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The dense network of interconnected cellular signaling responses quantifiable in 

peripheral immune cells provide a wealth of actionable immunological insights. While 

high-throughput single-cell profiling techniques, including polychromatic flow and mass 

cytometry, have matured to a point that enables detailed immune profiling of patients in 

numerous clinical settings, limited cohort size together with the high dimensionality of 

data increases the possibility of false positive discoveries and model overfitting. We 

introduce a machine learning platform, the immunological Elastic-Net (iEN), which 

incorporates immunological knowledge directly into the predictive models. Importantly, 

the algorithm maintains the exploratory nature of the high-dimensional dataset, allowing 

for the inclusion of immune features with strong predictive power even if not consistent 

with prior knowledge. In three independent studies our method demonstrates improved 

predictive power for clinically-relevant outcomes from mass cytometry data generated 

from whole blood, as well as a large simulated dataset. 
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1. Introduction 

In response to an immunological challenge, immune cells act in concert to form a complex and 

dense cell-signaling network1,2. The single-cell evaluation of intracellular signaling responses is 

particularly valuable in characterizing this cellular network as it provides a functional 

assessment of an individual’s immune system. In clinical settings, a deep understanding of 

functional immune responses not only provides diagnostic opportunities, but also is often the 

first step in developing immune therapies (recent examples include successful immune 

modulation in chronic lymphocytic leukemia3, neurodegeneration4, and Ebola5).  

 

Advanced flow cytometry technologies can characterize millions of single cells from a given 

patient, which enables the identification of signaling pathways even in rare cell populations6. 

The recent advent of high-dimensional polychromatic flow cytometry7,8 and mass cytometry9,10 

technologies have vastly increased our ability to study the human immune system with 

unprecedented functional depth by increasing the number of features measured per cell. 

However, the increased dimensionality, small cohort sizes in clinical studies, and the inherently 

complex networks of internal correlations between the measured cell-types and pathways 

presents unique computational challenges11. Translating these immunological observations into 

clinically relevant mechanisms requires statistically rigorous analysis techniques. Multivariate 

modeling, in contrast to univariate analysis, can simultaneously consider all measured aspects 

of the immune system to increase predictive power. However, multivariate modeling requires 

exponentially larger cohort sizes as the number of measurements grow (a.k.a., “Curse of 

Dimensionality”12–14); This is especially true for more powerful deep-learning based models 

which provide greater predictive power but require substantially larger sample sizes. In practice, 

increasing the cohort size by several orders of magnitude to power such analyses is often a 

significant challenge in clinical settings. Moreover, multivariate analyses performed on all 

available measurements produce large complex models that are difficult to implement in 

resource constrained settings15 and often lack robustness16. 

 

Integration of prior knowledge has been broadly recognized as an effective approach for 

reducing model complexity and increasing robustness17–21. In biological sciences, examples of 

such knowledge integration include inference of biological networks22 and causal pathway 

modeling23. In modern immunological datasets, however, integration of prior knowledge has 

been impractical due to the unstructured format of prior immunological datasets and the 

complex nature of the measured features. In this work, we propose a framework for integration 

of prior immunological knowledge into the model optimization process of the Elastic Net24 (EN) 

algorithm (Fig. 1). In our immunological Elastic-Net (iEN) framework, the prior knowledge 

developed by a panel of expert immunologists on a per-feature basis is integrated into the EN 

algorithm as feature weights during coefficient optimization (similar to adjusting Bayesian priors 

- see the Methods section). The addition of knowledge-based immunological priors guides the 

sparsification process to solutions more consistent with biological knowledge while still allowing 

all measured immune features to be included in the exploratory analysis. In our experiments, 

the iEN outperformed the standard EN, as well as a broad range of standard machine learning 

algorithms. A two-layer repeated 10-fold cross-validation (CV) was used to determine model 
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consistency and establish a clear comparison of model performance between the algorithms. 

With the first CV layer the free parameters of the models are optimized (including a factoring 

controlling the impact of domain knowledge in the case of the iEN) and the second CV layer 

predicted previously unseen observations.  

 

 

In this article, we have included two real-world clinical examples as well as a large simulation 

study: The first analysis, as an example of a continuous clinical outcome, identified components 

of maternal immune adaptations in a Longitudinal Term Pregnancy (LTP) study, which included 

a blinded validation cohort. The second example was a classification analysis of a categorical 

outcome, modeling patient and control populations for Chronic Periodontitis (ChP). The third 

example used synthetic data generated to replicate mass cytometry measurements to enable 

in-depth understanding of the iEN behavior across varying cohort sizes. Additional analyses 

were run to determine the effect of prioritization on general model behavior and the stability of 

results given errors within the prior knowledge in simulated and real world data. Each of the 

three examples were chosen to determine the generalizability of the iEN algorithm, as well as its 

efficacy, in a range of real-world scenarios. 

 

  
[Fig. 1 - The immunological Elastic-Net analysis pipeline: (a) Individuals within the cohort of 

study provide blood samples, which is subsequently (b) stimulated with ligands ev vivo to 

activate various functions of the immune system. (c) This produces single cell measurements of 

the immune system, resulting in a complex network of cell types and signaling pathways 

representing both innate and adaptive immunity. (d) This dataset is then fed into the iEN 

algorithm for (e) predictive modeling of the outcome of interest. (f) Immunological prior 

knowledge for each feature, in response to each ex vivo stimulation condition is extracted by a 

panel of experts and encoded into a prior knowledge (g) tensor to guide the model optimization 

process.] 
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[Fig. 2 - Integration of immunological priors: Overview of the the LTP study. (a) A 

correlation network of intracellular signaling responses, measured in peripheral immune 

cells, colored by ex vivo stimulation status. Edges represent significant (P-value < 0.05) 

pairwise correlation after Bonferroni correction. Node sizes represent the significance of 

correlations with the response variable (gestational age of normal pregnancy). (b) Immune 

features that were congruent with domain specific knowledge as determined by a panel of 

five immunologists are refined into a tensor and then projected onto the correlation network. 

Here, immune features which have a value of 1 (full agreement among the panel) are 

colored red while all other immune features are colored black. (c) The network is colored by 

the standard deviation of scores assigned to each feature by the panel of immunologists. 

The consistency of the panel scores was generally higher amongst the features with a higher 

score, indicating more diversity in the scores assigned by the panel for exclusion of features 

and a stronger agreement regarding the top features that should be prioritized by the 

algorithm.] 
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2. Results 

2.1. Integration of Prior Immunological Knowledge into a Multivariate Model: The 

biological priors used in the iEN model were created by an independent panel of immunologists, 

such that features more consistent with known biology have higher values (Supplemental 

Tables 1 and 2). Prior knowledge tables constructed before the analysis emphasized receptor-

specific signaling responses describing canonical pathways activated downstream of ex vivo 

stimulation conditions used in the mass cytometry assays. For example, panel members broadly 

agreed on the prioritization of the phosphorylation of STAT1, STAT3 and STAT5 in all adaptive 

and innate immune cells in response to IFNα stimulation25,26; the phosphorylation of STAT1, 

STAT3, STAT5, and ERK1/2 MAPK in all adaptive and innate immune cells in response to the 

IL cocktail containing IL-2 and IL-627,28; and the phosphorylation of P38 MAPK, MAPKAPK2, 

ERK1/2, rpS6, CREB, and NF-κB and total IκB signal in all innate immune cells (except pDCs), 

and in regulatory T cells in response to LPS stimulation condition29–33. An example of all 

measured immune features and those selected by this prior knowledge tensor is presented in 

Fig. 2.  

 

These scores vary from zero to one, with one representing the immune features that are most 

consistent with prior knowledge according to the panel of experts. iEN regularized regression 

models are constructed through optimization of the objective function 𝐿(𝛽)  =  ||𝑌 − 𝑋𝜙𝛽||2 +

 𝜆[(1 − 𝛼)||𝛽||2/2 + 𝛼||𝛽||1] where 𝑋 is a matrix of 𝑝 measured immune features (columns) for 

𝑛 patients (rows) and 𝑌is a vector of the clinical outcomes of interest. The algorithm calculates 

the coefficients 𝛽 which minimize the objective function subject to the 𝐿1 = ||𝛽||1 and 𝐿2 = ||𝛽||2 

penalties. The combination of these penalty terms allow for the selection of the features 

correlated with the outcome of interest and the exclusion of redundant measurements, while 

also accounting for internally correlated measurements. Model optimization for iEN is controlled 

by three parameters, 𝜆, 𝛼, and 𝜑. These parameters can be interpreted as the amount of 

sparsity in a model (𝜆), how sparsity is balanced between the𝐿1and𝐿2 penalty terms (𝛼), and the 

amount of prior knowledge prioritization (𝜑). Prioritization of biologically consistent features is 

accomplished through 𝜙, which is a 𝑝 × 𝑝 diagonal matrix of the form 𝑑𝑖𝑎𝑔(𝜙) =

{𝜑1,1, 𝜑2,2, . . . , 𝜑𝑝,𝑝}such that 𝜑𝑖,𝑖 =  { 𝑒−𝜑(1−𝑧𝑖) where 𝑧𝑖 is the score of the 𝑖𝑡ℎ immune feature, 

and 𝜑 is the amount of prioritization attributed to the model}. This definition allows for a limited 

effect of 𝜑 on model coefficients while also increasing the impact of the features consistent with 

the prior knowledge tensor (Fig. 3). Similar to the 𝛼 and 𝜆 free parameters, prioritization of prior 
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knowledge affects the 

sparsification (Fig. 3 & 

Supplemental Fig. 1) and 

optimization of the model 

(Supplemental Fig. 2). The two-

layer 10-fold CV used for iEN 

optimization and estimation was 

implemented and parallelized 

over the parameters 𝛼, 𝜆, and 𝜑. 

Runtime analysis for this 

procedure is presented in 

Supplemental Fig. 3b. 

 
2.2. Example 1 - Analysis of 

Gestational Age during 

Longitudinal Term Pregnancy: 

The first example investigated 

the adaptations of the maternal 

immune system during 

pregnancy that can be 

incorporated into predictive 

models of gestational age38. 

During a healthy pregnancy, the 

immune system strikes a 

delicate balance to enable 

tolerance towards the fetus and 

simultaneously mount a 

response to defend against 

pathogens. Abnormal immune 

system adaptations during 

pregnancy have been linked to 

adverse maternal and neonatal 

outcomes, such as pregnancy 

loss, preterm birth, and 

preeclampsia39–41. This study 

aims to understand the 

immunological mechanisms 

behind term birth as a pivotal 

first step in understanding 

abnormal pregnancies and their 

impact on long-term outcomes 
42. In this example, a total of 54 

blood samples from 18 women 

were studied during and six 

 
[Fig. 3 - Prior scores effect on sparsification: An 
example of the impact of prior immunological knowledge 
on various features in an iEN model is visualized. As 𝜑 is 
increased across the X-axis (increased impact of prior 
knowledge), the contributions of each feature to the final 
model (y-axis) changes to select models consistent with 
immunological priors. Two examples are highlighted 
where a feature is emphasized or de-emphasized (in red 
and black, respectively) by prior knowledge. In this 
example, the STAT1 response to IFNα stimulation in 

regulatory T-cells is prioritized as STAT1 downstream of 
the IFN-α/β receptor is integral for their homeostasis 
and function34. Conversely, the prpS6 response to 
stimulation by IL-2 and IL-6 in ncMCs is progressively 
deprioritized as this signaling response is inconsistent 
with prior understanding of these signal transduction 
pathways in this cell-type; IL-2 primarily drives T-cell 
differentiation through the JAK/STAT pathway35. Similarly, 
IL-6 primarily activates the JAK/STAT pathway and IL-6 
receptors are expressed only in a subset of immune 
cells36,37. This confirms that integration of the priors not 
only can modify the algorithm’s behavior, but also that the 
intensity of this impact can be controlled through the 𝜑 
free parameter.] 
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weeks after pregnancy. Three antepartum blood draws were collected at different gestational 

ages, with gestation being measured via ultrasound at time of sample collection. The resulting 

54 whole blood profiles of the immune system were manually gated (Supplemental Fig. 4) into 

24 cell types to measure endogenous activity of 10 signaling markers, as well as activity of 

these 10 markers in response to ex vivo stimulations with three different ligands, providing 960 

immune features for analysis (Fig. 2a). Prediction of gestational age in this dataset was a 

significant challenge as evident by t-Distributed Stochastic Neighbor Embedding (t-SNE)43 

analysis which displayed no easily identifiable patterns in a two dimensional projection 

(Supplemental Fig. 5a). Predictive models were built using iEN and model parameters were 

optimized to minimize the residual sum of squares of the predicted versus actual gestational 

age. iEN produced models of immune features that more accurately predicted gestational age 

than the similar EN analysis, and other contemporary machine learning methods, which were 

agnostic to the immunologic priors (Fig. 4a, 4e & Supplemental Fig. 5b, and 6a). iEN analyses 

of postpartum samples demonstrated that the immune system returns to a state similar to early 

pregnancy by six weeks postpartum (Supplemental Fig. 5c). An additional cohort of ten women 

were prospectively studied and analyzed as a blinded validation set. Importantly, the blinded 

validation cohort also demonstrated that iEN models produced substantially more accurate 

results than the EN algorithm (Fig. 4b, 4f & Supplemental Fig. 5e, and 5f). Stepwise reduction of 

iEN and EN model coefficients revealed superior predictions in the validation cohort by the iEN 

compared to the EN algorithm for models of equal size (Supplemental Fig. 5d). 

 

2.3. Example 2 - Analysis of Chronic Periodontitis: The second example investigated the 

classification of patients with ChP, a chronic inflammatory disease of the oral cavity. ChP is 

associated with severe systemic illnesses (such as heart disease, various malignancies, and 

preterm labor)44,45 and, in its most severe form, affects approximately 11 percent of the global 

population46. A better understanding of the immunological manifestations of ChP is a critical 

first-step for the development of immune therapies that may alter the course of systemic 

diseases associated with ChP. This dataset was generated from 28 participants, 14 diagnosed 

with ChP and 14 healthy controls. Blood samples from the study participants were analyzed by 

mass cytometry and manually gated (Supplemental Fig. 4) for 18 cell types to measure 11 

signaling markers in response to ex vivo stimulation with 4 different ligands; this provided a total 

of 792 immune features for analysis (Supplemental Fig. 7a). Application of t-SNE demonstrated 

that the two study populations (patients and controls) were not easily separable (Supplemental 

Fig. 7b), thus motivating the use of supervised predictive modeling. For this example, iEN and 

EN algorithms were used to fit binomial models for classification of patients and controls. All free 

parameters were optimized for the Area Under the Receiver Operator Curve (AUROC)47. 

Analysis results indicated that iEN outperformed the EN (Fig. 4c, 4g & Supplemental Fig. 7c) as 

well as other machine learning methods (Supplemental Fig. 6c). 

 

2.4. Example 3 - Simulation Study: The third example, a simulation study, demonstrated the 

particular advantages of prior knowledge in studies with limited cohort sizes and numerous 

features. Datasets were generated with 700 features per simulated patient while the number of 

patients varied from 100 to 1000 in increments of 100. Data were generated with features that 

are random and uniform. A limited number of features were generated to have various degrees 
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of correlation with the response variable. Specifically, 50 highly predictive features, 200 

moderately predictive features, and 450 randomly distributed features were assigned a 

corresponding biological prior. For a more detailed description of the data generating process 

see the simulated data section in Methods. Repeated 10-fold analysis of the simulated data with 

increasing population sizes displayed a convergent trend between the iEN and EN models as 𝑛 

increased (Fig. 4d, 4h, & Supplemental Fig. 3a). These results indicated that integration of prior 

knowledge is of particular importance in clinical systems immunology settings where the cohort 

size is limited yet a relatively large number of immunological features are measured. 

 

2.5. Sensitivity Analysis of the Prior Knowledge Tensor: The iEN pipeline depends on the 

prior knowledge tensor. We therefore investigated the iEN’s robustness by introducing errors 

into the prior knowledge tensor of each of the three examples. Introduction of moderate to 

substantial error into the prior tensor resulted in a consistent reduction in the predictive benefit 

 
[Fig. 4 - Incorporation of prior knowledge improves predictive power in two clinical 

studies and a simulated experiment: (a) Boxplot of Pearson correlation P-values 

calculated on out-of-sample predictions from repeated 10-fold cross-validation of EN (black) 

and iEN (red) models for the LTP dataset. (b) Validation of the LTP model on an 

independent validation cohort. These predictions are compared against the true response 

variable via -log10 Pearson correlation P-value. (c) Boxplots of Wilcoxon Rank-Sum test P-

values similarly calculated on out-of-sample predictions for the ChP dataset. Comparison of 

EN and iEN model performance for the respective datasets demonstrated improved 

predictive power for the iEN exhibited by -log10 P-values. (d) Simulated study with varying 

cohort sizes of simulated “patients” with 700 features demonstrated a larger gain (measured 

by -log10 Pearson’s test P-value) for integration of prior immunological knowledge in 

datasets with a relatively small cohort size and a large number of features. Median 

predicted value over multiple cohort sizes is displayed here with the interquartile range 

shaded in gray. To demonstrate the effect size of these models, RMSE values are 

visualized in panels (e), (f), (g), and (h), respectively.] 
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for the iEN over the traditional EN model. Error was introduced stochastically and progressed 

towards uniform random noise, with 11 total incremental steps and 100 tensors generated per 

increment. As the prior tensor approaches a uniform random distribution (the highest amount of 

error in the prior knowledge matrix) the iEN and EN performances converged. These results 

remain consistent across the LTP, LTP validation, ChP, and simulation studies (Fig. 5). This 

robustness against induced error demonstrated across multiple scenarios displayed the 

practicality of the iEN, given that some amount of error in the prior knowledge is to be expected 

in real world applications. Such robustness allows for moderate amounts of error and 

disagreement between experts when quantifying the biological consistency of features. 

 

 

2.6. Empirical Evaluation: In all analyses, the integration of expert knowledge improved the 

prediction of clinical outcomes in comparison against EN with no prior knowledge (Fig. 4) as 

well as standard machine learning algorithms including EN 24, LASSO48, RF49, SVM50,51, and 

KNN52 (Supplemental Fig. 6). Further comparison of iEN and EN models by features selected 

demonstrated substantial overlap between the models; however, model comparison by 

coefficient weights displayed a substantial difference in predictive importance of the features 

selected (Supplemental Fig. 8). Hyper parameter selection frequency across all models 

generated displayed a consistent prioritization of prior knowledge via 𝜑 (Supplemental Fig. 9). 

The integration of prior knowledge allows the iEN to determine the predictive benefit of 

prioritizing canonical signaling pathways in a data driven manner (Supplemental Fig. 2). 

Importantly, this enables iEN to function without excluding any of the features from 

consideration even when scored as inconsistent with prior knowledge by the human experts. 

This behaviour allows for the iEN to contain the EN as an edge case when the prior knowledge 

is not beneficial. Similarly when prioritization is most beneficial the resulting model will contain 

only features scored as 1 in the prior tensor (those with complete consensus among the panel 

of experts).  

 
 
[Fig. 5 - iEN is robust to errors in the prior knowledge tensor: Various levels of noise 
were artificially added to the prior knowledge values, as indicated by the Root Mean Squared 
Error of the true prior values vs. the simulated ones (x-axis). As the value on the x-axis 
increases, the amount of noise in the simulated prior increases until all priors are sampled 
from a random uniform distribution (vertical dashed line). Reassuringly, at this point iEN’s 
performance is close to EN’s performance (with no priors) as indicated by a horizontal 
dashed line. Importantly, iEN continues to outperform EN (indicated by the horizontal dashed 
line) for even high amounts of error in the priors.]  
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3. Discussion 

A structured collaboration between clinicians, biologists, and computer scientists can lead to 

machine learning algorithms in life sciences achieving stronger results 53. In this article, we 

proposed a collaborative framework that enables integration of prior knowledge of cell signaling 

pathways in a machine learning algorithm to increase the predictive power and robustness of 

the resulting models in clinical datasets. The iEN improved accuracy of clinical predictions in 

multiple scenarios, even when moderate amounts of noise were artificially added to the 

extracted prior knowledge data. These benefits are especially evident in settings with small 

cohort size and a large number of measured features, as is common in modern systems-level 

clinical studies. The data-driven approach implemented allows for prior knowledge only to be 

incorporated when a predictive benefit is observed. Functionally, this reduces the regularization 

of the features consistent with prior knowledge, resulting in the development of sparse models 

which prioritize a limited number of features in line with prior biological studies. This not only 

increases predictive power, but also facilitates biological translation of the results as well as 

development of robust and simplified assays for resource-limited settings. From a bayesian 

perspective this could be viewed as a shift in the prior distributions over β towards estimates 

that are more congruent with the true underlying distributions; a more explicit connection to the 

bayesian setting can be seen in Methods section. 

 

This study has several limitations, which guide our future research directions. Firstly, definition 

of the prior knowledge tensor by individual human experts has the potential to induce a source 

of bias into the analysis. While our analysis suggested that the method is robust to potential 

errors in the prior knowledge tensor, a more accurate and consistent definition of prior 

knowledge would improve this pipeline. In addition, the development of the prior knowledge is 

labor intensive and requires careful and objective analysis of a broad range of studies. We 

believe stronger results can be achieved using text-mining strategies for direct extraction of prior 

knowledge from the literature (e.g. see immuneXpresso54). Second, this work relies on manual 

analysis for identification of all cell types (Supplemental Fig. 2) and mapping them to the prior 

knowledge. This process is labor intensive, error-prone, and may not identify all cell populations 

of interest55. In our future studies, we will combine state-of-the-art cell population identification 

algorithms56–60 with our prior knowledge integrated to dynamically match clusters to the prior 

knowledge tensors for a more unbiased analysis. Third, this work only investigated incorporation 

of prior knowledge into the EN algorithm. However other methods can similarly be extended to 

incorporate expert knowledge (e.g., see Krupka et al17. for a relevant extension of support 

vector machines). In our future work, we will particularly focus on incorporation of prior 

knowledge into deep learning methods. While these algorithms can model complex 

relationships that are valuable in high-throughput characterization of the immune system, the 

number of patients that are required for training a large neural network is often beyond the 

reach of typical immunological studies. We believe incorporation of prior immunological 

knowledge can reduce the number of patients required for implementation of deep learning 

approaches in clinical studies61. Additional research directions include: application of the iEN to 

domains outside of clinical immunology such as proteomics, metabolomics, and transcriptomics; 
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and application of domain-knowledge integrated models to multi-omic studies, which would 

provide a systems-level perspective on human biology62. 
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5. Methods 

5.1 Integration of Immunological Priors (extened): The immunological Elastic-Net framework 

extends the Elastic-Net regularized regression method by integrating prior biological knowledge 

of cellular signal transduction into the coefficient optimization process. Consider an analysis with 

mass cytometry generated features 𝑋, composed of observations (rows) 𝑋𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝)𝑇; for 

𝑖 = 1 ,2 , . . . , 𝑛, each observation consists of 𝑝 measurements, where 𝑝 ∈  𝑁 and 𝑝 is much 

greater than 𝑛. Corresponding to each observation is a value of interest 𝑦𝑖. Values of interest 

then constitute the response vector 𝑌 = (𝑦1, . . . , 𝑦𝑛)𝑇. Response vectors are dataset specific 

(e.g., a vector of gestational age during pregnancy in the LTP example). A multivariate 

regression model can be constructed by computing the coefficients 𝛽 =  (𝛽1, 𝛽2, . . . , 𝛽𝑝)𝑇 that 

optimize the objective function, 𝐿(𝛽) = ||𝑌 − 𝑋𝛽||2. The EN method expands this definition with 

a linear combination of two regularization terms, the 𝐿1 = ||𝛽||1 and 𝐿2 = ||𝛽||2 penalties, from 

Least Absolute Shrinkage and Selection Operator (LASSO) and Ridge regression 

respectively63. The 𝐿1 penalization reduces model complexity and increases sparsity while 

simultaneously selecting more descriptive features. However, it can select, at most, the number 

of observations when working in a high dimensional space (specifically high dimensional small 

observation size), and cannot select multiple, highly correlated features. 𝐿2 penalization reduces 

coefficient size and encourages the inclusion of highly correlated features but cannot remove 

features completely. Incorporating both 𝐿1 and 𝐿2 regularization terms compensates for these 

issues. Penalization is applied to coefficients during model fitting and is determined by a 

penalization factor 𝜆, as well as the ratio of penalization applied to each penalty term, 𝛼. The 

optimal ratio (𝛼) and degree (𝜆) of penalization can be determined through optimization of the 

EN objective function: 
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𝐿(𝛽)  =  ||𝑌 − 𝑋𝛽||2 +  𝜆[(1 − 𝛼)||𝛽||2/2 + 𝛼||𝛽||1]  

 

EN models are agnostic to any information not included in 𝑋. Whereas the iEN incorporates a 

third parameter which encodes prior immunological knowledge: 𝜙, a 𝑝 × 𝑝 diagonal matrix of the 

form diag(𝜙)= {𝜑1,1, 𝜑2,2, . . . , 𝜑𝑝,𝑝} where 𝜑𝑖,𝑗 = 0  ∀𝑖≠𝑗.The 𝜙 factor guides models to be more 

consistent with the current understanding of signal transduction response. Biological priors 

compiled a priori by an independent panel of immunologists is used to prioritize certain signal 

transduction responses via scaling features of 𝑋. The adapted model takes the form: 

 

𝐿(𝛽)  =  ||𝑌 − 𝑋𝜙𝛽||2 +  𝜆[(1 − 𝛼)||𝛽||2/2 + 𝛼||𝛽||1]  

 

The biological priors represented as a tensor of domain specific knowledge manually 

constructed by a panel of experts. These biological priors are represented as a tensor of scores 

where features more consistent with known biology have higher values. These priors are a 

conservative indication of response from canonical signaling pathways that the field has a high 

level of confidence in observing. They are constructed as a 𝑚 by 𝑙 by 𝑜 tensor, 𝑍 ∈  [0,1]𝑚×𝑙×𝑜, 

where the associated mass cytometry assay consists of 𝑚 cell types, 𝑙 stimulations, and 𝑜 

measured responses. An element in this tensor would correspond to a particular celltype and 

whether it will elicit a specific signaling response in response to each ex vivo stimulation. To 

make the connection between the prior tensor 𝑍 and the iEN parameter 𝜙 clear, consider the 

function 𝐹( 𝑍) → 𝑑𝑖𝑎𝑔(𝜙) ∈ 𝑅𝑃
>0 that is to say, 𝑑𝑖𝑎𝑔(𝜙) is a vector of dimension 𝑚 ⋅ 𝑙 ⋅ 𝑜 =  𝑝 

that exists within the 𝑝-dimensional positive real numbers. That is, 𝑍 is transformed to a 𝑝-

dimensional vector, where 𝑑𝑖𝑎𝑔(𝜙) = {𝜑1,1, 𝜑2,2, . . . , 𝜑𝑝,𝑝}such that 𝜑𝑖,𝑖 =  { 𝑒−𝜑(1−𝑧𝑖)where 𝑧𝑖 is 

the score of the 𝑖𝑡ℎ immune feature, and 𝜑 is the amount of prioritization applied}. This 

formulation of 𝜑𝑖,𝑖  ∊  𝑑𝑖𝑎𝑔(𝜙) as 𝑒−𝜑(1−𝑧𝑖)affects features with lower prior value more so than 

features with larger values. This definition allows for increased model stability than a formulation 

with 𝜑𝑖,𝑖  ∊  𝑑𝑖𝑎𝑔(𝜙) as 𝑒𝜑𝑧𝑖  for large 𝜑′𝑠 (Supplemental Fig. 1a/b). 

 

5.2 Bayesian Interpretation: The Elastic-Net has a Bayesian representation64 with priors over 

the estimates of 𝛽. This can help define the role of immunological priors in increasing predictive 

power. The unnormalized version of this prior is reported as follows: 

 

𝑝(𝛽|𝜆, 𝛼) ∝ 𝑒𝑥𝑝[−𝜆{(1 − 𝛼)||𝛽||2 + 𝛼|𝛽|1}] 

 

In the following, we show that the immunological Elastic-Net has a similar interpretation in which 

the prior distributions over 𝛽 are altered according to the prioritization of biological knowledge, 

i.e. the value of 𝜑 and the shape of 𝑍. That is to say, our definition of the iEN can be 

represented as an alteration of the prior distribution over 𝛽 given 𝜙. The objective function of the 

iEN is as follows, �̂�  = 𝑎𝑟𝑔𝑚𝑖𝑛( ||𝑌 − 𝑋𝜙𝛽||2 +  𝜆[(1 − 𝛼)||𝛽||2/2 + 𝛼||𝛽||1]). Now let �̅� = 𝜙𝛽, 

substitution for 𝛽 results in the following optimization problem: 

 

�̂�  = 𝑎𝑟𝑔𝑚𝑖𝑛( ||𝑌 − 𝑋�̅�||2 +  𝜆[(1 − 𝛼)||𝜙−1�̅�||2/2 + 𝛼||𝜙−1�̅�||1]) 
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From this formulation, the adjusted Bayesian prior for the iEN can be directly derived as follows: 

 

𝑝(𝛽|𝜆, 𝛼, 𝜙) ∝ 𝑒𝑥𝑝[−𝜆{(1 − 𝛼)||𝜙−1�̅�||2 + 𝛼||𝜙−1�̅�||1}] 

 

To further illustrate the connection between iEN and the regular EN and their Bayesian 

interpretations, we show that EN is a special case of iEN. For this, let us define the following two 

sets: 

 𝑆1 = {𝑃 | 𝑤ℎ𝑒𝑟𝑒 𝑧𝑝  =  1} 

 𝑆2  = {𝑃 | 𝑤ℎ𝑒𝑟𝑒 𝑧𝑝  < 1} 

 

These sets indicate which estimates of �̂� are affected by 𝜑 and which remain unaffected as 

previously defined. We can then subset the 𝑍 vector accordingly with 𝑍𝑆1
 being all biological 

priors of value one and 𝑍𝑆2
 being all biological priors of value less than one. Therefore, we can 

separate the 𝐿1and 𝐿2norms according to these sets reformulating the optimization problem as 

follows: 

 

�̂�  = 𝑎𝑟𝑔𝑚𝑖𝑛( ||𝑌 − 𝑋𝛽||2 +  𝜆[(1 − 𝛼) (𝑒−𝜑(1−𝑧𝑠1))−2 ||�̅�𝑆1
||2/2 + 𝛼(𝑒−𝜑(1−𝑧𝑠1))−1 ||�̅�𝑆1

||1 +  (1

− 𝛼)||�̅�𝑆2
||2/2 + 𝛼||�̅�𝑆2

||1]) 

 

Here 𝛽𝑆1
and 𝛽𝑆2

represent the betas which are affected by the 𝜑 value. This allows for us to 

replace 𝜙 with 𝑒−𝜑(1−𝑧) respective of 𝑆1and 𝑆2, which demonstrates how prioritization affects the 

estimation of 𝛽. Similar separation in the prior distribution also illustrates how priors over 𝛽 are 

affected in the same manner.  

 

𝑝(𝛽|𝜆, 𝛼, 𝜙) ∝ 𝑒𝑥𝑝[−𝜆{(1 − 𝛼)(𝑒−𝜑(1−𝑧𝑠1
))−2 ||�̅�𝑆1

||2/2 + 𝛼 (𝑒−𝜑(1−𝑧𝑠1
))−1 ||�̅�𝑆1

||1 +  (1

− 𝛼)||�̅�𝑆2
||2/2 + 𝛼||�̅�𝑆2

||1}] 

 

Since 𝜑 alters the prior distribution over 𝛽, this can be used to improve estimates of the true 𝛽in 

the iEN’s Bayesian setting, as it does in the classic formulation. This also allows for the EN 

estimates to be included as a special case of the iEN when 𝜑 = 0. 

 

5.3 Parameter Optimization: iEN parameters were optimized over a grid of possible parameter 

values for each parameter (𝜑 , 𝛼, 𝜆). The 𝜑 search grid was generated from a logarithmic 

sequence with values between zero and 100, which allows for the EN as a special case (𝜑= 0). 

Similarly, 𝛼 was uniformly generated from values between zero and one. Generation of 𝜆 was 

done so that a large range of model sizes were tested during the 10-fold CV. Specifically, 𝜆 

values were generated during the inner CV loop to avoid any possible information leak. Metrics 

used to justify parameter selection were residual sum of squares for continuous response and 

area under the receiver operating characteristic curve, as appropriate for each example 

presented. 
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5.4 Simulated Data: All simulated data were generated using the ‘simglm’ R package65. 450 

features were generated with a standard deviation of 15. However, 200 of these features had a 

mean value sampled from 𝒩(𝒩(0, 102), 152) to simulate features moderately associated with 

prior knowledge and 50 were sampled from 𝒩(𝒩(0, 102), 152) , representing features highly 

associated with prior knowledge. The response variable is then generated as a linear 

combination of these 250 features. The additional 450 features represented features not 

associated with prior knowledge and were generated randomly using a normal distribution. 

 

5.5 LTP Cohort: Twenty-one pregnant women were included in the LTP study, all of whom 

received routine antepartum care at Lucile Packard Children’s Hospital. Three patients were 

excluded from the study due to premature delivery (<37 weeks of gestation). Analysis was 

performed on the remaining eighteen women who delivered at term (≥37 weeks of gestation). 

These eighteen participants were age 31.9 (years) ± 3.4 (standard deviation) old. An 

independent cohort of 10 pregnant women who delivered at term were later enrolled as a 

validation cohort.  

 

5.6 ChP Cohort: A total of thirty patients were enrolled in the study of ChP, 15 healthy controls 

and 15 patients with ChP receiving treatment at Bell Dental Center (San Leandro, CA) and 

Stanford University School of Medicine (Stanford, CA). Two participants were excluded from the 

analysis, one patient due to autoimmune disease and one control due to onset of hand infection 

during the study. The final cohort consisted of 14 patients (age 42.2 ± 10.5) and 14 controls 

(age 36.5 ± 8.07) samples, each of which were split by gender: eight female, six male. 

 

5.7 Whole Blood Sampling: Whole blood samples were collected in 10mL heparin-containing 

tubes and processed within one hour of collection. Samples for the LTP cohort were stimulated 

with either 1ug/mL of Lipopolysaccharide (LPS), 100ng/mL of Interferon-𝛼 (IFN𝛼), or a cocktail 

of 100ng/mL of Interleukins (IL-2, IL-6), or they were left unstimulated to measure endogenous 

cellular activity. Samples for the ChP cohort were stimulated with LPS, IFN𝛼, TNF𝛼, or a 

cocktail of IL-2, IL-4, IL-6 and GM-CSF or left unstimulated. Samples were fixed using a 

stabilization buffer (SmartTube Inc.) according to manufacturer instructions and stored at -80°C 

until further processing. 

 
5.8 Mass Cytometry Analysis: Post-thaw, fixed samples were added to an erythrocyte lysis 

buffer (SmartTube Inc) and underwent two rounds of erythrocyte lysis. Cells were then 

barcoded as previously described66. In summary, twenty-well barcode plates were prepared with 

a combination of 2 Pd isotopes out of a pool of six (102Pd, 104Pd, 105Pd, 106Pd, 108Pd, 110Pd) and 

added to the cells in 0.02% saponin/PBS. Samples were pooled and stained with metal-

conjugated antibodies collectively to minimize experimental variation. The panel for the different 

cohorts are listed in Supplementary tables 3, and 4. Intracellular staining was performed in 

methanol-permeabilized cells. Cells were incubated overnight at 4°C with an iridium-containing 

intercalator (Fluidigm). Prior to mass cytometry analysis, cells were filtered through a 35μm 

membrane and resuspended in a solution of normalization beads (Fluidigm).  
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Barcoded and stained cells were analysed on a Helios Mass Cytometer (Fluidigm) at an event 

rate of 500 to 1000 cells per second. The data was normalized using Normalizer v0.1 MATLAB 

Compiler Runtime67 and debarcoded with a single-cell MATLAB debarcoding tool66. Gating was 

performed using Cytobank (cytobank.org). Gating strategies for the different cohorts are shown 

in Supplementary Fig. 4. 
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