean values of the microstate parameters. Significant results (p < 0.05) are marked in bold. Mean duration and contribution of 

the microstate class C are positively, while occurrence and contribution of the microstates class A and B are negatively associated 

with vigilance level in both investigated data sets. 

 Data set 1 Data set 2 

A → B r = -0.25 p = 0.150 r = -0.26 p = 0.285 

A → C r =  0.65 p = 4x10-5 r =  0.61 p = 0.006 

A → D r = -0.25 p = 0.152 r = -0.29 p = 0.227 

B → A r = -0.18 p = 0.298 r = -0.40 p = 0.094 

B → C r =  0.27 p = 0.117 r =  0.50 p = 0.027 

B → D r =  0.09 p = 0.617 r =  0.25 p = 0.309 

C → A r = -0.32 p = 0.061 r = -0.18 p = 0.449 

C → B r = -0.37 p = 0.030 r = -0.33 p = 0.173 

C → D r =  0.13 p = 0.464 r = -0.07 p = 0.779 

D → A r = -0.40 p = 0.018 r = -0.61 p = 0.005 

D → B r = -0.20 p = 0.264 r =  0.04 p = 0.863 

D → C r =  0.48 p = 0.004 r =  0.48 p = 0.038 
Table A.2: This table lists the results (r-values and p-values) of all preformed correlations between the mean vigilance level and 

mean values of the transition probability for transitions between four microstate classes. Significant results (p < 0.05) are marked 

in bold. For both data sets mean transition probabilities towards microstate class C are positively, while transition probabilities 

from microstate class D towards microstate class A is negatively associated with vigilance levels. 

9. Appendix B: Association of the vigilance time course and the time courses of 

the microstate parameters 

 A B C D 

Data set 
1 

Duration t =  -5.06 p = 0.000 t =  -0.34 p = 0.737 t =  5.77 p = 0.000 t =   3.56 p = 0.001 

Occurrence t =  -5.28 p = 0.000 t =  -2.81 p = 0.008 t =  1.80 p = 0.081 t =   0.23 p = 0.820 

Contribution t =  -6.39 p = 0.000 t =  -2.61 p = 0.014 t =  5.85 p = 0.000 t =   2.32 p = 0.027 

Data set 
2 

Duration t =  -0.43 p = 0.671 t =   0.09 p = 0.931 t =  4.78 p = 0.000 t =   3.00 p = 0.008 

Occurrence t =  -4.81 p = 0.000 t =  -3.53 p = 0.002 t =  0.00 p = 0.999 t =  -0.44 p = 0.664 

Contribution t =  -3.88 p = 0.001 t =  -2.79 p = 0.012 t =  2.92 p = 0.009 t =   1.67 p = 0.113 
Table B.1: This table lists the results (t-values and p-values) of the one-sample t-test on the Fisher z-transformed subject-level 

correlation coefficients for the correlation the vigilance time-series and the time courses of the microstate parameters. Significant 

results (p < 0.05) are marked in bold. Time courses of the duration and contribution of the microstate class C as well as duration 

of the microstate class D are positively, while time courses of the occurrence and contribution of the microstates classes A and B 

are negatively associated with changes of vigilance level in both investigated data sets. 
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 Data set 1 Data set 2 

A → B t =  -1.78 p = 0.084 t =  -1.86 p = 0.079 

A → C t =   5.14 p = 1x10-5 t =   2.69 p = 0.015 

A → D t =  -0.71 p = 0.481 t =  -0.43 p = 0.672 

B → A t =  -2.04 p = 0.049 t =  -1.25 p = 0.229 

B → C t =   0.14 p = 0.892 t =   0.37 p = 0.719 

B → D t =   2.00 p = 0.054 t =   2.26 p = 0.036 

C → A t =  -2.72 p = 0.010 t =   0.31 p = 0.757 

C → B t =  -2.28 p = 0.029 t =  -2.14 p = 0.046 

C → D t =   1.65 p = 0.108 t =   0.28 p = 0.783 

D → A t =  -3.88 p = 5x10-4 t =  -1.78 p = 0.093 

D → B t =   1.26 p = 0.215 t =   0.02 p = 0.981 

D → C t =   2.82 p = 0.008 t =   0.51 p = 0.615 

         
Table B.2: This table lists the results (t-values and p-values) of the one-sample t-test on the Fisher z-transformed subject-level 

correlation coefficients for the correlation the vigilance time-series and the time courses of the transition probabilities for 

transitions between four microstate classes. Significant results (p < 0.05) are marked in bold. Time courses of the transition 

probabilities for transitions from microstate class A towards microstate class C as well as transitions from for transitions from 

microstate class B towards microstate class D are positively, while time course for of the probability of transitions from microstate 

class C towards microstate class B is negatively associated with vigilance time-series. 

10. Appendix C: Association of the global signal time-series and the time 

courses of the microstate parameters 

 A B C D 

Data set 
1 

Duration t =  1.95 p = 0.060 t =  1.50 p = 0.142 t =  -2.77 p = 0.009 t =  -0.75 p = 0.456 

Occurrence t =  1.70 p = 0.099 t =  0.81 p = 0.423 t =  -1.07 p = 0.292 t =  -1.91 p = 0.065 

Contribution t =  2.24 p = 0.032 t =  1.64 p = 0.110 t =  -2.24 p = 0.032 t =  -1.43 p = 0.162 

Data set 
2 

Duration t =  2.08 p = 0.052 t =  0.42 p = 0.680 t =  -2.71 p = 0.014 t =   0.00 p = 0.999 

Occurrence t =  1.44 p = 0.168 t =  0.38 p = 0.710 t =  -1.91 p = 0.072 t =   0.90 p = 0.379 

Contribution t =  3.04 p = 0.007 t =  0.81 p = 0.430 t =  -2.64 p = 0.017 t =   0.79 p = 0.441 
Table C.1: This table lists the results (t-values and p-values) of the one-sample t-test on the Fisher z-transformed subject-level 

correlation coefficients for the correlation the global signal (Leonardi et al) time-series and the time courses of the microstate 

parameters. Significant results (p < 0.05) are marked in bold. Time courses of the duration and contribution of the microstate 

class C are negatively, while time course of the occurrence of the microstate class A is positively associated with GS time-series 

in both investigated data sets. 

 Data set 1 Data set 2 

A → B t =   1.09 p = 0.285 t =  -0.27 p = 0.792 

A → C t =   0.05 p = 0.957 t =  -1.35 p = 0.193 

A → D t =  -1.65 p = 0.108 t =   0.86 p = 0.403 

B → A t =   0.98 p = 0.336 t =  -0.89 p = 0.384 

B → C t =   0.52 p = 0.603 t =   0.03 p = 0.973 

B → D t =  -0.88 p = 0.387 t =   0.70 p = 0.490 

C → A t =   0.27 p = 0.789 t =   0.56 p = 0.583 

C → B t =  -0.36 p = 0.718 t =   1.87 p = 0.078 

C → D t =  -0.17 p = 0.867 t =  -1.51 p = 0.149 

D → A t =   1.67 p = 0.104 t =   2.60 p = 0.018 
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D → B t =  -0.04 p = 0.966 t =  -1.81 p = 0.087 

D → C t =  -2.52 p = 0.017 t =  -1.09 p = 0.291 
Table C.2: This table lists the results (t-values and p-values) of the one-sample t-test on the Fisher z-transformed subject-level 

correlation coefficients for the correlation global signal (Leonardi et al) time-series and the time courses of the transition 

probabilities for transitions between four microstate classes. Significant results (p < 0.05) are marked in bold. Association between 

global signal time course and time course of transition probabilities of microstates were weak and inconsistent across two 

investigated data sets. 
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