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Abstract 

Local measures of neurotransmitters provide crucial insights into neurobiological changes 

underlying altered functional connectivity in psychiatric disorders. However, non-invasive 

neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover 

anatomically and functionally distinct areas, such as p32 and p24 of the pregenual anterior 

cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by 

predicting local glutamate and GABA based on functional characteristics and neuroanatomy, using 

complementary machine learning approaches. Functional connectivity profiles of pgACC area p32 

predicted pgACC glutamate better than chance (R2 = .324) and explained more variance compared 

to area p24 using both elastic net and partial least squares regression. In contrast, GABA could not 

be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI 

to improve the interpretation of local neurometabolism. Our augmented multimodal imaging 

analysis can deliver novel insights into neurobiology by using complementary information.  
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1 Introduction  

Since the beginning of the 20th century, the human brain is understood to consist of regions with 

distinct microarchitecture (Brodmann, 1909; Vogt & Vogt, 1919). Anatomical features, such as 

cytoarchitecture, myeloarchitecture and receptorarchitecture distinguish cortical areas and highly 

constrain the local processing capabilities of a region (Cloutman & Lambon Ralph, 2012; Eickhoff 

et al., 2015; Palomero-Gallagher & Zilles, 2019; Zilles & Palomero-Gallagher, 2017). 

Cytoarchitecture also shapes a region’s functional repertoire through specific input and output 

connections, which embed the region in complex distributed networks (Cloutman & Lambon 

Ralph, 2012). This mesoscopic functional repertoire can be assessed with modern functional 

magnetic resonance imaging (fMRI) techniques, but methodological and ethical constraints limit 

us in assessing its relationship to neurometabolism on the microscale in vivo. Nevertheless, such 

linking of functional connectivity (FC) to local processing (e.g. the local excitation/inhibition 

balance) could provide valuable insights into the pathophysiology of psychiatric disorders.  

 Though in vivo measurements of local metabolism are not possible at a microscopic level, 

the non-invasive method of proton magnetic resonance spectroscopy (1H-MRS) is commonly used 

to assess local neurotransmitter levels. Available sequences such as PRESS (Bottomley, 1987), 

STEAM (Frahm, Merboldt, & Hänicke, 1987) and edited sequences such as MEGA-PRESS 

(Mescher et al., 1998) allow for the detection of glutamate and GABA in single voxels in the 

human brain. MRS measures of these metabolites may be used to better understand FC changes in 

psychiatric disorders (Allen et al., 2019; Horn, 2010; Moeller, London, & Northoff, 2016) or 

pharmacological challenges (Li et al., 2017), but such results may suffer from limited 

interpretability because of the low spatial specificity of conventional single-voxel spectroscopy. 

An MRS voxel may cover several known cytoarchitectonically distinct areas (Duncan, Wiebking, 

& Northoff, 2014). For example, MRS measures of glutamate and GABA follow differential 

receptor distributions along the anterior cingulate cortex (ACC) (Dou et al., 2013; Li et al., 2017). 

However, it is not known if the measured concentrations of glutamate and GABA are 

representative of the entire MRS acquisition voxel and whether the spatial resolution of 

conventional MRS could be improved by using more fine-grained weights informed by functional 

imaging.  

 A region that is considered homogeneous in the MRS literature is the pregenual anterior 

cingulate cortex (pgACC). This region is part of the default mode network (DMN) of the human 
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brain and has been implicated in the pathophysiology of depression (Salvadore & Singh, 2013). 

Previous work suggests altered glutamatergic metabolism in the pgACC in patients with major 

depressive disorder (MDD) (Colic et al., 2019; Horn et al., 2010; Walter et al., 2009) and pgACC 

levels of a marker of glutamatergic metabolism (glutamate + glutamine, Glx) were correlated with 

FC between pgACC and insula in patients but not in healthy controls (Horn et al., 2010). Based 

on its differences in cytoarchitecture and densities of multiple receptors, the pgACC has been 

divided into six distinct regions: p24a, p24b, pv24c, pd24cd, pd24cv, and p32. These areas were 

partly merged into a gyral component (areas p24a and p24b into area p24ab) and a sulcal 

component (areas pv24c, pd24cd and pd24cv into area p24c) for computation of 3D probabilistic 

maps (Palomero-Gallagher et al., 2019; Palomero-Gallagher et al., 2008). Studies in non-human 

primates have shown that homologous areas have distinct structural connectivity patterns (Pandya, 

Van Hoesen, & Mesulam, 1981). In humans, meta-analytic connectivity modelling showed that 

these areas have largely distinct functional connectivity patterns, with activation in area p32 

largely associated with tasks involving Theory of Mind and cognitive regulation of emotion, and 

areas p24ab and p24c with tasks involving the experience of one’s bodily state and action 

inhibition, respectively (Palomero-Gallagher et al., 2019). In sum, disregarding this heterogeneity 

during MRS acquisition may hamper the interpretation of links between local metabolism and 

functional connectivity.  

 To overcome the problem of low spatial specificity of conventional MRS, we propose a 

novel, multi-modal approach offering a more nuanced prediction of glutamate and GABA in an 

MRS voxel. To this end, we employed ROIs originating from a voxel-wise FC-based (‘functional’) 

parcellation of a pgACC MRS voxel, and a cytoarchitectonic (‘anatomical’) parcellation of the 

same region (Palomero-Gallagher et al., 2019). We assessed correspondence between the 

functional and anatomical parcellations and tested whether the prediction of pgACC glutamate or 

GABA was improved by parcellating the voxel (Fig. 1). Crucially, FC profiles of p32 but not p24 

could robustly predict local glutamatergic metabolism. We explored why glutamate but not GABA 

levels were significantly predicted from area FC by examining differential associations between 

GABAergic and glutamatergic gene co-expression and FC. We then addressed the functional 

relevance of the differential prediction of pgACC glutamate levels by “decoding” PLSR beta 
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weights. Overall, our results demonstrate that fMRI may improve the spatial specificity of local 

neurometabolites assessed with MRS.  

 

Figure 1. Overview of the primary analysis pipeline. To improve spatial information on local glutamate (Glu) and 

GABAergic levels measured with MRS, an MRS ROI was parcellated based on seed-based functional connectivity 

(FC) to 132 atlas nodes. From this hierarchical clustering step, two clusters emerged (Figure S2). Cluster-wise FC 

profiles were used as input into elastic net and partial least squares regression models to predict GABA/total creatine 

(tCr) and Glu/tCr residualized for gray matter proportion in participants’ MRS voxels.    

2. Results  

Functional and anatomical parcellations   

For the functional parcellation, we created a group ROI based on participants’ pgACC MRS 

masks. Participant-specific masks would introduce a bias in the FC profile and could therefore 

inflate individual associations with neurometabolism. Therefore, we created a composite mask. In 

addition, we used a recent cytoarchitectonically-informed parcellation of the pgACC as a second, 

atlas-based ROI parcellation based on 10 post-mortem human samples (Palomero-Gallagher et al., 

2019). This anatomical parcellation consists of maximum probability maps (MPMs) of p24ab, 

p24c, and p32. We parcellated the MRS ROI into two clusters of similar connectivity using 

hierarchical clustering (for details, see Materials and Methods section Connectivity-based 

parcellation of the MRS ROI). Seeds were fMRI voxels within the group MRS ROI; target ROIs 

were the 132 CONN atlas regions.  
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We compared the resulting functional clusters to the anatomical parcellation of the pgACC. 

For this purpose, anatomical maps of p24 and p32 were restricted to MRS ROIs. The overlap 

between the MPMs and the functional clusters was then calculated using Dice coefficients (DC) 

(cf. Arslan et al., 2018) (Fig. 2c). Cluster 1 overlapped primarily with anatomical area p32 (DC = 

.750), but less with area p24 (DC = .322). Cluster 2 overlapped with anatomical area p24 (DC = 

.706) but not with area p32 (DC = .079). We thus observed good concordance between this region’s 

parcellation based on local, mesoscale differences and a parcellation based on whole-brain, 

macroscopic functional differences. Hence, functional clusters 1 and 2 are referred to as functional 

p32 and p24, respectively, in the remainder of this text.    

 

 

Figure 2. Functional and anatomical parcellations. A: Functional parcellation. Dark orange: cluster 1. Light orange: 

cluster 2. B: Anatomical parcellation. Green: p32. Blue: p24. C: Overlap of connectivity-based parcellation results 

with maximum probability maps from Palomero-Gallagher et al. (2019). Maximum probability maps (MPMs) are 

masked with the MRS ROI for computation of Dice overlap coefficients. D: Z-scored and de-meaned FC matrix sorted 

by functional clusters. Dark orange: cluster 1. Light orange: cluster 2. E: Within-cluster distance decreases with 

functional parcellation (median: cluster 1: 2.25; cluster 2: 2.16; unparcellated: 2.83). F: Between-cluster distance 

increases with functional parcellation (median: cluster 1: 4.29; cluster 2: 4.27; unparcellated: 2.83).  

Areas covered by the MRS voxel show differential associations with brain networks  

To characterize the functional connectivity profiles of each functional area, we calculated area-to-
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whole-brain connectivity and performed paired t-tests on the results. Fig. 3a-d depicts only those 

voxels that showed significantly different connectivity (p < .05, TFCE). Compared to functional 

p24, functional p32 showed stronger connectivity to areas that are part of the DMN, including the 

precuneus and posterior cingulate cortex, inferior parietal lobe, (ventro)medial prefrontal cortex, 

temporal pole and lateral temporal cortex (Fig. 3a-b). It was also more strongly connected to the 

inferior frontal gyrus. Functional p24 had relatively stronger connections to areas that are 

associated with the ventral attention network (vAt), including the striatum, anterior insula, anterior 

mid cingulate cortex, and amygdala (Fig. 3c-d). Moreover, according to the t-value distributions 

of the seed regions, functional p32 FC is more broadly connected to most Yeo networks (Yeo et 

al., 2011) compared to functional p24 FC, which is more specifically associated with the attention 

networks (vAt and dorsal attention network; dAt) (Fig. 3e). 

To further investigate potential associations of average FC differences  between functional 

p32 and p24 and cognition, we used the Neurosynth framework (Yarkoni et al., 2011), which 

comprises neuroimaging data from 14,371 fMRI studies (release 0.7). The decoder toolkit 

implemented within this framework allows for “decoding” cognitive states from a given 

(activation) map (Rubin et al., 2017). Compared to p24, p32 is more strongly connected to a set of 

regions, that when activated, are associated with cognitive states such as theory of mind, 

mentalizing, self-referential cognition, and social cognition; cognitive states in which the DMN is 

thought to be heavily involved (Spreng & Grady, 2010) and that require strong connections to 

other networks (Barrett & Simmons, 2015; Teckentrup et al., 2019) (Fig. 3f).  
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Figure 3. Characterization of FC differences between functional p32 and p24. A-D: Results of paired t-test on whole-

brain FC from functional areas, p < .05, TFCE corrected. A & B: functional p32 > functional p24 (orange). C & D: 

functional p24 > functional p32 (yellow). E: Word cloud of cognitive state terms associated with brain activity in the 

regions that are more strongly connected to p32 relative to p24. The top 40 terms most strongly associated with this 

spatial pattern are displayed. F: Density plots of t-values from a paired t-test on whole-brain functional connectivity 

from functional pgACC areas, p32 > p24, split by Yeo networks and the cerebellar network. Vis = visual network; 
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vAt = ventral attention network; SoM = somatomotor network; Lim = limbic network; FPN = frontoparietal network; 

DMN = default mode network; dAt = dorsal attention network; Cer = cerebellum. 

Glutamate is better predicted by p32 FC compared to p24 FC  

To test whether parcellation of the pgACC MRS ROI into p32 and p24 improved the prediction of 

pgACC glutamate, we employed two complementary machine learning approaches that enforce 

different degrees of sparsity. Partial least squares regression (PLSR) fits a model based on global 

information extracted from the feature space and outcome (Zeighami et al., 2017). It is thus able 

to pick up diffuse, global effects of functional connectivity on local metabolite concentrations. We 

use elastic net (EN) as a complementary approach to PLSR. EN, in contrast to PLSR, penalizes 

some regression coefficients (here: FC to target ROIs) to zero, resulting in a sparse model (Pervaiz 

et al., 2019). EN therefore more strongly enforces spatially specific effects (see Materials and 

Methods).  

First, we used PLSR and EN to test if FC from areas p24 and p32 could predict pgACC 

Glu/tCr (residualized for gray matter proportion) better than expected by chance (Table 1). We 

found that FC from functional p32 could be predicted using EN (R2 = .324, p < .001; Fig. 4b). 

Although the PLSR model indicated that the FC profile of functional p32 was associated with 

pgACC Glu/tCr (R2 = .181, p = .119; Fig. 4a), this effect did not reach statistical significance. 

Nevertheless, predicted Glu/tCr values of the EN and PLSR models were highly correlated (R2 = 

.543, p < .001), indicating that both methods picked up similar information in the connectivity 

profiles, and that feature selection in EN was beneficial. Analyses using anatomical p32 replicated 

the prediction of Glu by functional parcellation and both models were significantly better than 

chance (EN: R2 = .394, p < .001; PLSR: R2 = .263, p = .023 (Fig. 4c-d)). In contrast to functional 

and anatomical p32, p24 FC was less consistently predictive of pgACC glutamatergic metabolism. 

p24 FC was not predictive of Glu/tCr using PLSR (ps > .450) nor using EN (ps > .999) 

(Supplementary Table 1, Fig. 4.). Overall, pgACC glutamatergic metabolism was most reliably 

predicted from p32 FC.  
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Figure 4. Glutamate levels can be predicted from functional connectivity profiles of p32, but not p24. Results of partial 

least squares regression (PLSR) and elastic net (EN) models for Glu/tCr. Violin plots denote the distribution of R2 in 

permutation tests (1000 permutations of metabolite levels). Bars denote R2 obtained using Glu/tCr (residualized for 

gray matter proportion in participants’ MRS voxels) as predictor. * p < .05, *** p < .001. 

FC from the unparcellated MRS ROI could not predict Glu/tCr better than chance using 

PLSR (R2 = .142, p = .295), but EN led to comparable results as using p32 alone (R2 = .384, p = < 

.001). To test whether p32 FC could predict glutamatergic metabolism in the pgACC better than 

p24 FC or FC from the unparcellated MRS ROI, we compared the variance explained by two sets 

of predictors (e.g. p32 and p24 FC) using permutation tests. Overall, explained variance of p32 FC 

was higher than p24 FC, demonstrating that p32 FC was more strongly associated with Glu/tCr 

compared to p24 (EN, functional: p < .001; PLSR, functional: p = .082; EN anatomical: p < .001; 

PLSR anatomical: p = .017). p32 FC by itself predicted Glu/tCr better or equally well compared 

to the unparcellated MRS ROI (EN, functional: p = .995; PLSR, functional: p = .093; EN 

anatomical: p = .110; PLSR anatomical: p = .001). 

Given the significant correlation between unresidualized Glu/tCr and age in our sample, 

r(86) = -.256, p = .016, 95% CI = [-.442, -.049], we explored a possible effect of age on the 
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prediction of Glu/tCr (Supplementary Table 2). Age by itself could be predicted from functional 

p32 (R2 = .441) and p24 FC (R2 = .310) (ps < .001) using EN but not using PLSR (R2 = .210, p = 

.066 and R2 = .143, p = .289, respectively). When the influence of age was accounted for in the 

EN model by residualizing for age in both FC and metabolite levels, the distinction in predictive 

ability of the two areas increased. Functional p32 FC explained numerically more variance in 

Glu/tCr (R2 = .423) compared to the EN model that did not account for age (R2 = .403) 

(Supplementary Table 2). 

pgACC FC is not predictive of pgACC GABA  

To test whether pgACC GABAergic neurometabolism could be differentially predicted from FC 

of parcellated voxels, we repeated the above analyses for GABA/tCr (residualized for voxel gray 

matter proportion; Supplementary Table 3). A PLSR model built on the FC profile of functional 

p24 numerically explained most variance (R2 = 185). However, none of the PLSR or EN models 

built on FC profiles of anatomical or functional p24 and p32 could predict GABA/tCr better than 

chance. FC from the unparcellated MRS voxel was also not predictive of pgACC GABAergic 

neurometabolism (ps > .05, Fig. 5). Although PLSR models yielded numerically better prediction, 

none of the functionally or anatomically informed models predicted GABA better than chance. 
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Figure 5. GABA levels cannot be predicted from functional connectivity profiles of the pregenual anterior cingulate 

cortex.  Results of partial least squares regression (PLSR) and elastic net (EN) models for GABA/tCr. Violin plots 

denote the distribution of R2 in permutation tests. Bars denote R2 obtained using GABA/tCr as predictor 

(residualized for gray matter proportion in participants’ MRS voxels).   

Co-expression of GABAergic and glutamatergic genes   

To investigate why glutamate may be more robustly predicted from area FC than GABA, we 

explored whether glutamatergic and GABAergic gene co-expression patterns are differentially 

associated with area FC. Previous work has shown that glutamate and GABA levels across the 

entire cingulate cortex follow glutamate and GABA receptor fingerprints (Dou et al., 2013). 

Neurotransmitter receptor density fingerprints shape the local excitatory/inhibitory balance, which 

influences baseline resting-state functional connectivity (van den Heuvel, Scholtens, & Kahn, 

2019). Van den Heuvel et al. (2016) showed an association between the ratio of excitatory and 

inhibitory gene expression and cortical resting-state FC. In addition, recent work has shown that 

regions within functional networks share gene expression patterns (‘gene co-expression’) that are 

distinguishable from those shared within other networks (Anderson et al., 2018; Huntenburg, 

Bazin, & Margulies, 2018; Richiardi et al., 2015).     
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The differential prediction of glutamate and GABAergic metabolism may be in part 

explained by different correlations between resting-state FC patterns of pgACC areas, and 

canonical glutamatergic and GABAergic gene co-expression patterns obtained from the Allen 

Human Brain Atlas (see Materials and Methods section Differential mRNA co-expression for 

details, and Supplementary Table 4 for the full list of selected genes). We first assessed whether 

co-expression and pgACC FC were correlated in our sample, as a certain amount of co-expression 

of GABAergic or glutamatergic genes may be needed for individual variation in metabolism-FC 

correlations to be meaningful. Intriguingly, two of the networks that were most strongly associated 

with p32 and p24 FC – DMN and vAt – also showed non-zero correlations between gene co-

expression for both GABA and glutamate and pgACC FC (Supplementary Table 5). A third 

network, the frontoparietal network (FPN), also showed non-zero correlations between FC and 

gene co-expression between pgACC and the network targets. For these three networks, a 

significant portion of variance in group FC is explained by canonical, structural factors such as 

gene expression.  

As a next step, we investigated differences between GABAergic and glutamatergic co-

expression-FC correlations, focusing on the networks for which an association between FC and 

gene expression was apparent. Co-expression of GABAergic genes within the DMN and vAt was 

more strongly coupled to FC within those networks relative to glutamate (DMN: D = 0.360, p < 

.001; vAt: D = 0.283, p = .011; Supplementary Table 6). This was not the case for the FPN (D = 

0.147, p = .488). For glutamate-associated genes, this relatively reduced coupling between 

canonical structural and individual functional aspects could leave room for individual variation in 

Glu levels to influence FC. This could in part explain why compared to GABA, pgACC Glu levels 

could be better predicted from individuals’ FC profiles. 

By comparing FC associations with metabolites versus gene co-expression, we can 

illustrate this possibility using our data. For each target ROI, the PLSR beta weight represents the 

strength of the relationship between glutamatergic or GABAergic metabolism and FC to an area. 

Analogous to gene co-expression (Fig. 5), the distribution of PLSR weights across the vAt was 

significantly different from zero (Fig. 6A, Supplementary Table 7). For this network, the 

discrepancy of bootstrapped mean correlations between FC and gene co-expression versus ones 

between FC and local metabolism was smaller for glutamate (Fig. 6B), such that metabolite-FC 
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correlations were relatively stronger, and co-expression-FC correlations were relatively lower 

(pboot = .008).  

 

Figure 5. Compared to GABA, there is reduced coupling of glutamate-associated gene co-expression with pregenual 

anterior cingulate cortex (pgACC) functional connectivity (FC) to vAt and DMN. Density plots show the distribution 

of glutamate-associated and GABA-associated gene co-expression correlations with p32 and p24 FC within the same 

functional network. Gene co-expression is calculated as the Pearson correlation between pgACC p24 and p32 mean 

mRNA expression with mean mRNA expression in target ROIs. Co-expression-FC correlations are then calculated 

for each gene and averaged across Yeo networks. * p < .05, *** p < .001. Vis = visual network; vAt = ventral attention 

network; SoM = somatomotor network; Lim = limbic network; FPN = frontoparietal network; DMN = default mode 

network; dAt = dorsal attention network; Cer = cerebellum. 
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Figure 6. Associations of functional connectivity (FC) profiles with neurometabolites are constrained by canonical 

gene expression. A. PLSR betas by Yeo network (pooled across functional p24 and p32) show that FC to vAt is 

associated with GABAergic and especially with glutamatergic metabolism. B. Canonical gene co-expression of 

GABAergic genes within pgACC and vAt is more strongly correlated to FC than pgACC GABA levels. For 

Glutamate, this discrepancy is less strong, suggesting that pgACC glutamate levels have more room to influence FC 

to the vAt. Density plots in (B) display distributions of bootstrapped r values (50,000 iterations). vAt = ventral attention 

network; FPN = frontoparietal network; DMN = default mode network. 

Cognitive state correlates of p32 and p24 FC-glutamate associations    

Next, we investigated the potential functional relevance of the differential prediction of pgACC 

glutamate levels. PLSR beta weight maps for functional p32 and p24 show different spatial 

patterns (Fig. 7A-B, top; see Supplementary Figure 1 for analogous results for anatomical areas). 

To explore differences between the two pgACC areas, we applied the Neurosynth decoder tool to 

their respective beta weight maps. Regions for which FC to p32 is predictive of glutamate, when 

activated, correspond to cognitive states related to the ventral attention network and cognitive 

control (Fig. 7A, bottom). In contrast, regions important in the prediction of glutamate from p24 

FC, when activated, reflect cognitive states related to movement and somatosensory experiences 

(Fig. 7B, bottom). The difference between the two beta maps suggests that relative to p24, p32 FC 

to the precuneus and posterior cingulate (i.e., DMN regions), anterior insula (vAt) as well as 

subcortical regions is linearly associated with glutamate levels (Fig. 7C). In general, increased 

glutamate in the whole pgACC appears to strengthen p32 FC across a wider functional spectrum 
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compared to p24, whose FC coupling is restricted to the somatosensory and motor regions (Fig. 

7D).       

 

Figure 7. Associations of glutamate loadings with Neurosynth terms show that p32 functional connectivity (FC) 

extends more to other brain regions. A-C, top: PLSR beta maps show the association between pgACC glutamate levels 

and pgACC area-to-target FC. A-C, bottom: decoded PLSR beta weight maps show the 40 cognitive state terms most 

strongly associated with the PLSR beta weight maps. D: spider plot of correlations with the top 5 terms (excluding 

duplicates) associated with regional brain activity in the spatial pattern represented by PLSR beta weights of p32, p24, 

and p32-p24 PLSR, respectively. AI: “anterior insula”; RI: “response inhibition”; SMA: “supplementary motor”; S2: 

“secondary somatosensory”; ACC: “anterior cingulate”; PCC: “posterior cingulate”. 

4. Discussion 

Psychiatric disorders such as depression and anxiety are characterized by changes in 

neurometabolites (Colic et al., 2019; Horn et al., 2010; Pollack et al., 2008) and functional 

connectivity (Mulders et al., 2015). One of the key challenges in biological psychiatry is to 

understand how changes in neurotransmission lead to changes in brain function so that 
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pharmacological interventions could be used to “normalize” brain function and improve behavioral 

symptoms (van den Heuvel et al., 2019; Allen et al., 2019; Wang & Krystal, 2014). However, 

technical limitations of current neuroimaging techniques such as large MRS voxels encompassing 

heterogeneous areas makes the link of metabolites to function of brain networks non-trivial (a 

‘many-to-one mapping problem’, Paulus & Thompson, 2019). Here, we demonstrate that 

parcellating an MRS region based on functional connectivity or cytoarchitecture improves the 

prediction of local neurometabolism via global connectivity profiles. Restating the question as a 

problem of classification rather than localization – can resting-state FC from an area predict local 

neurometabolism or not? – allowed us to reduce the number of comparisons and address the many-

to-one mapping problem. Specifically, we found that area p32 FC predicts glutamate better than 

chance irrespective of the parcellation scheme, whereas we did not find converging evidence for 

the prediction of GABA from FC profiles. Moreover, prediction of glutamate from p32 FC 

explained as much or more variance than FC from the unparcellated MRS ROI, while providing 

additional spatial information. Collectively, our results show that multimodal imaging may help 

to overcome the fundamental limitations of a single method, as fMRI can improve the spatial 

specificity of local glutamatergic metabolism assessed with conventional MRS. 

Hierarchical clustering of the pgACC MRS voxel recovered clusters in line with 

anatomical areas p24 and p32 (Palomero-Gallagher et al., 2019), with distinct functional 

connections during rest. The area most predictive of pgACC glutamate, p32, is well connected to 

most functional networks but compared to p24, it has particularly strong FC to regions that are 

part of the DMN. Area p24 showed relatively stronger connectivity to parts of the ventral attention 

network or salience network. These findings are in line with previous work in humans (Beckmann, 

Johansen-Berg, & Rushworth, 2009; Palomero-Gallagher et al., 2019) and non-human primates 

(Carmichael & Price, 1995; Pandya et al., 1981; Vogt & Pandya, 1987). Moreover, similar 

distinctions between p24 and p32 functional domains were found using direct stimulation of the 

cortex using stereo-electroencephalography (Caruana et al., 2018). We demonstrated that 

functional connectivity-based parcellation of an MRS ROI can reflect both cytoarchitectonic areas 

and well-established connectivity differences.  

How should the differential prediction of glutamate FC from the two pgACC areas be 

interpreted? One possibility is that there is an association between glutamate and p32 FC, because 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.26.966259doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.966259
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

of the area’s stronger connectivity to the DMN. This intrinsic connectivity network shows the 

highest metabolic activity at rest (Raichle, 2001). Intriguingly, our findings suggest another 

possible mechanism. pgACC glutamate increases FC to networks associated with a relatively 

broad functional range, but particularly to regions of the vAt. Glutamate concentrations in the 

pgACC may therefore be an important factor contributing to the region’s ability to switch between 

exteroception (vAt or salience network) and interoception (DMN). The interaction between these 

networks is often dysregulated in psychiatric disorders (Kaiser et al., 2015; Manoliu et al., 2014; 

Menon, 2011; Teckentrup et al., 2019). p32 may therefore be an especially relevant target for 

future research on metabolic and functional changes in these disorders.  

We demonstrated the potential for further applications of this method by prediction of age. 

Age, unlike gender or voxel gray matter proportion, was highly correlated with glutamate levels. 

In addition, a wealth of research covers FC changes that occur during aging. Particularly, intrinsic 

connectivity in the DMN alters with age (Tomasi & Volkow, 2012; Wu et al. 2011; Damoiseaux 

et al., 2008; Ferreira & Busatto, 2013). Both p24 FC and p32 FC were predictive of participants’ 

age using EN. The successful prediction of age from both areas is encouraging and suggests that 

this method could be used for differential prediction of other clinical characteristics. It also 

demonstrates that while p24 FC is not predictive of glutamate, it is predictive of age. What is more, 

after regressing out the influence of age from FC and residualized Glu/tCr, the variance explained 

in metabolism by p24 was reduced, whereas variance explained by p32 increased compared to the 

model in which age was not accounted for.  

In contrast to the considerable predictive power for glutamate, we did not find converging 

evidence for the prediction of local GABAergic metabolism via global connectivity profiles. 

Previous work demonstrated a positive correlation between GABA levels in the pgACC and 

negative BOLD responses upon emotional stimulus presentation (Northoff et al., 2007), suggesting 

a link between GABA and the potential to downregulate DMN activity with increasing cognitive 

load. As our measurements were acquired at rest, it may be that an association between GABA 

and FC becomes apparent after stronger recruitment of task-positive networks. Another 

explanation relates to the complex association between GABAergic metabolism and the BOLD 

response. Depending on the brain region and network, an increase in inhibitory activity may or 

may not lead to increased BOLD response (Bartels, Logothetis, & Moutoussis, 2008; Logothetis, 
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2008). Our results showed that GABA-associated genes were more tightly linked to pgACC FC 

compared to glutamate-associated genes. GABA co-expression-FC relationships may thus be less 

variable across individuals. GABA modulates glutamatergic excitation by acting on pyramidal 

neurons in cortical microcircuits and local GABA concentrations may therefore represent mostly 

local processes (Isaacson & Scanziani, 2011; Logothetis, 2008; Buzsáki, Kaila, & Raichle, 2007). 

To summarize, our results suggest that pgACC measures of GABA are unlikely to be associated 

with patterns of long-range functional connectivity at rest, calling for alternative techniques in the 

future. 

Strikingly, while functional and anatomical parcellation performed similarly, there were 

vast differences in performance between EN and PLSR models. For the region most predictive of 

glutamate, p32, predicted values from EN and PLSR were highly correlated, suggesting they pick 

up similar information. Nevertheless, EN models provide a more conclusive answer on whether a 

metabolite can be predicted or not. In case there is no relationship between outcome and predictors, 

for EN, the built-in 10-fold cross-validation will lead to models with all predictors reduced to zero, 

because there is no lambda yielding a better than chance out-of-fold prediction. In such situations, 

PLSR models can still result in high explained variance, because these are not equipped with a 

way to penalize predictors that do not remain predictive in held-out folds. EN models have 

previously been used to predict behavior (Kashyap et al., 2019) and disease (Teipel et al., 2017) 

from neuroimaging data. This method outperforms multiple regression (Jollans et al., 2019; Teipel 

et al., 2017) and also frequently outperforms other machine learning techniques in cases where the 

number of participants is similar or smaller than the number of datapoints (Jollans et al., 2019). 

Overall, based on our results, combining MRS measures of local neurometabolites with resting-

state FC might be promising to identify candidate regions or networks.  

The results presented here must be considered in light of several limitations. First, the mean 

Dice overlap between MRS voxels and the functional areas was significantly greater for p24. 

Nevertheless, functional area p24 was less strongly associated with glutamatergic metabolism 

compared to functional area p32. In addition, there was no significant relationship between 

participants’ MRS voxel overlap with functional clusters and their glutamate or GABA levels. 

Therefore, it is unlikely that the larger MRS voxel overlap with cluster p24 had a significant 

influence on our results. Second, as in most MRS studies, there are potential confounds in the 
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quantification of neurometabolites. While GABA is more challenging to reliably quantify 

compared to glutamate, it is unlikely that data quality played a role in our findings. At high field 

strengths like 7 Tesla, increased signal dispersion allows for the separation of GABA peaks from 

larger, overlapping resonances. Moreover, after our stringent quality control, only five participants 

had to be excluded from the GABA analyses. With regard to glutamate, MRS measures are not 

limited to glutamate as neurotransmitter. Glutamate fulfills other, metabolic roles in the cell, 

including protein synthesis and energy metabolism, which cannot be separated from as 

neurotransmitter (Rae, 2014). It also appears that vesicular glutamate is not detectable by MRS 

(Kauppinen and Williams, 1991). The generalizability of the models needs to be assessed in an 

independent dataset. For this purpose, beta maps in MNI space are available for download: 

https://neurovault.org/collections/CWXNJGOY/. Last, the gene expression data set was obtained 

from an independent sample (Allen Human Brain Atlas) consisting of six donor brains. At present, 

it is unclear whether gene expression and MRS measures are well aligned and whether gene co-

expression generalizes to a wider population of healthy living adults. Notwithstanding, our study 

shows that associations of FC with canonical gene expression can provide crucial insights into 

neurobiology.   

To summarize, we demonstrated that combining complementary information from 

different neuroimaging modalities (MRS and fMRI) can provide incremental spatial information 

on the relationship between function and neurometabolism, by capitalizing on the higher resolution 

of fMRI. Our results show that p32 is more predictive of pgACC glutamate compared to p24 and 

suggest that although p32 as a DMN node is strongly connected to most networks, pgACC 

glutamate concentrations are particularly associated with p32 FC to the ventral attention or salience 

network. Unlike glutamate, GABA could not be reliably predicted from pgACC FC, as canonical 

GABAergic co-expression may be more influential. As smaller voxel sizes reduce SNR, this 

approach could be used as an alternative to extract more localized information about key 

neurometabolites and can be particularly informative when the MRS ROI cannot be restricted to 

one functionally distinct area. Importantly, this method could be applied to other multimodal 

datasets, including EEG-fMRI or PET-fMRI to improve the spatial resolution of inferences. 

Crucially, our novel combination of techniques can be readily used in existing datasets to uncover 

more spatially specific relationships between functional connectivity underlying neurometabolism 
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in health and disease. Thus, a broader application of interpretable machine learning methods may 

lead to a better understanding of neurobiological mechanisms of common psychiatric disorders. 

Materials and Methods 

Participants 

We included 143 healthy participants in this study. Data were pooled from three studies. All participants 

were screened for prior and current neurological or psychiatric illness using the German version 5.0.0 of 

the M.I.N.I. Mini International Neuropsychiatric Interview (Ackenheil et al., 1999). All study procedures 

were approved by the ethical committee of the University of Magdeburg and conformed with the 

Declaration of Helsinki.   

 Several participants participated in more than one MRS acquisition. In these cases, we discarded 

the measurement that did not meet initial quality criteria or, in case multiple measurements of the same 

participant were of sufficient quality, we selected the measurement with the best MRS and/or fMRI data 

quality in advance of the current analysis.  

 The final sample consisted of 88 participants with good quality resting-state and MRS data (age = 

28.81 ± 9.02; 35 females) for analysis of Glu/tCr. For GABA/tCr, one female and four male participants 

could not be included in the analyses because of CRLBs exceeding the cut-off of 20, leading to a reduced 

sample size of 84 participants. 

Data acquisition and preprocessing  

MRS. Ultra-high field data were acquired on a 7T MAGNETOM scanner equipped with a 32-channel head 

coil (Siemens, Erlangen, Germany). Before MRS measurements, an MPRAGE T1-weighted scan was 

acquired. The echo time (TE) was 2.73 ms, repetition time (TR) was 2300 ms, and inversion time (TI) was 

1050 ms. In-plane field of view (FOV) was 256 mm. The flip angle was set to 5°. Images were acquired 

with a bandwidth of 150 Hz/pixel and 0.8 mm isotropic image resolution.    

 Participants’ T1-weighted scans were used for accurate placement of the pgACC voxel, according 

to an established protocol of anatomical landmarks described in Dou et al. (2013). Briefly, the pgACC 

voxel (10 x 20 x 20 mm3) was placed in the bilateral pgACC and centered on the sagittal midline to ensure 

maximal coverage of cingulate gray matter. Automatic shim routines were used to optimize B0 

homogeneity. We applied a stimulated-echo acquisition mode (STEAM) sequence with variable-rate 

selective excitation (VERSE) RF pulse (Dou et al., 2013) with short TE/mixing time (TM) (20 ms/10 ms) 

and TR = 3000 ms. Metabolite spectra were acquired with 128 averages. A single water reference signal 
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was acquired for eddy current correction. The bandwidth was 2800 Hz and the acquisition time for one 

image was 731 ms.   

 MRS data were fitted in LCModel V6.3.0 (Stephen Provencher, Oakville, ON, Canada; 

Provencher, 2001). The basis set used for fitting included Creatine, Glutamate, Myo-Inositol, Lactate, N-

acetylaspartate, Phosphocholine, Taurine, Aspartate, γ-Aminobutyric acid (GABA), Glutamine, Glucose, 

Alanine, N-acetylaspartyl-glutamate, Phosphocreatine, Scyllo-inositol, Acetate, Succinate, 

Phosphorylethanolamine, Glutathione, Citrate, and Glycerophosphocholine. In all analyses, we used 

Glutamate and GABA as a ratio to total Creatine, i.e. Creatine + Phosphocreatine (tCr). Metabolite values 

were considered of insufficient quality if signal-to-noise (SNR) was smaller than 20, if linewidth (full-

width-at-half-maximum) was larger than 24 Hz or if the CRLB was smaller than 20%.   

 To account for differences in voxel gray matter (GM) content, we segmented participants’ T1-

weighted images using VBM in the CAT12 toolbox for SPM (http://dbm.neuro.uni-

jena.de/cat/index.html#VBM, Ashburner & Friston, 2005). MRS voxels were normalized to MNI space 

using the forward deformation field produced during segmentation and normalization of the structural 

scans. Participants’ normalized gray matter tissue probability map produced by VBM were then masked 

with their normalized MRS mask, and the percentage of probable voxel GM content was calculated. We 

regressed out voxel GM content from Glu/tCr and GABA/tCr values and performed all further analyses on 

the residuals.  

rs-fMRI acquisition. For the acquisition of resting-state fMRI data, participants were instructed to 

keep their eyes closed and think of nothing in particular. Acquisition time for this measurement was 13:18 

min and TR/TE were 2800 ms and 22 ms, respectively. The image resolution was 2 mm isotropic and the 

in-plane FOV was 212 mm. The flip angle was 80°. Sixty-two slices were acquired for a total of 280 

volumes. In-plane parallel imaging was done with GRAPPA image reconstruction (Griswold et al., 2002) 

acceleration factor 3. The first 10 volumes of resting-state data were discarded to reach steady state.  

ROI definition. For functional parcellation, we created an ROI based on participants’ pgACC MRS 

masks. Participant-specific masks would introduce a bias in the functional connectivity profile and could 

therefore inflate associations with local neurometabolism. For this reason, we created a composite mask. 

We resampled normalized participants’ MRS masks to the space and resolution of functional images (2 x 

2 x 2 mm3). From the resulting masks, we created a composite group MRS ROI such that each voxel within 

the ROI was contained in the normalized MRS mask of at least two participants (i.e., threshold for inclusion 

of a voxel: > 1). In addition, we used a recently published anatomical parcellation of the pgACC as a second, 

atlas-based ROI parcellation (Palomero-Gallagher et al., 2019). This parcellation consists of maximum 
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probability maps of areas p24ab, p24c, and p32. The delineation of the areas reflects cytoarchitectonic 

differences and is based on 10 post-mortem human samples.  

rs-fMRI pre-processing. Pre-processing of resting-state data was done using the CONN toolbox 

(Whitfield-Gabrieli & Nieto-Castanon, 2012). Briefly, images were realigned and unwarped (motion 

correction) and slice-time corrected. Functional and structural images were then segmented using default 

tissue probability maps and normalized to MNI using direct normalization and resampled to 2 mm isotropic 

voxel size. To take the fullest advantage of the gained spatial resolution as a result of using ultra-high field 

strength, we did not apply spatial smoothing. This approach also allowed us to limit the calculation of seed-

based FC to the MRS ROI. Further denoising was performed using custom MATLAB scripts. In this step, 

time series from voxels with either a GM probability of .35 or higher, or from those voxels falling within 

the MRS ROI, were z-scored, despiked, and subjected to quadratic detrending, after which six motion 

parameters (estimated during the realignment step) and mean white matter signal were regressed out. We 

did not perform bandpass-filtering of the time series, as most high-frequency fluctuations related to 

physiological noise were likely to have been removed by regressing out the mean white matter signal (Kahnt 

et al., 2012) and low-frequency drifts were removed in the detrending step (Tanabe et al.,  2002).   

FC calculation. FC was calculated separately for the group MRS ROI and the anatomical ROI. As 

seed voxels, we selected only those fMRI voxels in ROIs. To be able to interpret the resulting cluster 

solution in anatomically informed ways and to reduce the feature space to k closer to our N (88), we selected 

the 132 CONN atlas nodes as target ROIs. These include Harvard-Oxford cortical and subcortical ROIs 

(Desikan et al., 2006) as well as cerebellar ROIs from the AAL atlas (Tzourio-Mazoyer et al., 2002). 

Functional connectivity between seed time series and mean target time series was calculated as the Pearson 

correlation between the two. This resulted in a three-dimensional connectivity matrix with 1216 (MRS ROI) 

or 2160 (atlas-based ROI) rows (seeds), 132 columns (target ROIs), and 88 participants in the z-dimension.  

Connectivity-based parcellation of the MRS ROI  

We parcellated the pgACC MRS ROI into clusters of similar connectivity using resting-state functional 

connectivity-based parcellation. The aim of this method is to decrease within-cluster distance, and to 

increase between-cluster distance (Eickhoff et al., 2015). First, the seed-by-ROI-by-participant matrix was 

Fisher z-transformed and averaged across participants (cf. Kahnt et al., 2012). We then computed the 

correlation between every seed’s connectivity profiles. To finally parcellate contained voxels, we created a 

similarity matrix (Nseed x Nseed) with Pearson correlation coefficient as the distance measure.   

 To assess the functional hierarchy within the MRS seed voxel, the resulting similarity matrix was 

then subjected to hierarchical clustering to cluster functional voxels according to their similarity in terms 
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of whole-brain functional connectivity (Johnson, 1967). A major advantage of hierarchical clustering is that 

unlike, for example, the popular k-means algorithm, a hierarchical approach does not require a predefined 

number of clusters. The dendrogram may be cut at any level, with k + 1 clusters always nested in k clusters 

(Cloutman & Lambon Ralph, 2012; Eickhoff et al., 2015). We used the “average distance” linkage 

algorithm for clustering. Based on inspection of the dendrogram and the FC matrices, a two-cluster solution 

was found to be optimal for the overarching goal of the study. Note that due to the hierarchical clustering 

algorithm, more fine-grained parcellations could be tested to further localize predictive voxel clusters 

within their cluster branch. Yet, this would come at the cost of multiple-comparison correction and makes 

specificity incrementally harder to demonstrate. Thus, we decided to focus solely on the two-cluster 

solution to demonstrate the utility of the method in principle.  

 On account of their functional similarity, we averaged the functional connectivity to target regions 

across all seed voxels for each cluster, to reduce the number of features in subsequent analyses. This resulted 

in separate matrices for each cluster, representing the cluster-to-target FC for each participant. To assess 

effectivity of functional parcellation we calculated within-cluster distance (sum of squares) and compared 

it to between-cluster distance (sum of squares). Both within- and between-cluster distance were compared 

to whole MRS ROI distance to mean FC.   

Cluster validity            

Studies using tractographic and functional connectivity-based parcellation showed substantial 

correspondence between their parcellation and probabilistic cytoarchitectonic maps (Blumensath et al., 

2013; Gordon et al., 2016; Wig, Laumann, & Petersen, 2014). Others have provided qualitative evidence 

(visual inspection) for overlap between cytoarchitecture and connectivity-based-derived parcellation (e.g. 

Balsters, Mantini, & Wenderoth, 2018; Beckmann, Johansen-Berg, & Rushworth, 2009; Gordon et al., 

2016).   

 We compared our functional clusters to the anatomical parcellation of the pgACC. We summed the 

maximum probability maps (MPMs) of clusters p24ab and p24c to create a mask of area p24. The MPMs 

of areas p24 and p32 were then resampled to the space of our functional clusters. MPMs were restricted to 

MRS ROIs. The overlap between the MPMs and the functional clusters was then calculated using Dice 

coefficients (DC) (cf. Arslan et al., 2018).  

Influence of individual participants’ voxel placement   

To investigate a possible mediating influence of participants’ exact voxel placement on neurometabolite 

prediction, we compared the means of overlap of participants’ individual MRS masks with functional p32 

(MDC = .357, SDDC = .125) and with functional p24 (MDC = .482, SDDC = .112), t(87) = -5.108, p < .001. 
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The Dice overlap between individual MRS voxels and functional p32 did not correlate with local Glu/tCr 

(r(86) = -0.952, p = .344) or GABA/tCr (r(81) = 1.311, p = .193), confirming that individual participants’ 

voxel placement did not influence our results. 

Statistical analyses  

Correlational analyses and t-tests were performed in R (Version 3.5.0) with the RStudio IDE (Version 

1.0.136). All other statistical analyses were performed in MATLAB 2019a. α was set to .05. Because the 

methods - elastic net and partial least squares regression - are not independent, but complementary, we did 

not correct for multiple comparisons.   

 Demographics. To assess the influence of possible confounders, for both Glu/tCr and GABA/tCr, 

we calculated Pearson’s correlations with age and gray matter proportions. To test for a difference between 

Glu/tCr and GABA/tCr between male and female participants, we performed a Welch Two Sample t-test. 

Characterization of functional ROI FC profiles. We aimed to characterize the functional 

connectivity profiles of the functional areas p32 and p24. To this end, we calculated participant-wise mean 

time series for each area, and calculated Pearson correlations with participant-wise whole-brain time series. 

We performed a paired t-test on both areas to test which brain areas were significantly more functionally 

connected to either functional area, compared to the other functional area. This analysis was conducted 

using an implementation of threshold free cluster enhancement (TFCE) in MATLAB 

(https://github.com/markallenthornton/MatlabTFCE). The threshold for significance was set at .05, TFCE-

corrected. For visualization purposes, we repeated the paired t-test in MATLAB, and plotted the 

unthresholded t-values (p32 > p24) by Yeo network (Fig. 3e).   

Neurosynth decoding. To further illustrate the difference between functional p32 and p24 FC, we 

“decoded” average FC difference maps (p32 – p24) using data from Neurosynth framework (Yarkoni et al., 

2011). The Neurosynth framework comprises neuroimaging data and text extracted from 14,371 fMRI 

studies. The decoder toolkit implemented within this framework allows for “decoding” cognitive states 

from a given (activation) map (Rubin et al., 2017). Using this toolkit, we correlated the average FC 

difference map with all cognitive state maps available in the Neurosynth database (release 0.7). Each voxel 

in a cognitive state posterior probability map reflects the likelihood that a cognitive state term is used in a 

study if the voxel is activated (Quintana et al., 2019; Rubin et al., 2017). The top 40 terms correlated with 

the difference map are displayed in a word cloud (Fig. 3f).  

Partial-least squares regression. To predict Glu/tCr and GABA/tCr from functional and 

anatomical p32 and p24 FC, we employed partial least squares regression (PLSR) (Krishnan et al., 2011; 

McIntosh & Lobaugh, 2004). PLSR is a method that is particularly suitable for high-dimensional regression 
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problems, where the number of parameters is larger than the number of samples. PLSR projects the 

predictor variables into a latent space, while optimizing the prediction of the outcome. PLSR is similar to 

principal component regression (PCR), but while PCR only constructs components based on the captured 

variance of the predictors, PLSR aims to maximize covariance between factors extracted from predictors 

and the outcome variable.  

PLSR was run in MATLAB using the plsregress function, which uses the SIMPLS algorithm (De 

Jong, 1993). New PLSR models were constructed for each area and each metabolite. One component was 

retained in each analysis. As outcome variables we used the residuals from a regression model where voxel 

GM proportion predicted either Glu/tCr or GABA/tCr. The resulting residuals were subsequently z-scored. 

Predictors were the p24 or p32 FC values for each participant. To statistically assess the obtained model fit 

(residual sum of squares, Abdi, 2010), we performed permutation tests with 1000 permutations of the 

outcome measure. To test whether one region explained more variance than the other area or the 

unparcellated MRS ROI, we first calculated the difference in R2 between two models (e.g. p24 and p32). 

Then, we created a null distribution by running EN models with 1000 permutations for both ROIs 

simultaneously, using the same permuted outcome vector for both ROIs. We assessed statistical 

significance by comparing the true difference in R2 to the permutation distribution. 

Elastic net. Elastic net (EN) models are a combination of least-absolute-shrinkage-and-selection-

operator (LASSO) regression and ridge regression. EN models perform variable selection while 

simultaneously shrinking regression coefficients to prevent overfitting. We use EN as a complementary 

approach to PLSR. PLSR fits a model based on global information extracted from the feature space and 

outcome. It is thus able to pick up diffuse, global effects of functional connectivity on local metabolite 

concentrations. EN, in contrast, penalizes some regression coefficients (here: FC to target ROIs) to zero, 

resulting in a sparse model. EN therefore more strongly enforces spatially specific effects.  

Residualized GABA/tCr and residualized Glu/tCr were predicted using EN models fit for both 

functional and anatomical p24 and p32 ROIs. Alpha, the weighing term of LASSO and ridge regression in 

the EN, was set a priori to 0.5. The mean squared error of the model fit was estimated using 10-fold cross-

validation. Lambda was set to the value with minimum cross-validation error. Robust beta weights used for 

predicting metabolite concentrations were derived from the median of 20 EN iterations. Descriptive 

statistics of model fit are given by the R2 of predicted metabolite values and actual metabolite values. 

Analogous to the PLSR models, we assessed the model fit (R2) using a permutation test where the order of 

the outcome vector was randomly permuted (N = 1000). Also analogous to the PLSR models, we compared 

the difference in explained variance between two areas using permutation tests with 1000 permutations of 

the outcome vector. Given the significant association between Glu/tCr and age in our sample, we ran EN 
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and PLSR models to predict age rather than glutamatergic metabolism and compared model performance 

to models where age was regressed out of Glu/tCr and the predictors.   

Differential mRNA co-expression. To explore what could explain the differential association 

between glutamatergic metabolism and FC from the two functional areas, we investigated gene co-

expression. mRNA expression data from six donor brains were obtained from the Allen Human Brain Atlas 

(httpt://human.brain-map.org). We selected a subset of genes that are associated with glutamatergic and 

GABAergic transmission, receptors, transport, and metabolism (see Supplementary Table 4 for the full list 

of selected genes). When multiple probes were available for the same mRNA, we selected the probe with 

the highest differential stability, i.e. the probe with the lowest spatial variability between donors (Hawrylycz 

et al., 2015; Quintana et al., 2019).   

We investigated correlations between functional connectivity and gene co-expression within 

networks. Previous research has demonstrated that regions that are functionally connected (i.e. are part of 

functional, distributed networks) show similar gene expression patterns distinct from that shared within 

other networks (Huntenburg et al., 2018; Richiardi et al., 2015; Anderson et al., 2018). The different resting-

state functional connectivity from the two areas to the rest of the brain may be in part be explained by 

glutamatergic or GABAergic gene co-expression patterns. Therefore, we further explored whether gene co-

expression between the pgACC and the CONN atlas regions is differentially correlated with functional 

connectivity from functional p32 and p24.  

To this end, we used the gene set described above and computed mRNA expression maps according 

to Quintana et al. (2019) for each donor. Donors’ expression maps were z-scored and winsorized (threshold: 

absolute z-score = 3.5). Co-expression was calculated separately for each gene and functional area. mRNA 

co-expression was calculated as the z-transformed Pearson correlation between the area and each of the 132 

target ROIs. Subsequently, we calculated the Pearson correlation between co-expression and mean FC for 

each target ROI and averaged this across network. For each network and neurotransmitter, we tested 

whether co-expression-FC correlations differed from zero using one-sample t-tests. For the networks 

showing non-zero correlations of gene co-expression with FC, differences in the correlation between 

mRNA co-expression and functional connectivity were compared using Kolmogorov-Smirnov tests for 

each gene’s associated neurotransmitter (GABA or Glu). For the vAt specifically, we tested whether 

coupling between canonical structural and individual functional aspects was lower for Glu compared to 

GABA. To this end, we calculated bootstrapped mean correlations of gene co-expression associations with 

metabolite levels and mean correlations of FC with metabolite levels (number of iterations: 50,000). We 

resampled the resulting bootstrapped vectors and calculated the distance between functional and canonical 
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associations, for both glutamate and GABA separately. Statistical significance of the difference between 

glutamate and GABA was assessed with a one-sample t-test. 

Cognitive state correlates of p32 and p24 FC-glutamate association. To explore the potential 

functional relevance of the differential prediction of pgACC glutamate levels, we correlated the PLSR beta 

maps produced by models ran on functional p24 and p32, as well as the difference between the two beta 

maps with association Z maps, using the Neurosynth decoder (see section Methods and Materials, 

Neurosynth decoding).  
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Supplementary Figure 1 A-C, top: PLSR beta maps show the association between pgACC glutamate levels and 

pgACC area -to-target FC. A-C, bottom: decoded PLSR beta weight maps show the 40 cognitive states most strongly 

associated with the PLSR beta weight maps. D: spider plot of correlations with the top 5 terms (excluding duplicates) 

associated with PLSR beta weight maps of p32, p24, and p32-p24 PLSR, respectively. ACC: “anterior cingulate”; 

SMA: “supplementary motor”; RI: “response inhibition”; S2: “secondary somatosensory”; PCC: “posterior 

cingulate”.  
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Supplementary Figure 2 Dendrogram showing the results of hierarchical clustering of the MRS ROI based on 

functional connectivity to 132 target ROIs derived from the CONN atlas. Two main clusters emerged. Peach: 

functional p32; yellow: functional p24.   
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 Supplementary Table 1 Prediction of Glu/tCr (residualized for GM %) 

 Statistic p-value 

Functional (PLSR)   

    p24 R2 = .115 .553 

    p32 R2 = .181 .119 

    MRS voxel R2 = .142 .295 

Anatomical (PLSR)   

    p24 R2 = .116 .489 

    p32 R2 = .263 .023 * 

Functional (EN)   

    p24 R2 < .001 1 

    p32 R2 =.324 <.001 *** 

    MRS voxel R2 =.384 <.001 *** 

Anatomical (EN)   

    p24 R2 < .001 1 

    p32 R2 = .394 <.001 *** 

Note. * p < .05, *** p < .001.   

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.26.966259doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.966259
http://creativecommons.org/licenses/by-nd/4.0/


43 
 

 

Supplementary Table 2 Demographics and effects of age on the prediction of Glu/tCr 

 Statistic p-value 

Glu/tCr   

    Age r(86) = -.256 .016* 

    Gray matter % r(86) = .015 .889 

    Gender t(71.393) = .367 .715 

GABA/tCr   

    Age r(81) = .026 .819 

    Gray matter % r(81) = -.064 .564 

    Gender t(72.540) = -.717 .475 

Age   

    PLSR – cluster p32 R2 = .210 .066 

    PLSR – cluster p24 R2 = .143 .289 

    EN – cluster p32 R2 = .441 < .001*** 

    EN – cluster p24 R2 = .301 < .001*** 

Glu/tCr and FC residualized for age   

    PLSR – cluster p32 R2 = .174 .123 

    PLSR – cluster p24 R2 = .189 .084 

    EN – cluster p32 R2 = .423 < .001*** 

    EN – cluster p24 R2 = < .001 1 

Note. Predictions of age and Glu/tCr were done using the FC from functional areas p24 and p32. The models in which 

the influence of age was regressed out, used the residuals of Glu/tCr after regressing out both voxel gray matter content 

and age. * p < .05, *** p < .001.  
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Supplementary Table 3 Prediction of GABA/tCr (residualized for GM %) 

 Statistic p-value 

Functional (PLSR)   

    p24 R2 = .185 .068 * 

    p32 R2 = .093 .637 

    MRS voxel R2 = .101 .609 

Anatomical (PLSR)   

    p24 R2 = .126 .409 

    p32 R2 = .115 .503 

Functional (EN)   

    p24 R2 = < .001 1 

    p32 R2 = < .001 1 

    MRS voxel R2 = < .001 1 

Anatomical (EN)   

    p24 R2 = < .001 1 

    p32 R2 = < .001 1 

Note. * p < .05, ** p < .01.  
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Supplementary table 4 Selected genes from the Allan Human Brain Atlas  

Gene Entrez Gene ID AHBA Probe ID Neurotransmitter 

system 

ABAT 18 1010530 GABA 

GABBR1 2550 1023290 GABA 

GABBR2 9568 1048425 GABA 

GABRA1 2554 1014606 GABA 

GABRA2 2555 1013901 GABA 

GABRA3 2556 1056789 GABA 

GABRA4 2557 1056703 GABA 

GABRA5 2558 1056626 GABA 

GABRA6 2559 1056615 GABA 

GABRB1 2560 1056611 GABA 

GABRB2 2561 1056610 GABA 

GABRB3 2562 1029788 GABA 

GABRD 2563 1056608 GABA 

GABRE 2564 1025161 GABA 

GABRG1 2565 1029994 GABA 

GABRG2 2566 1027605 GABA 

GABRG3 2567 1021254 GABA 

GABRQ 55879 1041466 GABA 

GAD1 2571 1056577 GABA 

GAD2 2572 1013593 GABA 

SLC32A1 140679 1034964 GABA 

SLC6A1 6529 1031772 GABA 

SLC6A11 6538 1051443 GABA 

SLC6A13 6540 1051441 GABA 

ALDH4A1 8659 1028289 Glutamate 

GLS 2744 1056381 Glutamate 

GLS2 27165 1044598 Glutamate 

GLUD2 2747 1056377 Glutamate 
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GLUL 2752 1024398 Glutamate 

GOT1 2805 1056299 Glutamate 

GOT2 2806 1056295 Glutamate 

GRIA1 2890 1056189 Glutamate 

GRIA2 2891 1012842 Glutamate 

GRIA3 2892 1056188 Glutamate 

GRIA4 2893 1013883 Glutamate 

GRID1 2894 1028948 Glutamate 

GRID2 2895 1056185 Glutamate 

GRIK1 2897 1026823 Glutamate 

GRIK2 2898 1056180 Glutamate 

GRIK3 2899 1056123 Glutamate 

GRIK4 2900 1055987 Glutamate 

GRIK5 2901 1055952 Glutamate 

GRIN1 2902 1055939 Glutamate 

GRIN2A 2903 1010806 Glutamate 

GRIN2B 2904 1055935 Glutamate 

GRIN2C 2905 1024347 Glutamate 

GRIN2D 2906 1055933 Glutamate 

GRIN3A 116443 1036035 Glutamate 

GRIN3B 116444 1025776 Glutamate 

GRINA 2907 1023366 Glutamate 

GRM1 2911 1010994 Glutamate 

GRM2 2912 1023800 Glutamate 

GRM3 2913 1055924 Glutamate 

GRM4 2914 1055922 Glutamate 

GRM5 2915 1015143 Glutamate 

GRM6 2916 1021370 Glutamate 

GRM7 2917 1025003 Glutamate 

GRM8 2918 1018070 Glutamate 

SLC17A7 57030 1040965 Glutamate 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.26.966259doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.966259
http://creativecommons.org/licenses/by-nd/4.0/


47 
 

SLC17A8 246213 1010718 Glutamate 

SLC1A1 6505 1025608 Glutamate 

SLC1A2 6506 1051582 Glutamate 

SLC1A3 6507 1051579 Glutamate 

SLC1A4 6509 1014665 Glutamate 

SLC1A5 6510 1019400 Glutamate 

SLC1A6 6511 1051575 Glutamate 

SLC1A7 6512 1051572 Glutamate 

Note: AHBA = Allan Human Brain Atlas.  
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Supplementary Table 5 One sample t-tests for mRNA co-expression/FC correlations 

 Glutamate-associated FC/co-expression GABA-associated FC/co-expression  

 T(85) p 95% CI T(47) p 95% CI 

Vis -1.737 .086 [-0.113; 0.008] -1.220 .228 [-0.118; 0.029] 

SoM 1.268 .208 [-0.017; 0.078] 0.832 .410 [-0.042; 0.102] 

dAt 1.900 .061  [-0.004; 0.177] 4.053 <.001*** [0.119; 0.354] 

vAt 21.916 <.001*** [0.506; 0.608] 19.094 <.001*** [0.577; 0.713] 

Lim 1.064 .290 [-0.027; 0.089] 2.839 .007** [0.026; 0.155] 

FPN 6.902 <.001*** [0.210; 0.380] 5.810 <.001*** [0.220; 0.453] 

DMN 17.657 <.001*** [0.298; 0.373] 13.850 <.001*** [0.365; 0.489] 

Cer 1.453 .150 [-0.013; 0.083] 0.506 .615 [-0.047; 0.080] 

Note. Results of one-sample t-tests testing whether mRNA co-expression correlations with FC are different from zero, 

for each network and neurometabolite. Vis = visual network, SoM = somatomotor network, dAt = dorsal attention 

network, vAt = ventral attention network; Lim = limbic network; FPN = frontoparietal network; DMN = default mode 

network; Cer = cerebellar network. ** p < .05, *** p < .001.  

 

Supplementary Table 6 GABA vs Glu: mRNA co-expression-FC correlations 

 p24 p32 p24 + p32 

 D p D p D p 

vAt 0.267 .186 0.411 .007** 0.283 .011* 

FPN 0.198 .536 0.157 .808 0.147 .488 

DMN 0.360 .027* 0.402 .009** 0.360 <.001*** 

Note. Two-sample Kolmogorov-Smirnov tests comparing the distributions of z-transformed GABAergic and 

glutamatergic mRNA-co-expression and FC correlations. Vis = visual network, SoM = somatomotor network, dAt = 

dorsal attention network, vAt = ventral attention network; Lim = limbic network; FPN = frontoparietal network; DMN 

= default mode network; Cer = cerebellar network. * p < .05, ** p < .01, *** p < .001.  
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Supplementary Table 7 One-sample t-tests for PLSR beta weights (p24 + p32) 

 Glutamate  GABA  

Network 

(df) 

T p 95% CI T p 95% CI 

vAt (13) 4.839 <.001*** [0.209; 0.545] 2.771 .016 * [0.046; 0.375] 

FPN (13) 3.910 .002 ** [0.118; 0.411] 1.314 .212 [-0.077; 0.317] 

DMN (39) -0.356 .724 [-0.083; 0.058] 0.482 .633 [-0.075; 0.122] 

Note. Results of one-sample t-tests testing whether PLSR beta weights (pooled across p24 and p32) are different from 

zero, for each network and neurometabolite. vAt = ventral attention network; FPN = frontoparietal network; DMN = 

default mode network. * p < .05, **p < .01, ***p < .001. 
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