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Summary 1 
 2 
Current leukemia therapies target cancer cells with specific phenotypes or genotypes, but this 3 
assumes that either genomic mutations or immunophenotypes alone serve as faithful proxies for 4 
treatment response1. Moreover, the heterogeneity inherent to all cancers, including leukemias, 5 
makes direct mapping of genotype-phenotype relationships challenging2,3. Here, we present a 6 
method to genotype and phenotype single cells at high throughput, allowing direct characterization 7 
of proteogenomic states on tens of thousands of cancer cells rapidly and cost efficiently. Using the 8 
approach, we analyze the disease of three leukemia patients over multiple treatment timepoints 9 
and recurrences. We observe complex genotype-phenotype dynamics and extensive decoupling of 10 
the relationships over disease progression and response to therapy, illustrating the subtlety of the 11 
disease process and the inability to use genotypes as direct proxies for phenotypes. Our technology 12 
has enabled the first rigorous test of the prevailing paradigm that treatment of a disease phenotype 13 
is equivalent to treatment of its underlying genotype. More broadly, our results highlight the power 14 
of single-cell multiomic measurements to resolve complex biology in heterogeneous populations, 15 
and illustrate how this information can be used to inform treatment. We thus expect that our 16 
methodology will find broad application to study proteogenomic tumor landscapes across cancers 17 
and will support the next generation of immunotherapy. 18 
 19 
 20 
Main 21 
 22 
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy prone to relapse that 23 
often manifests as a polyclonal ensemble of cells with distinctive genotypes but diverse 24 
immunophenotypes4,5. Because of this disparity, it is difficult to directly link genotypes to 25 
immunophenotypes beyond circumstantial evidence from epidemiologic studies. Moreover, while 26 
AML blasts often exhibit immunophenotypes distinct from normal cells, with some surface 27 
markers even serving as therapeutic targets6, genotypes are the strongest prognostic factors, 28 
suggesting a weak correspondence between these domains7,8. Cellular heterogeneity is an intrinsic 29 
aspect of essentially all cancers, including leukemias. Because cancer cells are heterogeneous in 30 
genotype and phenotype, single-cell analysis provides a powerful tool for characterizing this 31 
complexity and thereby advancing our understanding of different cancers. The value of single-cell 32 
analysis is its ability to correlate co-occurrence of different features in individual cells, with high-33 
throughput technologies permitting analysis of thousands of cells to generate rich and intricate 34 
feature maps. For example, single-cell genotyping of AML-relevant loci has revealed co-35 
occurrence of mutations and mapping of the clonal relationships between blasts9–12. These studies, 36 
however, have yet to map DNA genotypes and phenotypes in the same cells, precluding direct 37 
linkage of phenotypes to the genetic mutations that drive them. 38 
 39 
To obtain simultaneous genotype and immunophenotype information, single cells can be sorted 40 
based on multi-parametric antibody analysis, and sequenced. While severely limited in throughput, 41 
these studies have uncovered important insights into the genetics of AML, identifying relevant 42 
aberrations such as single nucleotide polymorphisms (SNPs) and gene fusions13. Single-cell RNA 43 
sequencing (scRNA-seq) has emerged as a potentially valuable approach for genotype-phenotype 44 
linkage because it is cost effective and scalable3,10,14,15. The mRNA sequences provide genotype 45 
information15,16 while their counts relate phenotype17–21. Moreover, modern approaches are 46 
extremely high throughput, allowing characterization of thousands of cells. Nevertheless, 47 
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genotyping from mRNA remains a challenging and error-prone procedure that, even in the best 48 
case, provides incomplete information. For example, stochastic gene expression, biological 49 
biases22, and limited coverage of essential genes combine to make assigning a genotype more 50 
difficult than can be achieved by direct analysis of DNA. Moreover, since RNA methods analyze 51 
only the expressed portion of the genome, mutations in intronic and other non-transcribed 52 
elements, like transcription factor binding sites, are omitted23,24. Thus, while several technologies 53 
have highlighted the importance of high-throughput single cell genotype-phenotype 54 
measurements, none provide the scalability and precision for comprehensive and accurate mapping 55 
of these clinically valuable biomarkers.  56 
 57 
In this paper, we describe DAb-seq, a novel approach for joint profiling of DNA and surface 58 
proteins in single cells at high throughput. While existing methods attempt to obtain this 59 
information from the transcriptome alone, ours directly characterizes DNA for genotype and 60 
surface proteins for phenotype – both the gold standards in AML for these annotations. Our 61 
approach is thus complementary to scRNA-seq methods and, as we show, provides novel and 62 
important information for characterizing the disease. To illustrate the power of DAb-seq, we 63 
characterize the immunophenotypic and genotypic diversity underpinning AML in three patients 64 
at multiple timepoints, exploiting its throughput to characterize 50 DNA targets and 23 65 
hematopoietic markers in a total of 54,717 cells. This analysis allows tracking of proteogenomic 66 
dynamics for multiple patients over multiple treatments and recurrences. We identify extensive 67 
genotype-phenotype decoupling, observing immunophenotypic heterogeneity among cells with a 68 
shared pathogenic mutation and genotypically diverse cells with a convergent malignant 69 
immunophenotype. These findings indicate substantial variability of blast fate upon treatment in 70 
AML, and that independent phenotype or genotype measurements do not adequately capture the 71 
proteogenomic heterogeneity. More broadly, our work demonstrates how single-cell technologies 72 
can inform the diagnosis and treatment of AML by elucidating the complex interplay between 73 
DNA mutations and their effects on protein expression. 74 
 75 
 76 
Results 77 
 78 
Combined single-cell DNA sequencing and antibody profiling (DAb-seq) robustly delineates 79 
single-cell genotypes and immunophenotypic diversity 80 
 81 
The commercially available Mission Bio Tapestri supports highly multiplexed targeted sequencing 82 
of thousands of single cells and is being used across cancers for genotype and lineage mapping11. 83 
While the instrument runs a flexible workflow, it does not natively support Abseq, a separate 84 
method we developed25 that allows characterization of single-cell surface proteins by sequencing, 85 
and is analogous to flow cytometry in its ability to provide immunophenotype information. Thus, 86 
our major technical innovation is to adapt Tapestri to enable simultaneous DNA and Abseq 87 
analysis. As in our published Abseq approach, DAb-seq begins with immunostaining of a cell 88 
suspension using a mixture of antibody-oligo conjugates (Figure 1A). Each antibody is associated 89 
with a known oligo tag; thus, when cells are stained with a pool of tagged antibodies, each cell is 90 
bound with a combination of antibodies and their tags based on surface protein profile. To 91 
characterize the profile, the tags must be sequenced and counted which, in flow cytometry, is 92 
analogous to measuring fluorescence of the dyes associated with each antibody, except that photon 93 
counting is replaced with tag counting. 94 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.26.967133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.967133


The stained cells are processed through a modified Tapestri workflow to amplify and barcode 95 
genomic targets and surface-bound antibody tags. The workflow follows a two-step protocol to 96 
lyse cells and digest chromatin, making the genome accessible to amplification; the droplets are 97 
then subjected to a multiplex PCR to simultaneously amplify the genomic targets and capture 98 
antibody tags, labeling them with a droplet barcode relating sequences from the same cell (Figure 99 
1B). For genotype, we target recurrently mutated genomic DNA loci in AML with primers 100 
containing a unique cell barcode against 50 amplicons spanning 19 genes. The primers and PCR 101 
conditions are tuned to enable uniform and quantitative amplification of all targets, since count 102 
information is necessary for accurate genotype and immunophenotype characterization. These 103 
primers also capture antibody tags from a 23-plex immunophenotyping panel based on those used 104 
in clinical minimal residual disease studies26,27 (Figure 1C; Supplementary Table 3). Sequencing 105 
yields a multiomic data set where each cell is represented by two vectors and which can be 106 
visualized as a low-dimensional embedding (Figure 1D). 107 
 108 
Peripheral blood mononuclear cells (PBMCs) comprise a diverse and well-understood population 109 
easily obtained from a blood draw, and thus provide an excellent sample by which to assess the 110 
effectiveness of DAb-seq for mapping hematopoietic immunophenotypes. When applied to 111 
PBMCs from a healthy donor, we obtain expected cell subsets across blood compartments, 112 
identifying both rare and abundant cells in peripheral blood (Figures 2A, 2B). To test single-cell 113 
genotyping capability, we also perform DAb-seq on a mixture of three cell lines derived from 114 
distinct hematopoietic lineages (Jurkat, Raji, K562) with documented mutations in the targeted 115 
genomic regions covered by our single-cell DNA sequencing panel28 (Supplemental Table 2). For 116 
all genetic variants, we assign genotype calls to each individual cell: homozygous wildtype, 117 
heterozygous alternate, or homozygous alternate. We observe the expected correspondence 118 
between single-cell genotypes and phenotypes, as cells of the same genotype segregate within a 119 
common immunophenotypic cluster (Figures 2C, 2D). Notably, we also find that DAb-seq’s 120 
genotyping is sufficiently sensitive to differentiate the cells based on zygosity of a given mutation 121 
(Figure 2D). These results show that DAb-seq can simultaneously profile genotype from direct 122 
analysis of genomic DNA and immunophenotype from barcoded antibodies. 123 
 124 
NPM1-mutated cells persist across therapy timepoints with a static immunophenotype 125 
 126 
AML therapies targeted to cell surface proteins require ubiquitous expression of the target marker 127 
on the malignant cells. We therefore reason that mutated cells should robustly associate with a 128 
common targeted phenotype in patients responsive to this therapy. To investigate this, we perform 129 
DAb-seq on 21,952 total cells from bone marrow aspirates of a patient with AML receiving 130 
gemtuzumab, a CD33-targeted therapy, across four treatment timepoints (Figure 3A). This patient 131 
received multiple rounds of chemotherapy, including a stem cell transplantation, prior to the first 132 
timepoint sampled in this study (Supplementary Table 1). In the single-cell DNA genotyping data, 133 
we identify a recurrent frameshift mutation in the NPM1 gene (NPM1mut) across relapse, salvage 134 
therapy, and progression timepoints. In addition, the NPM1 mutation is found to always co-occur 135 
with a mutation at the DNMT3A locus (Figure 3A). Gemtuzumab targets CD33+ cells, which are 136 
extinguished at the remission timepoint29. To examine the immunophenotypic profile of the 137 
NPM1mut blast population, we plot single-cell CD33 and CD34 values with NPM1 mutation status 138 
across timepoints (Figure 3B). The proportion of NPM1mut cells in the CD34- and CD34+ 139 
compartments does not vary extensively across treatments, suggesting the lack of a therapeutic 140 
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response in the blast immunophenotype. CD33+ myeloid cells targeted by the drug are absent at 141 
remission. 142 
 143 
In all timepoints for this patient, our analysis suggests an equivalence between the dominant blast 144 
genotype and corresponding phenotype. To further explore this relationship between genotype and 145 
phenotype, we visualize the high-dimensional single-cell immunophenotype as a Uniform 146 
Manifold Approximation and Projection30 (UMAP) embedding of the antibody data (Figure 3C). 147 
Cells within single immunophenotypic clusters originate from different timepoints, highlighting 148 
the stability of normal and malignant immunophenotypes over time. When we overlay NPM1 149 
genotype on the immunophenotype UMAP space, we find a clear association between a single 150 
malignant immunophenotype composed of CD33+ cells with NPM1 mutation status, with variable 151 
expression of CD34, CD38, and CD117 in this population (Figure 3D). Indeed, this is in agreement 152 
with previous observations in flow cytometric studies where blast cells have been found to 153 
uniformly express CD33 and variably express CD34, CD38, and CD11731. Among the NPM1wt 154 
cells, we identify classical blood cell markers including CD3 and CD5 (lymphocyte), CD15 155 
(monocyte), and CD56 (natural killer). Taken together, in this patient, DAb-seq confirms 156 
elimination of CD33+ cells by gemtuzumab treatment and reveals a strong correspondence 157 
between genotype and phenotype across timepoints. 158 
 159 
Genotypic subclones form overlapping subsets across an immunophenotypic continuum 160 
 161 
To investigate whether such tight genotype-phenotype association is a universal feature of AML, 162 
we apply DAb-seq to a pediatric patient who underwent induction and consolidation 163 
chemotherapy, but ultimately relapsed (Supplementary Table 1). We identify two mutually 164 
exclusive KRAS and FLT3-mutated clones at diagnosis and relapse (KRASmut, FLT3mut). The 165 
FLT3mut population, although the minor subclone at diagnosis comprising just 43 of 4,563 cells 166 
(0.94%) compared to 1,539 cells (33.7%) for the KRASmut variant, dominates at relapse (6,800 of 167 
7,516 cells, 90.5%) (Figure 4A). Immunophenotypically, we also identify a third subset 168 
comprising KRASWT/FLT3WT cells expressing a blast-like CD33+CD38+ immunophenotype with 169 
no identifiable DNA mutations in the targeted loci. When we group cells from all timepoints by 170 
genotype, pathogenic blasts display variable patterns in immunophenotype, with no clear mapping 171 
between the two (Figure 4B).  172 
 173 
In the absence of an obvious genotype-phenotype mapping for this patient, we sought to investigate 174 
the underlying relationship between these domains. Using UMAP, we project the antibody data 175 
into two dimensions, coloring the points according to genotype (Figure 4C). We observe a single 176 
immunophenotypic compartment with incomplete separation between genotypes. To estimate 177 
antibody profile expression within the blast compartment continuum, we identify the dominant 178 
gradient in the phenotypic space, ordering all points along the gradient. We then calculate the local 179 
average antibody and genotypic composition for neighboring cells (Figure 4C, D) (Methods). As 180 
expected, many markers are anticorrelated (CD11b, CD33, CD56) or correlated (CD15) with the 181 
principal immunophenotypic gradient. Less trivially, genotypic compositions vary along the 182 
gradient, with KRASmut clone frequencies anticorrelated and FLT3mut correlated (Figure 4D). 183 
Nevertheless, genotype composition never completely separates into individual clonal 184 
populations, making it impossible to define distinct genotype-phenotype clusters; consequently, 185 
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technologies profiling one modality, such as genotyping or immunophenotyping, cannot 186 
adequately capture the heterogeneity inherent to this case of AML. 187 
 188 
FLT3 inhibitor therapy induces erythroid differentiation in a case of AML 189 
 190 
Our first two cases feature either a strong genotype-phenotype correlation (Patient 1) or mixed 191 
genotyping comprising a single immunophenotype (Patient 2). Thus, for our final case, we analyze 192 
a patient treated with gilteritinib, a FLT3 inhibitor therapy reported to promote in vivo 193 
differentiation of myeloid blasts. This treatment is thought to disperse distinct genotypes into 194 
multiple immunophenotypes, although the terminal lineage of the cells remains poorly 195 
understood32–34. Accordingly, we hypothesize DAb-seq should allow tracking of 196 
immunophenotypic dispersal and confirmation of their terminal hematopoietic lineage. We 197 
analyze 18,287 cells across treatment timepoints, beginning at diagnosis, discovering a subclone 198 
with co-mutated DNMT3A and NPM1 (Figure 5A; Supplementary Table 1). Following 199 
cytarabine/daunorubicin induction therapy, a fraction of DNMT3Amut cells remain at remission. At 200 
relapse and after treatment with the FLT3 inhibitor gilteritinib (“FLT3 Inhibitor”), most cells 201 
contain a 24-bp FLT3 internal tandem duplication (ITD), in addition to the initial DNMT3A and 202 
NPM1 mutations. The genotypic structure inferred from the single-cell data indicates a linear, 203 
branching hierarchy of sequentially acquired mutations in response to therapy. To explore the 204 
immunophenotypic features of this patient’s disease, we integrate cells from all timepoints and 205 
construct a UMAP representation using the antibody data (Figure 5B). We cluster this data using 206 
the Leiden method for cluster detection, an improved algorithm over Louvain modularity35,36, and 207 
manually annotate with phenotypic labels corresponding to hematopoietic lineage from the 208 
antibody data (Figure 5C). We identify three blast populations expressing high levels of CD33 and 209 
CD38, a monocytic population expressing CD15 and CD16, and erythroid and lymphoid clusters 210 
with elevated CD71 and CD3. As expected, samples across treatment timepoints comprise a 211 
mixture of immunophenotypically normal and blast-like cells. 212 
 213 
Hypothesizing that different therapies should yield different genotype-phenotype coupling 214 
patterns, we sought to characterize how mutated and normal cells distribute across 215 
immunophenotypic clusters. For each timepoint, we thus label cells in UMAP space according to 216 
DNA genotype and generate density distributions of CD33 signal, a pan-myeloid marker (Figure 217 
5D). We also evaluate counts of phenotype cluster membership in each timepoint, subdivided by 218 
DNA genotype. At diagnosis, cells mutated at both the DNMT3A and NPM1 locus reside primarily 219 
in the Blast 1 cluster (81.8% of DNMT3Amut/NPM1mut cells) and express high levels of CD33. A 220 
secondary clone mutated exclusively at the DNMT3A locus exhibits comparable CD33 expression 221 
and resides mainly in the Blast 1 and monocytic clusters (62.5% and 27.7% of DNMT3Amut cells, 222 
respectively). At remission, the same DNMT3Amut clone is identified but with decreased CD33 223 
expression and a primarily monocytic immunophenotype (92.7% of DNMT3Amut cells) co-224 
localizes with cells of normal genotype, consistent with clonal hematopoiesis of a pre-leukemic 225 
clone37,38. A newly acquired FLT3-ITD clone emerges in high numbers at relapse (99.8% of 226 
genotyped cells), coinciding with a phenotypic shift of cells to the CD33+ Blast 2 cluster. 227 
Following FLT3 inhibitor treatment, the same FLT3-ITD clone persists but exhibits a transformed 228 
immunophenotype, as evidenced by membership of the FLT3 clone in multiple immunophenotypic 229 
clusters. The new FLT3-ITD immunophenotype is primarily erythroid (82.2% of FLT3-ITD cells), 230 
with minor fractions in the Blast 3 and monocytic compartments (11.1% and 4.84% of FLT3-ITD 231 
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cells, respectively). Furthermore, the FLT3-ITD clone at relapse lacks uniform CD33 expression, 232 
indicating that this clone is no longer restricted to the myeloid compartment. Taken together, these 233 
findings support the model of terminal erythroid differentiation of blasts in a case of leukemia 234 
treated with gilteritinib. In agreement with a recent study34, proteogenomic analysis by DAb-seq 235 
challenges a prior report of gilteritinib-induced terminal differentiation towards a myeloid fate33. 236 
DAb-seq elucidates the rich and complex dynamics of this process and illustrates how distinct 237 
DNA genotypes can fractionate into multiple phenotypic identities in response to treatment. 238 
 239 
 240 
Discussion 241 
 242 
Through its ability to jointly profile DNA and immunophenotype, DAb-seq captures the 243 
complexity of proteogenomic states underlying AML. Analysis of multiple patients over 244 
timepoints and treatments demonstrates the plasticity of the disease and the complex and 245 
unpredictable way it progresses in different contexts. In a patient with extensive clinical history 246 
including multiple rounds of chemotherapy, we found a robust relationship between mutant NPM1 247 
cells and a malignant phenotype; this suggested that a single CD33-targeted therapy would 248 
eradicate the blast population, as indeed it did. By contrast, in a separate case of pediatric AML, 249 
we observed that genetically distinct populations shared overlapping immunophenotype, 250 
demonstrating that this domain alone is insufficient for characterizing how cells are genetically 251 
programmed and may, consequently, respond to treatment. In the final case study, we observed 252 
the opposite scenario, in which treatment by gilteritinib induced mutationally similar cells to 253 
disperse into different myeloid compartments, highlighting the challenge of targeting these 254 
malignant cells for eradication. Our results thus demonstrate that genotype or immunophenotype 255 
alone is insufficient to predict the evolution of proteogenomic states in AML.  256 
 257 
DAb-seq employs targeted primers to amplify specific genomic regions and panels of antibodies. 258 
While both readouts enable massive multiplexing of queried targets, practical and economic 259 
constraints necessitate a priori knowledge of which loci and epitopes to profile. As such, the 260 
strength of DAb-seq is not unbiased feature discovery, as with scRNA-seq, but rather sensitive 261 
and precision analysis of actionable information. Furthermore, as with all targeted methods of 262 
DNA genotyping, DAb-seq cannot exclude the possibility that disease-relevant mutations occur 263 
beyond the sequenced loci or in immunophenotypic markers not included in the panels. In the case 264 
of pediatric AML, it is therefore impossible for us to conclude if the FLT3wt/KRASwt blast 265 
population is driven by epigenetic changes or unmapped genomic aberrations. Nevertheless, the 266 
sensitivity of DAb-seq, and its low genotyping drop-out, allows identification of co-occurring 267 
mutations, including heterozygous mutations that are notoriously difficult for RNA-based 268 
approaches. Moreover, DAb-seq firmly places genomic mutations in understood phenotypic 269 
contexts, which is vital for understanding how they program the disease and, ultimately, treatments 270 
select for them. 271 
 272 
In the era of personalized medicine, treatment decisions are increasingly based on DNA mutation 273 
status, such as targeted EGFR inhibitors or protein expression like HER2 or PD-L1 status. To fully 274 
leverage the capabilities of modern profiling techniques, however, information across all available 275 
domains must be integrated to optimize the therapeutic strategy for a given patient. Indeed, our 276 
findings underscore the importance of utilizing both genotype and immunophenotype to fully 277 
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characterize disease and assess efficacy of treatment. For example, CAR T-cell therapy derives 278 
specificity from protein expression, yet would fail to elicit a complete response if pathogenic 279 
genotypes were distributed across multiple phenotypic clusters. Such a scenario would require 280 
joint single-cell profiling as in DAb-seq to unravel. As multiomic single-cell technologies like 281 
DAb-seq become available, it will be feasible to use comprehensive precision analysis to 282 
deconvolute the subtlety of each patient’s cancer and thereby select the best treatment regimen. 283 
 284 
 285 
Methods 286 
 287 
Conjugation of antibodies to oligonucleotide barcodes 288 
Monoclonal antibodies were conjugated to azide-modified oligonucleotides using a copper-free 289 
click chemistry reaction as described previously39. Monoclonal antibodies were resuspended to 290 
100 μg in 100 μL PBS. See Supplementary Table 3 for a complete list of antibodies and 291 
oligonucleotide barcode sequences. Antibodies were incubated with DBCO-PEG5-NHS Ester 292 
linker (Click Chemistry Tools, cat. no. A102P) at a 4:1 molar ratio linker:antibody for 2 h at room 293 
temperature. Following incubation, the antibody-linker solution was washed once in a 50 kDa 294 
cellulose spin filter (Millipore Sigma, cat. no. UFC505024). DNA oligonucleotides with a 5’ azide 295 
modification (Integrated DNA Technologies) were reconstituted in water and added to the washed 296 
antibodies at a 2.5:1 molar ratio oligonucleotide:antibody. Following a 16 h incubation, the 297 
conjugated antibodies were washed three times in a 50 kDa filter to remove unreacted 298 
oligonucleotides. All antibody conjugates were run on a Bioanalyzer Protein 230 electrophoresis 299 
chip (Agilent Technologies, cat. no. 5067-1517) to verify successful conjugation. 300 
 301 
Cell culture and PBMC processing for control experiments 302 
The following three cell lines were used in the initial control experiment: Raji (ATCC, CCL-86), 303 
Jurkat (ATCC, TIB-152), K562 (ATCC, CCL-243). Cells were cultured under the supplier’s 304 
recommended conditions. PBMCs from a single healthy donor were sourced commercially 305 
(iXCells Biotechnologies, cat. no. 10HU-003) and stored at -80°C until use. Prior to staining, the 306 
cultured cell lines and PBMCs were washed once in PBS with 5% fetal bovine serum (FBS) 307 
(Thermo Fisher, cat. no. 10082147). For the control experiment, the three cell lines were combined 308 
at an equal ratio. 309 
 310 
Collection of patient samples 311 
Patients included in this study were treated at the University of California, San Francisco (UCSF), 312 
and peripheral blood or bone marrow was stored in the UCSF tumor bank. Samples were processed 313 
immediately after collection to isolate mononuclear cells. Sample collection was in accordance 314 
with the Declaration of Helsinki under institutional review board-approved tissue banking 315 
protocols. Written informed consent was obtained from all patients. 316 
 317 
Thawing patient samples 318 
A protocol was optimized to maximize recovery of viable cells from patient samples. Cryovials 319 
containing patient tissue (peripheral blood or bone marrow aspirate) were warmed by hand and 320 
carefully transferred dropwise to a 50 mL tube containing 40 mL of cold DMEM media (Thermo 321 
Fisher, cat. no. 11995040) with 20% FBS and 2 mM EDTA. The tube was centrifuged at 700 rpm 322 
at 4°C for 7 min with no brake. The supernatant was discarded, and the cells were resuspended in 323 
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10 mL of warmed RPMI-1640 media (Thermo Fisher, cat. no. A1049101) with 10% FBS. The 324 
solution was strained through a 70 μm cell strainer (Corning, cat. no. 431751) to remove any large 325 
cell aggregates and the tube was centrifuged a second time at 700 rpm at 4°C for 5 min with low 326 
brake. The supernatant was discarded, and the cells were resuspended in PBS with 5% FBS for 327 
staining. 328 
 329 
Cell staining using oligonucleotide-conjugated antibodies 330 
For each sample, 2 million cells were added to a 5 mL DNA LoBind tube (Eppendorf, cat. no. 331 
0030108310), centrifuged at 400 x g for 4 min, and resuspended in 180 μL PBS with 5% FBS. 332 
Cells were blocked for 10 min on ice following addition of 10 μL Fc blocking solution (BioLegend, 333 
cat. no. 422301), 4 μL of a 1% dextran sulfate solution (Research Products International, cat. no. 334 
D20020), and 4 μL of 10 mg/mL salmon sperm DNA (Invitrogen, cat. no. 15632011). Cells were 335 
stained for 30 min on ice with 0.5 μg of each conjugated antibody. After incubation, five rounds 336 
of washing were performed to remove excess antibody. For each wash, 5 mL PBS with 5% FBS 337 
was added to the tube and centrifuged at 400 x g for 4 min. Stained cells were resuspended in 338 
Mission Bio cell buffer at a final concentration of 3 M/mL prior to microfluidic encapsulation. 339 
 340 
Microfluidic single-cell DNA genotyping and antibody capture  341 
A commercial single-cell DNA genotyping platform (Mission Bio, Tapestri) was used to perform 342 
microfluidic encapsulation, lysis, and barcoding according to the manufacturer’s protocol for the 343 
acute myeloid leukemia V1 panel. Where noted, modifications were made to enable co-capture of 344 
oligonucleotide-labeled antibodies. Stained cells were loaded into a microfluidic cartridge and co-345 
encapsulated into droplets with a lysis buffer containing protease and mild detergent. Droplets 346 
were incubated in a thermal cycler for 1 h at 50°C to digest all cellular proteins, followed by 10 347 
min at 80°C to heat-inactivate the protease.  To enable antibody capture during the barcoding stage, 348 
the antibody tags were designed with 3’ complementarity to one of the RUNX1 gene forward 349 
primers and the corresponding reverse primer was omitted from the reverse primer pool. 350 
Supplementary Table 2 lists the sequences of the forward and reverse primers in the DNA panel. 351 
Lysed cells in droplets were transferred to the barcoding module of the microfluidic cartridge in 352 
addition to polymerase mix, the modified reverse primer pool, barcoded hydrogel beads, and oil 353 
for droplet generation. The droplets were placed under a UV lamp (Analytik Jena, Blak-Ray 354 
XX15L) for 8 min to cleave the single-stranded PCR primers containing unique cell barcodes from 355 
the hydrogel beads. To amplify DNA targets and capture antibody tags, droplets were thermal 356 
cycled using the following program: 95°C for 10 m; 20 cycles of (95°C for 30 s, 72°C for 10 s, 357 
61°C for 4 min, 72°C for 30 s); 72°C for 2 min; 4°C hold. 358 
 359 
Single-cell DNA amplicon and antibody tag sequencing library preparation 360 
Recovery and cleanup of single-cell libraries proceeded according to the Mission Bio V1 protocol 361 
with additional modifications for antibody library preparation. The 8 PCR tubes containing 362 
barcoded droplets were pooled as pairs and treated with Mission Bio Extraction Agent. Water was 363 
added to each tube and the aqueous fraction transferred to a new 1.5 mL DNA LoBind tube. 364 
Ampure XP beads (Beckman Coulter, cat. no. A63881) were added at a 0.75X volume ratio 365 
beads:PCR product for size selection. The supernatant from the size selection step, containing 366 
library fragments shorter than ~200 bp, was retained and used for antibody library preparation, 367 
while the remaining beads with bound DNA panel library fragments were washed twice with 80% 368 
EtOH and eluted in 30 μL water. A biotinylated capture oligonucleotide 369 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.26.967133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.967133


(/5Biosg/GGCTTGTTGTGATTCGACGA/3C6/, Integrated DNA Technologies) complementary 370 
to the 5’ end of the antibody tags was added to the retained supernatant to a final concentration of 371 
0.6 μM. The supernatant-probe solution was heated to 95°C for 5 min to denature the PCR product, 372 
then snap-cooled on ice for probe hybridization. 10 μL of streptavidin beads (Thermo Fisher, cat. 373 
no. 65001) were washed according to the manufacturer’s protocol and added to each tube of PCR 374 
product. Following a 15 min incubation at room temperature, the beads were isolated by magnetic 375 
separation, washed two times in PBS, and resuspended in 30 μL water. PCR was performed on the 376 
purified DNA panel and antibody tags to produce sequencing libraries. For each tube of purified 377 
DNA panel, 50 μL reactions were prepared containing 4 ng of barcoded product in 15 μL water, 378 
25 μL Mission Bio Library Mix, and 5 μL each of custom P5 and Nextera P7 primers (N7XX), 379 
both at 4 μM stock concentration. The reactions were thermal cycled using the following program: 380 
95°C for 3 min; 10 cycles of (98°C for 20 s, 62°C for 20 s, 72°C for 45 s); 72°C for 2 min; 4°C 381 
hold. For each tube of purified antibody tags, identical reactions were prepared, instead using 15 382 
μL bead-bound template, 5 μL antibody tag-specific P7 primer at 4 μM, and 20 cycles of 383 
amplification. See Supplementary Table 4 for a complete listing of custom library preparation 384 
primers. Following amplification, both the DNA panel and antibody tag libraries were cleaned 385 
with 0.7X Ampure XP beads and eluted in 12 μL water. 386 
 387 
Next-generation sequencing 388 
All DNA panel and antibody tag libraries were run on a Bioanalyzer High Sensitivity DNA 389 
electrophoresis chip (Agilent Technologies, cat. no. 5067-4626) to verify complete removal of 390 
primer-dimer products. Libraries were quantified by fluorometer (Qubit 3.0, Invitrogen) and 391 
sequenced on Illumina next-generation sequencing platforms with a 20% spike-in of PhiX control 392 
DNA (Illumina, cat. no. FC-110-3001). All sequencing runs used a dual-index configuration and 393 
a custom Read 1 primer (5’ GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAG 3’, 394 
Integrated DNA Technologies). The 3-cell control sample was sequenced on an Illumina MiSeq 395 
using a v2 300-cycle kit in 2x150 bp paired-end mode (Illumina, cat. no. MS-102-2002). For the 396 
patient samples, DNA panel and antibody tag libraries were sequenced separately to maximize 397 
cost-effectiveness. DNA panels were sequenced with an Illumina NovaSeq 6000 SP 300-cycle Kit 398 
(Illumina, cat. no. 20027465) in 2 x 150 bp paired-end mode. Antibody tag libraries were 399 
sequenced with an Illumina NextSeq 550 75-cycle High Output Kit (Illumina, cat. no. 20024906) 400 
in paired-end mode, using 38 cycles for Read 1 and 39 cycles for Read 2.  401 
 402 
Bioinformatic pipeline for single-cell DNA genotyping and antibody tag counting 403 
Sequencing data was processed using a custom pipeline available on GitHub (see Code 404 
Availability). For all reads, combinatorial cell barcodes were parsed from Read 1 using cutadapt 405 
(v2.4) and matched to a barcode whitelist. Barcode sequences within a Hamming distance of 1 406 
from a whitelist barcode were corrected. 407 
 408 
For the DNA genotyping libraries, reads with valid barcodes were trimmed with cutadapt to 409 
remove 5’ and 3’ adapter sequences and demultiplexed into single-cell FASTQ files using the 410 
script “demuxbyname” from the BBMap package (v.38.57). Valid cell barcodes were selected 411 
using the inflection point of the cell rank plot in addition to the requirement that 60% of DNA 412 
intervals were covered by a minimum of 8 reads. FASTQ files for valid cells were aligned to the 413 
hg19 build of the human genome reference using bowtie2 (v2.3.4.1). The single-cell alignments 414 
in BAM format were filtered (properly mapped, mapping quality > 2, primary alignment), sorted, 415 
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and indexed with samtools (v1.8). GVCF files were produced for all cells using HaplotypeCaller 416 
from the GATK suite (v.4.1.3.0). Joint genotyping was performed on all genomic intervals in 417 
parallel (excluding primer regions) using GATK GenotypeGVCFs. For longitudinal patient 418 
samples, cells from all timepoints were joint genotyped as a multi-sample cohort. Genotyped 419 
intervals from all cells were combined into a single variant call format (VCF) file, and multiallelic 420 
records were split and left-aligned using bcftools (v1.9). Variants were annotated with ClinVar 421 
metadata (v.20190805) and SnpEff functional impact predictions (v4.3t). Variant records for all 422 
cells were exported to HDF5 format using a condensed representation of the genotyping calls (0: 423 
wildtype; 1: heterozygous alternate; 2: homozygous alternate; 3: no call). 424 
 425 
The antibody tag libraries were processed identically for cell barcode demultiplexing. For reads 426 
with valid cell barcodes, 8 bp antibody barcodes and 10 bp unique molecular identifiers (UMIs) 427 
were extracted from Read 2 using cutadapt with the requirement that all UMI bases had a minimum 428 
quality score of 20. Antibody barcode sequences within a Hamming distance of 1 from known 429 
antibody barcodes were corrected. UMI sequences were grouped by cell and antibody and counted 430 
using the UMI-tools package (v.0.5.3, “adjacency” method). UMI counts of antibodies for each 431 
cell barcode were exported in tabular format for further analysis. 432 
 433 
Cell and genotype filtering 434 
Cell barcodes were additionally filtered according to antibody counts. Valid barcode groups were 435 
required to have a minimum of 100 antibody UMIs by the adjacency counting method and a 436 
maximum IgG1 count no greater than five times the median IgG1 count of the associated DAb-437 
seq experiment. For each valid cell barcode, all variants were filtered according to the quality and 438 
sequence depth reported by GATK. Genotyping calls were required to have a minimum quality of 439 
30 and total depth of 10; variant entries below these thresholds were marked as “no call” and 440 
excluded from analyses. 441 
 442 
Antibody-based embedding and clustering 443 
To correct for technical effects in the raw antibody counts and batch variability between 444 
experiments from the same patient but different time points, a linear regression over all cells from 445 
the same patient was performed. Specifically, to all entries cij of the UMI corrected antibody count 446 
matrix c, where i is the cell index and j the antibody index, one pseudocount was added and the 447 
matrix was log-transformed. A matrix of quality metrics q with cells as rows and four columns 448 
(total antibody reads, total antibody counts after UMI correction, IgG1 count and total amplicon 449 
reads) was log-transformed, column-wise normalized, and mean-centered. A singular value 450 
decomposition was performed on the transformed matrix q and the left-singular vectors retained 451 
as design matrix. Each column vector cj was then regressed with either the first three, two, or one 452 
left-singular vectors, for patient samples, PMBC or cell lines respectively as regressors. The vector 453 
of residuals uj is then the corrected antibody signal of antibody j (Extended Data Figure 1). 454 
 455 
A UMAP embedding in two dimensions of the corrected antibody signal was done in Python 2.7 456 
using the umap-learn30 (v0.3.10) and scanpy40 (v.1.4.4.post1) packages, with the minimum 457 
distance parameter set to 0.1 for the pediatric patient and 0.2 for all other samples and default 458 
parameters otherwise. To construct the underlying nearest neighbor graph from the corrected 459 
antibody count matrix, 15 or 16 nearest neighbors based on the first 16 to all principal components 460 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.26.967133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.967133


were used. The scanpy implementation of the Leiden algorithm35 with resolution set to 0.1 for the 461 
three cell line experiment and 1 otherwise was used to assign cells to phenotypic compartments. 462 
For the gradient analysis of the pediatric Patient with AML (Figure 4), only cells belonging to 463 
Leiden communities with blast phenotype were retained and the singular value decomposition of 464 
the remaining rows of u was calculated. Cells were then ordered by their value of the second left-465 
singular vector. Antibody counts and genotype fractions along the gradient were averaged with a 466 
moving window of 200 cells. Similarly, the average position of the cells in the two-dimensional 467 
UMAP embedding was estimated by smoothing x and y coordinates with a moving window of the 468 
same length. A 3rd-order spline was placed through the smoothed cell position to indicate the 469 
orientation of the gradient in the UMAP embedding. 470 
 471 
Code Availability 472 
 473 
The DAb-seq bioinformatic pipeline will be available on GitHub at 474 
https://github.com/AbateLab/DAb-seq upon final publication.  475 
 476 
Data Availability 477 
 478 
All sequencing data generated in this study will be available on the Sequence Read Archive under 479 
BioProject number PRJNA602320 upon final publication. 480 
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Figure 2: DAb-seq enables simultaneous discrimination of single cells by their immunophenotype and genotype.
a, DAb-seq workflow performed on PBMCs from a healthy donor using a panel of 23 antibodies. Leiden clustering 
and two-dimensional UMAP embedding of the antibody tag data reveals expected blood compartments. Compartments 
are annotated based on detected marker expression. b, Heatmap of the corrected log-transformed antibody counts for 
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with genomic polymorphisms in DAb-seq experiments tested on a mixture of three cell lines and a panel of six 
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(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.26.967133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.967133


U
M

A
P

 2

UMAP 1

Relapse 2
Salvage Therapy
Progression

Remission

NPM1mut

NPM1wt

Normal

Malignant

CD3

CD5

CD15

0 2 4 6 8

CD56

Markers
Enriched in

Normal Cells

Antibody Signal

CD33

CD38

Markers
Enriched in

Malignant Cells

CD34

CD117

0 2 4 6 8
Antibody Signal

a

b

c d

CD33-
CD34+

Myeloid
Blasts

CD34-
Myeloid

Non-
Myeloid

CD33

C
D

34

U
M

A
P

 2

UMAP 1

NPM1mut Cells

All Cells

Relapse 2 ProgressionSalvage Therapy Remission

Time (months)
30 1 2

%
 C

lo
ne

P
re

va
le

nc
e

100

0

Gilteritinib 
Gemtuzumab

 Azacitidine, Venetoclax  Azacitidine
 Venetoclax

Relapse 2
ntot = 7,118 nmut = 4,135

0 2 4 6 8
CD33

0

2

4

6

8

C
D

34

68.0
71.5

0.7
0.4

28.7
28.1

2.6
0.1

Salvage Therapy
ntot = 2,495 nmut = 227

0 2 4 6 8
CD33

0

2

4

6

8 6.0
58.1

0.1
0.0

9.4
38.3

84.6
3.5

Progression
ntot = 6,735 nmut = 4,858

0 2 4 6 8
CD33

0

2

4

6

8 52.9
62.9

0.5
0.5

30.6
35.1

16.0
1.5

Remission
ntot = 5,604 nmut = 2

0 2 4 6 8
CD33

0

2

4

6

8 0.1
0.0

0.0
0.0

5.1
50.0

94.8
50.0

Total no. of
cells = 21,952

NPM1W288Cfs*12

Wildtype

Prior therapy:
- Cytarabine/
Idarubicin

- Gilteritinib
- Sorafenib

Genotypic
Clonality

NPM1 WT

Myeloid
Blasts

NK

T cells

Monocytes

B cells

Dendritic

DNMT3AR882H
DNMT3A

Figure 3: AML blasts exhibit a stable genotype and phenotype through treatment.
a, DAb-seq performed on four bone marrow aspirates of a patient with AML during disease progression as indicated 
in the fishplot (black lines). The patient received multiple rounds of chemotherapy prior to the experiment 
(Supplementary Table 1). The fraction of blast cells with NPM1 W288Cfs*12 (NPM1mut) mutation for each sampled 
time point detected by DAb-seq are shown in red. b, Scatter plots with kernel densities show CD33 and CD34 signal 
for all cells (grey) and NPM1mut cells (red) for each of the sampled time points. The percentage of normal and 
mutant cells within each gate are listed. Virtually gating cells highlights a persisting CD33+ blast population which is 
eradicated with gemtuzumab, a CD33-targeted therapy. c, UMAP embedding based on the log-transformed and 
corrected antibody counts from all cells labeled by timepoint indicates that the high-dimensional immunophenotype of 
the blasts is stable over the sampled timepoints. d, The genotype of each cell at the NPM1 locus is plotted as a kernel 
density estimate using the UMAP coordinates from c. Antibody signals enriched among malignant and normal 
populations are plotted as kernel densities using all cells and labeled by genotype.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.26.967133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.967133


KRAS
FLT3

0

2

4

6

8

WT Het Hom No Call

Ab
Sign

al

Phenotype
Ab Counts

Normal
Cells

WT
Blasts

KRASmut

Blasts FLT3mut Blasts

a

b

CD15

CD11b

CD33

CD38

CD56

CD64

CD71

HLA-DR

KRASwt

FLT3wt

KRASmut

FLT3mut

Genotype
Clone Fraction

c
Normal Cells

KRASwt/FLT3wt Blasts

KRASmut Blasts

FLT3mut Blasts

Gradient along PC2

U
M

A
P

 2

UMAP 1

PC2
Myeloid Blasts

RelapseRemission

%
 C

lo
ne

P
re

va
le

nc
e

100

0

Time (months)
100 2

Diagnosis

Cytarabine
Daunorubicin

Etoposide
Bortezomib

0
200

0
1000

0
100

0
200

0
100

0
200

0
50

0
500

0

1

0

1

0 5000 10000

Cell Index along PC2

0

1

CD3
CD4
CD7

CD11b
CD13
CD14
CD15
CD16
CD19
CD33
CD34
CD38
CD45
CD56
CD64
CD71

CD117
CD123

HLA-DR

Wildtype

KRASG13D
FLT3D835Y

Cytarabine
Etoposide

Mitoxantrone
Bortezomib

Lymphoid

Monocytes

Other
Myeloid

Total no. of cells = 14,465

Genotypic
Clonality

FLT3

KRAS WT

d

Figure 4: Distinct genetic subclones form an overlapping immunophenotypic continuum in a case of pediatric AML.
a, Three timepoints sampled with DAb-seq during treatment comprise a mixture of independent clones (KRAS G13D heterozygous blasts, yellow; FLT3 
D835Y blasts, red). The wildtype compartment contains additional cells with a blast-like immunophenotype lacking detectable mutations. b, Heatmap of 
log-transformed corrected antibody counts and genotyping calls for the KRAS and FLT3 loci for each cell across all timepoints. The heatmap is grouped by 
genotype. Cells with wildtype genotype but blast-like immunophenotype are labeled separately. c, UMAP embedding of all cells from all time points based 
on log-transformed corrected antibody counts. Color indicates mutation status as in a. The blast compartment is overlaid with a spline approximating the 
gradient of the 2nd principal component of the antibody count matrix (shown in inlet figure) and indicates a gradual change in immunophenotype. d, 
Moving average expression of antibodies and fraction of mutated cells sorted by the 2nd principal component of the antibody count matrix. The overlapping 
phenotypic continuum between the genetically distinct blast clones is apparent.
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Figure 5: Decoupling of blast phenotype and genotype in response to FLT3 inhibitor therapy.
a, Fishplot showing observed fraction of cells with distinct genetic mutations for each sampled time point. The co-
occurrence of the three mutations in the single-cell data is consistent with a linear model of mutation accumulation. b, 
UMAP embedding of all cells based on measured antibody signal. The cells segregate into six distinct phenotypic 
clusters with multiple blast compartments. c, Average expression of each cell cluster for a selection of markers. d, Top 
row: Same UMAP embedding as in b given as grey outline. For each sampled time point, observed cells are plotted and 
colored according to the detected genotype. Blasts distribute among multiple phenotypic compartments in the final time 
point following FLT3 inhibitor treatment. Middle row: Kernel density plot of the CD33 antibody signal resolved by 
time point and genotype. Cells from genotypic compartments with less than 10 cells per time point are not plotted. 
Bottom row: Bar chart depicting genotypic composition of each phenotypic cluster in b resolved by time point.
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a

b

Extended Data Figure 1: Antibody count bias correction by linear regression.
a, Raw UMI counts for each antibody and cell are plotted versus total antibody count from the same cell. A clear 
correlation between the two is visible. A similar slope is visible for the isotype control (bottom row, rightmost 
column), suggesting technical bias. b, Same plots as in a after correcting for global droplet performance by linear 
regression (see Methods). Correlation with total antibody counts is reduced.
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