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Abstract 

The emergence and outbreak of SARS-CoV-2, the causative agent of COVID-19, has rapidly become              
a global concern and has highlighted the need for fast, sensitive, and specific tools to surveil                
circulating viruses. Here we provide assay designs and experimental resources, for use with             
CRISPR-based nucleic acid detection, that could be valuable for ongoing surveillance. We provide             
assay designs for detection of 67 viral species and subspecies, including: SARS-CoV-2,            
phylogenetically-related viruses, and viruses with similar clinical presentation. The designs are           
outputs of algorithms that we are developing for rapidly designing nucleic acid detection assays              
that are comprehensive across genomic diversity and predicted to be highly sensitive and specific.              
Of our design set, we experimentally screened 4 SARS-CoV-2 designs with a CRISPR-Cas13             
detection system and then extensively tested the highest-performing SARS-CoV-2 assay. We           
demonstrate the sensitivity and speed of this assay using synthetic targets with fluorescent and              
lateral flow detection. Moreover, our provided protocol can be extended for testing the other 66               
provided designs. Assay designs are available at ​https://adapt.sabetilab.org/​.  
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Introduction 

A novel ​Severe acute respiratory syndrome-related coronavirus, SARS-CoV-2 (family:         
Coronaviridae​), is the virus behind a severe outbreak originating in China [1]. SARS-CoV-2             
surveillance is essential to slowing widespread transmission. In January 2020, we quickly made             
available a capture enrichment panel [2] using CATCH [3] that is aimed at enhancing sequencing               
of SARS-CoV-2 and other respiratory viruses. Capture has also been important for ongoing             
SARS-like coronavirus surveillance [4], and the panel’s inclusion of SARS-like bat and pangolin             
coronaviruses can aid surveillance efforts.  
 
There are several challenges associated with surveillance during the current SARS-CoV-2           
outbreak. First, high case counts overwhelm diagnostic testing capacity, underscoring the need for             
a rapid pipeline for sample processing [5,6]. Second, SARS-CoV-2 is closely related to other              
important coronavirus subspecies and species, so detection assays can yield false positives if they              
are not exquisitely specific to SARS-CoV-2. Third, suspected SARS-CoV-2 patients sometimes have            
a different respiratory viral infection or have co-infections with SARS-CoV-2 and other respiratory             
viruses [7]. Therefore, it is important to characterize these other pathogens, for both patient              
diagnostics and outbreak response. 
 
Here, we help address the challenge of identifying SARS-CoV-2 and the numerous other             
respiratory viral pathogens by reporting a set of comprehensive design options for 67 species and               
subspecies for CRISPR-based detection assays. We have not yet experimentally tested most of             
these designs, instead focusing our efforts so far on extensively testing a point-of-care assay for               
SARS-CoV-2 using the Cas13-based SHERLOCK technology [6,8,9]. Using this assay, we           
demonstrate sensitive detection of synthetic SARS-CoV-2 RNA at 10 copies per microliter. 

Results 

Designs for single assay and multiplex panels 

We have been developing algorithms and machine learning models for rapidly designing nucleic             
acid detection assays, linked in a system called ADAPT (manuscript in preparation). The designs              
satisfy several constraints, including on: 
● Comprehensiveness​: Assays account for a high fraction of known sequence diversity in their             

species or subspecies (>97% for most assays), and are meant to be effective against variable               
targets. 

● Predicted sensitivity​: Assays are predicted by our machine learning model to have high             
detection activity against the full scope of targeted genomic diversity (here, based on             
Lwa​Cas13a activity only). 

● Predicted specificity​: Assays have high predicted specificity to their species or subspecies,            
factoring in the full extent of known strain diversity, allowing them to be grouped into panels                
that are accurate in differentiating between related taxa. 
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Comprehensiveness and—to some extent—specificity of the designs can be verified ​in silico​. 
 
Using ADAPT we designed 67 assays, satisfying the above constraints, to identify: the SARS-related              
coronavirus species; SARS-CoV-2; two other subspecies in that species with high similarity to             
SARS-CoV-2; all other known ​Coronaviridae species, including 4 other species that commonly            
cause human illness; and other common respiratory viral species and subspecies (​Table 1 ​). Each              
assay targets a single species or subspecies and can be used individually (e.g., point-of-care              
detection); additionally, owing to how they are designed, multiple assays can be grouped together              
to test for multiple targets and distinguish them with high specificity. 
 
Sequences for single assays and multiplex panels are available at ​https://adapt.sabetilab.org/​. 
 
Taxonomic rank  Assay target 

Species  Severe acute respiratory syndrome-related 
coronavirus​ ​(all known strain diversity) 

Subspecies  SARS-CoV-2 

Subspecies  SARS-CoV-1 

Subspecies  SARS-like CoV 

Species  Human coronavirus 229E 

Species  Human coronavirus NL63 

Species  Betacoronavirus 1​ ​(including Human 
coronavirus OC43) 

Species  Human coronavirus HKU1 

Species  Middle East respiratory syndrome-related 
coronavirus 

Species  Influenza A virus​ ​(all subtypes) 

Subspecies  H1 ​(e.g., H1N1 subtype) 

Subspecies  H3 ​(e.g., H3N2 subtype) 

Subspecies  N1 ​(e.g., H1N1 subtype) 

Subspecies  N2 ​(e.g., H3N2 subtype) 

 

Taxonomic rank  Assay target 

Species  Influenza B virus 

Species  Human respirovirus 1 ​(HPIV-1) 

Species  Human rubulavirus 2 ​(HPIV-2) 

Species  Human respirovirus 3 ​(HPIV-3) 

Species  Human rubulavirus 4 ​(HPIV-4) 

Species  Rhinovirus A 

Species  Rhinovirus B 

Species  Rhinovirus C 

Species  Enterovirus A 

Species  Enterovirus B 

Species  Enterovirus C 

Species  Enterovirus D 

Species  Human orthopneumovirus ​(HRSV) 

Species  Human metapneumovirus​ (HMPV) 

Species (39)  All additional species in ​Coronaviridae​ family 

 

Table 1. A summary of the species and subspecies constituting the 67 designs at ​https://adapt.sabetilab.org/​. SARS-CoV-2                               
is designed to exclude detection of the highly similar RaTG13 sequence, and other similar bat and pangolin SARS-like                                   
coronaviruses; the SARS-like subspecies includes most bat and pangolin SARS-like coronaviruses. 
 

SARS-CoV-2 SHERLOCK assay testing 

We initially screened a set of 4 designs for SHERLOCK [6,8,9] assays, output by ADAPT to detect                 
SARS-CoV-2. We identified an assay, which was the best-performing and also our highest ranked              
design ​a priori ​. We extensively tested this assay using a synthetic RNA target and determined the                
limit of detection to be 10 copies/µl using both fluorescent and lateral flow detection (​Figure 1​).                
This assay performs well in comparison to the recently disclosed DETECTR [10] assay (sensitivity:              
70–300 cp/µl) [11] and SHERLOCK assay (10–100 cp/µl) [12] for SARS-CoV-2. A protocol for              
performing this assay is provided in the Methods section and can be used for testing any of the                  
other designs we have provided. 
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Figure 1. Testing an assay for SARS-CoV-2 using synthetic RNA targets. We show data from both fluorescent (a) and lateral                                       
flow detection (b). Target concentrations (in cp/μl) are indicated. RPA NTC: water input into RPA; Det NTC: water input into                                       
Cas13 detection reaction. In (a), error bars indicate one standard deviation based on ​n​=3 technical replicates. 

Discussion 

Ongoing SARS-CoV-2 sequencing is key to developing and monitoring diagnostics and similar            
surveillance tools. In the case of the SARS-CoV-2 outbreak, genomes have been generated and              
shared at a remarkable pace, and we thank those who have contributed their data through GISAID                
[13]. We and others, relying on this data [14], have shown that it is possible to rapidly design                  
CRISPR-based tools for detection and surveillance during an outbreak. 
 
Among other goals for this work, we plan to evaluate: (1) sensitivity of the SARS-CoV-2 assay                
against clinical isolates and patient samples—including sputum, throat, and nasal swabs—some of            
which may be challenging sample types to test; (2) specificity at both the species and subspecies                
levels against highly related viruses. For the latter, we intend to use a mixture of synthetic targets                 
reflecting different viral sequences, and patient samples or viral seedstocks when available. We             
hope that the comprehensiveness and high predicted sensitivity and specificity of our designs will              
enable many groups to proceed rapidly and successfully from assay testing through deployment. 
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Methods 

SHERLOCK protocol for SARS-CoV-2 

Isothermal amplification (RT-RPA) 

List of equipment and materials 

● Heat block, water bath, or thermocycler, prewarmed to 41 °C  
● RevertAid Reverse Transcriptase (Thermo) 
● RNase inhibitor (NEB Murine) 
● Primer mix @ 5 µM of each primer (see Supplementary Table 1 for primer sequences) 
● Synthetic DNA or RNA target (see Supplementary Table 1 for sequences), or extracted RNA 

from a viral seedstock or patient sample 
● Rehydration buffer, lyophilized RPA pellets, MgAc @ 280 mM from RPA kit (TwistAmp 

Basic kit, TwistDx) 
● Nuclease-free water 

 

Reagent  Initial concentration  Amount to add for N RPA pellets 

Rehydration buffer  N/A  29.5 ​✕​ N μl 

RPA primer mix  5 μM of each primer  4.8 ​✕​ N μl 

Nuclease-free water  N/A  2.1 ​✕​ N μl 

RNase inhibitors  40 U/μl  5 ​✕​ N μl 

RevertAid RT  200 U/μl  N μl 

Magnesium Acetate (MgAc)  280 mM  3.04 ​✕​ N μl 

Step by step protocol 

1. Determine the number of pellets needed based on the size of the experiment (2 samples 
per pellet, if doing 20 µl RPA reactions). 

2. Make a master mix for N pellets, consisting of Rehydration buffer, RPA primer mix, water, 
RNase inhibitors, and RevertAid RT. Do not include MgAc at this step. 

3. Resuspend each RPA pellet using the total volume for 1 RPA pellet (~30 µl) of master mix. 
4. Add the MgAc to the master mix. Keep the master mix on ice. 
5. Aliquot the master mix (containing MgAc) into wells of a 96-well plate or strip tubes 

pre-chilled on ice. For 20 µl reactions, aliquot 18 µl of master mix. 
6. Add sample or a control target to each aliquot of master mix (2 µl, if using 20 µl reactions), 

mix thoroughly, and incubate at 41 °C for 20 minutes. 
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Cas13 detection 

List of equipment and materials 

● Heat block, water bath, or thermocycler, prewarmed to 37 °C  
● For visual readout: ​camera or cell phone with camera; ​for fluorescent readout:​ qPCR 

machine / plate reader capable of detecting FAM 
● For fluorescent readout:​ optical 96-well plate, optical strip-tubes, or black 96-well plate 

with clear bottom 
● 10✕ Cleavage buffer (1✕ CB is 40 mM Tris pH 7.5, 1 mM DTT) 
● RNase inhibitors (NEB Murine) 
● Cleavage reporter, ​for visual readout:​ IDT for lateral flow (sequences in Supplementary 

Table 1); ​for fluorescent readout:​ RNase Alert v2 (Thermo)  
● Lwa ​Cas13 protein @ 0.5 mg/ml, in 16 ul aliquots, diluted in 1✕ Storage buffer (50 mM Tris 

pH 7.5, 600 mM NaCl, 5% glycerol, 2 mM DTT) [15] 
● Cas13 crRNA @ 2 µM (see Supplementary Table 1 for sequences) 
● T7 RNA polymerase (Lucigen NxGen) 
● rNTP mix @ 25 mM each (NEB) 
● MgCl​2​ @ 100 mM 
● Nuclease-free water 

 

Reagent  Initial concentration  Amount to add for N reactions 

Cleavage buffer  10✕  2.4 ​✕​ N μl 

Nuclease-free water  N/A  11.22 ​✕​ N μl 

rNTP mix  25 mM of each nucleotide  0.96 ​✕​ N μl 

RNase inhibitors  40 U/μl  1.2 ​✕​ N μl 

Cleavage reporter  16 μM (visual readout) or  
2 μM (fluorescent readout) 

1.5 ​✕​ N μl 

Lwa​Cas13 protein  Diluted in 1✕ SB  2.4 ​✕​ N μl 

T7 RNA Polymerase  50 U/μl  0.72 ​✕​ N μl 

Cas13 crRNA  2 μM  0.24 ​✕​ N μl 

MgCl ​2  100 mM  2.16 ​✕​ N μl 

RPA product  N/A  1 μl per reaction 
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Step by step protocol 

1. Dilute ​Lwa​Cas13a by adding 110.5 µl of 1✕ Storage buffer to a 16 µl aliquot of Cas13 
protein (prior to dilution @ 0.5 mg/ml). 

2. Prepare a master mix based on the table above, adding the components in the order they 
are listed in the table. Do not add RPA product at this step. 

3. Aliquot 19 µl of master mix into wells of a 96-well plate or strip tubes pre-chilled on ice. If 
using a fluorescent readout and depending on the instrument used, an optical PCR or black 
plate with a clear base can be used. 

4. Add 1 µL of RPA product to each master mix aliquot. Seal the plate and incubate at 37 °C for 
30 minutes to 3 hours. ​For fluorescent readout, ​ measure fluorescence every 5 minutes. 
For visual readout​, see additional details below.  

 

Visual readout 

List of equipment and materials 

● HybriDetect 1 lateral flow strips (Milenia) 
● Hybridetect Assay Buffer (Milenia) 

Step by step protocol 

1. After incubation at 37 °C for 30 minutes to 3 hours, add 80 µl of Hybridetect Assay Buffer to 
the total volume of each detection reaction. 

2. Add a lateral flow strip to each well and incubate for 2-5 minutes at room temperature. 
a. Take care to avoid contamination of the strips, by using tweezers to remove 

individual strips and place in buffer. 
3. Remove strips, place on flat, well-lit surface, and analyze or acquire images of the strips. 
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Supplementary Information 

 

Name  Sequence 

RPA forward primer  gaaatTAATACGACTCACTATAgggCCAAGGTAAACCTTTGGAATTTG

GTGCCAC 

RPA reverse primer  actatcatcatctaaccaatcttcttcttg 

Synthetic DNA target  gaaatTAATACGACTCACTATAgggGTGAGTTTAAATTGGCTTCACAT

ATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAGAAGGTGAT

TGTGAAGAAGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGTACT

GAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCT

GCTCTTCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGAT

AGTCAACAAACTGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACA

ACTACTATTCAAACAATTGTTGAGGTTCAACCTCAATTAGAGATGGAA

CTTACACCAGTTGTTCAGACTATTGAAGTGAATAGTTTTAGTGGTTAT

TTAAAACTTACTGACAATGTATACATTAAAAATGCAGACATTGTGGAA

GAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATGCAGCCAATGTT

TACCTTAAACATGGAGGAGG 

Cas13 crRNA  GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACcucuucuucagg

uugaagagcagcagaa 

Cleavage reporter (lateral flow)  /56-FAM/rUrU rUrUrU rUrUrU rUrUrU rUrUrU /3Bio/ 

 
Supplementary Table 1.​ Primer, target, and crRNA sequences for the SARS-CoV-2 assay. 
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