Abstract
Motivation Quantitative structure-activity relationship (QSAR) analysis is commonly used in drug discovery. Collaborations among pharmaceutical institutions can lead to a better performance in QSAR prediction, however, intellectual property and related financial interests remain substantially hindering inter-institutional collaborations in QSAR modeling for drug discovery.
Results For the first time, we verified the feasibility of applying the horizontal federated learning (HFL), which is a recently developed collaborative and privacy-preserving learning framework to perform QSAR analysis. A prototype platform of federated-learning-based QSAR modeling for collaborative drug discovery, i.e, FL-QSAR, is presented accordingly. We first compared the HFL framework with a classic privacy-preserving computation framework, i.e., secure multiparty computation (MPC) to indicate its difference from various perspective. Then we compared FL-QSAR with the public collaboration in terms of QSAR modeling. Our extensive experiments demonstrated that (1) collaboration by FL-QSAR outperforms a single client using only its private data, and (2) collaboration by FL-QSAR achieves almost the same performance as that of collaboration via cleartext learning algorithms using all shared information. Taking together, our results indicate that FL-QSAR under the HFL framework provides an efficient solution to break the barriers between pharmaceutical institutions in QSAR modeling, therefore promote the development of collaborative and privacy-preserving drug discovery with extendable ability to other privacy-related biomedical areas.
Availability and implementation The source codes of the federated learning simulation and FL-QSAR are available on the GitHub: https://github.com/bm2-lab/FL-QSAR
Footnotes
↵* Contact: qyang{at}cse.ust.hk; qiliu{at}tongji.edu.cn