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Abstract
Relative transcript abundance has proven to be a valuable tool for inferring the phenotype
of biological systems from genetic material. Several methods for the analysis of differential
transcript abundance have been developed, and some of the most popular are based on
negative binomial models. Although most genes are fitted reasonably well by the negative
binomial distribution, the presence of outlier observations that do not fit such models can
lead to artifactual identification of significant changes in transcription. Identifying those
transcripts for the correct interpretation of results is extremely important. A robust and
automated tool for detecting sample/transcript pairs that do not fit a negative binomial
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regression model is currently lacking. Here we propose ppcseq, a robust statistical framework
that models hierarchically sample- and gene-wise features such as sequencing depth bias,
the association between mean transcript abundance and its over-dispersion, and provides a
theoretical transcript abundance distribution, on which the observed transcript abundance
can be tested for outliers. We show using a publicly available data set where nearly 10% of
differentially abundant transcripts had fold change inflated by the presence of outliers. This
method has broad utility in filtering artifactual results of differential transcript abundance
analyses based on a negative binomial framework.

Introduction
The analysis of the relative abundance of transcript copies is valuable for inferring the phe-
notype of biological systems. The sequencing of RNA molecules involves sampling from the
population of transcripts present in solution at the time of RNA extraction; this number
reflects the relative proportion/concentration of each transcript. Some of the most pop-
ular software for differential transcript abundance analysis (e.g. edgeR (Robinson et al.,
2010), DeSeq2 (Love et al., 2014)) model the transcript abundance using a negative bino-
mial numerical process. The negative binomial distribution has independent parameters for
mean and over-dispersion, and can be thought as an extension of the Poisson distribution,
where the mean parameter is generated from a gamma distribution. The negative binomial
distribution can be interpreted as a model of two types of variability: (i) the biological vari-
ability in mRNA synthesis/degradation rates between replicates (the gamma distribution)
and (ii) the intrinsic variability in mRNA counts given constant synthesis/degradation rate
and the inherently imperfect efficiency of mRNA extraction and sequencing (the Poisson
distribution). Previous studies demonstrated that transcript abundance across samples is
characterised by a quadratic relationship between its mean and its variance (Van den Berge
et al., 2019), on which several differential transcript abundance algorithms are based, such
as DeSeq2 (Love et al., 2014) and edgeR (Robinson et al., 2010). Although most genes are
reasonably well-fitted by the negative binomial distribution, the underlying gamma distri-
bution has relatively thin tails and thus is not robust against the presence of unmodelled
large-scale biological variability. Larger than expected variability results in some samples
(outliers) having disproportionate influence on the final inference, increasing both false pos-
itives and false negatives. The attention that several popular methods (Love et al., 2014;
Liu et al., 2015) give to outlier detection provide evidence for the importance of the matter.

Although the analysis of errors between the inferred theoretical distribution and the
data (i.e., residuals) is possible, this relies on a sufficiently large sample size and would
require care in order to consider the information about overall uncertainty of the inferred
model. A robust and automated tool for detecting sample/transcript pairs that are outside a
negative binomial regression model is currently missing. Bayesian inference provides a robust
methodology to simulate the theoretical data distribution according to the inferred model,
which includes the integrated uncertainty of the hierarchical parameters (i.e. a posterior
predictive check), and therefore is suitable for low-data regimes. The observed data can be
mapped against the theoretical data distribution and posterior quantiles of the observed data
points can be computed. If those quantiles are close to extremes (0 or 1), it indicates there
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is a possible mismatch between the model and the data. Furthermore, with the Bayesian
inference framework it is possible re-fit the model omitting the suspected outlier data-points,
resulting in a more conservative test of the negative binomial assumption. Here we describe
ppcseq, an algorithm that is able to (i) model RNA sequencing transcript abundance using
hierarchical negative binomial regression; (ii) produce theoretical data distribution with and
without possible outliers; and (iii) provide evidence in terms of probability that specific
data points do not follow the negative binomial assumption. On publicly available data we
identified 9.5% of transcripts with fold change inflated by the presence of outliers, including
the second most highly ranked transcript.

Methods

Iterative outlier detection

In order to identify the transcripts that partially violate the negative binomial assumption,
three types of uncertainty are modelled jointly from the data (Fig. 1): (i) the mean abun-
dance and overdispersion of transcripts, and their associations; (ii) the effect of sequencing
depth; and (iii) the association between transcript abundance and the factors of interest.
The inference workflow consists of two iterative steps (Fig. 2); potential outliers are iden-
tified in a first discovery step, and a probability estimation is given on a model excluding
those data points in a test step. The motivation is twofold. First, after some outliers have
been identified, the model needs to be refit as those outliers might have skewed the initial
estimates noticeably. In theory this process would need to be iterated until convergence,
but in practice we found using two iterations was satisfactory. Second, the stringency of
the check for outliers can be set separately for each step. That is, we can identify potential
outliers with a loose criteria, refit the model and then check whether those points remain
outliers against the refitted, more robust model but with more stringent criteria, letting us
improve both sensitivity and specificity of the method.
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Figure 1. Conceptual map of the modeling of the uncertainty for each transcript/sample
pair. A - From the left are represented: (i) the uncertainty of mean and overdispersion of
each transcript, and their relationship, the red dots represent the point estimates, while the
ellipses represent the two-dimensional credible intervals 40% (blue) and 95% (grey) ; (ii)
the uncertainty of the sample-wise effect of sequencing depth, where the overlapping curves
represent the possible densities (95% credible interval) of whole transcriptome and the red
curve is the mean inference; and (iii) the uncertainty of the association between transcript
abundance and the covariates in the generalised linear model, where the overlapping slopes
represent the possible associations (95% credible interval) between transcript abundance
and factor of interest. B - The theoretical data distribution for a transcript/sample pair,
resulting from the integrated uncertainty.

In the first discovery step, the model is fitted to a list of previously identified differentially
abundant transcripts. New data is generated from the fitted model, providing the theoretical
range of values for each sample-transcript pair. All observed read counts that are outside the
95% posterior credible interval are quarantined as possible outliers. In the second test step,
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the model is fitted again excluding the deleterious outlier data points that would skew the
estimated difference between conditions to be larger (i.e. only the combinations (i) higher
than the upper quantile of the credible interval when the condition is estimated to have
increased expression; or (ii) smaller than the lower quantile when the condition is estimated
to have decreased expression) using a truncated negative binomial distribution at 2.5% and
97.5% quantiles (Fig. S1). New data are generated from the second fitted model, and all the
observed read counts (including possible deleterious outliers quarantined from the inference)
are tested against these, using a credible interval that matches the user-selected false positive
rate, assuming the remaining data is generated by a pure negative binomial process. Given
the desired false positive rate (1% by default), the interval width is taken as fpr

2 noutliers
where

the factor of two, compensates for unidirectionality of the tests (just for deleterious outliers).

Figure 2. Flow chart of the two-step approach. In the first step, transcript with potential
outliers based on the user linear model are identified with the 5% false positive rate. In the
second step, a 95% credible interval truncated negative binomial distribution is used, and
the transcripts including outliers are identified with a user selected false positive rate.

Probabilistic framework

A Bayesian inference probabilistic network is used to model the raw read counts, based
on a negative binomial regression. The differences in sequencing depth across samples are
modelled with a sample-wise exposure rate term, that multiplies the transcripts expected
abundance. The expected abundance across genes is modelled as generated by a gamma
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distribution. The over-dispersion is modelled in a gene-wise manner. The inverse association
between log transcript abundance and its negative log over-dispersion is modelled as a linear
function with a negative slope.
This probabilistic model can be represented by a joint probability density formula (Eq. 1)
and a series of sampling statements (Eq. 2-7; Fig. 3). The term X represents the design
matrix, α represents the covariate factors, ε represents the exposure rate (sequencing depth
effect), σ represents the over-dispersion, µ represents the mean of the gamma prior for
expected transcript abundances, represents variance of such prior, , and Φ represent the
intercept, slope and standard deviation of the negative log variance-log mean association.

The exposure rates are inferred using a set of anchor genes selected from the bottom rank
of differentially abundant gene transcripts provided by the user (n = 500 by default). The
underlying assumption is that those genes are not associated with the factor of interest.
Internally, the model is parameterised in logarithmic space for higher numerical stability. For
the direct calculation of the credible intervals from the generated posterior distribution for
the second inference step, the number of generated data drawn D from the model is chosen
as sufficient to produce on average N draws (N = 10 by default) outside the confidence
interval of choice. The number of total draws needed is calculated as follows.

D = N
p

;

where p = 0.05 , for the inference discovery step, p = 2 ∗ fpr
samples

, for the inference testing
step, N is the desired number of draws outside the credible interval, and fpf is the desired
false positive rate. For example, if we desire 50 draws outside the credible interval, a false
positive rate of 0.1, and the dataset includes 10 samples, we need to draw 2500 points from
the posterior distribution. From a theoretical perspective, in case the data was strictly
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generated from a specific probabilistic model, these example values will provide 1% false
outlier classifications. Given 100 genes to be tested, we can expect to obtain one false
positive; while if we tested one gene, and repeated the analysis 100 times, we can expect to
obtain one false positive overall. The multiplication by two for the testing step is to reflect
that we are doing a one tail observation only (testing for deleterious outliers only).

Figure 3. Graphical plated representation of the inference model representing Eq. 1-7.
The white circles represent observed data. The yellow circles represent parameters (reals,
vectors or matrices). The coloured frames group variables into a subgraph that repeats for
transcripts/genes (G), samples (S) and covariates (C).

For the second test step, the negative binomial distribution of transcript abundance is mod-
elled as truncated at the quantiles 0.025 and 0.975 (corresponding to a 95% credible interval
used to quarantine outlier data-points in the first step). Given the computationally de-
manding calculation of probability densities of a truncated negative binomial, we employ
a heuristic adjustment to the over-dispersion of the generated quantities for the calcula-
tion of the predictive posterior credible intervals. That is, given that the under-estimation
of over-dispersion that a standard negative binomial has compared to a truncated nega-
tive binomial at the 95% percentile is approximately constant for any combination of mean
and over-dispersion ranges typical in RNA sequencing data (Fig. S1), we use the posterior
distribution of mean and over-dispersion from a non-truncated negative binomial and then
generate data adjusting the over-dispersion after fitting.

Posterior probability distribution sampling and approximation strate-
gies

In order to infer and sample from the joint posterior distribution of all parameters, the
Bayesian probabilistic framework Stan was used (Carpenter et al., 2017). To optimise its ex-
ecution, it is possible to approximate the posterior distribution generation using variational
Bayes, as opposed to generating the posterior probability distribution using the Hamiltonian
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Markov-chain Monte Carlo sampling (Neal and Others, 2011). The number of draws needed
to explore the distribution tails to identify the credible interval of the predictive posterior
distribution increases quasi -exponentially with the decrease of false positive rate or the in-
crease in the number of samples. To reduce the computational burden, approximation of the
calculation of the credible interval of the theoretical data distribution may be necessary. For
these cases, the credible interval of each transcript/sample pair can be calculated analytically
using the posterior distribution of the mean, over-dispersion and exposure rate parameters
from each sample-transcript pair. Briefly, we sample with replacement the posterior distri-
bution N times for those three parameters , where N is the number of desired samples to
define the credible interval accordingly with the user-selected false positive rate; then we
generate N random numbers from a negative binomial distribution (R Core Team, 2013).

Calibration and accuracy test

In order to test the accuracy of the outlier inference, we produced simulated data from
the joint posterior distribution fitted on real data (Mangiola et al., 2019), including 339
transcripts to be tested (result of edgeR analysis; FPR < 0.05) across 21 samples. Briefly,
we performed edgeR analysis of this dataset and identified potential differentially abundance
transcripts (false discovery rate < 0.05) according to a linear model including risk as the
only covariate. Those transcripts were modelled with our Bayesian inference model, and the
posterior distribution was used to generate simulated data that comes from a pure negative
binomial generative process and has all the biological and experimental properties of the
source experimental data set. For a random selection of 20% of those transcripts, we injected
one outlier for one randomly selected sample, characterised by a 10-10 quantile distance from
the true posterior of the selected transcript/sample pairs.
We then used these simulated data sets to calculate the false positive and false negative
rate testing for 18 user-selected false positive rate thresholds, ranging from 0.2% to 10% ,
replicating each run three times for a total of 54 runs. We then calculated (i) the proportion of
transcripts labeled as containing outliers and compared them with the nominal false positive
rate threshold; and (ii) the false negative calls per each nominal false positive rate threshold.

Results and discussion

Model calibration

Our test on simulated data showed that the model is well-calibrated for false positive rate
(Fig. 4A). The correlation across runs with a wide range of false positive rate thresholds
(from 0.001 to 0.1) is close to 1 with a R-square of 0.95. The false negative rate for outliers
outside credible interval is 0.37 for an aimed false positive rate of 5% , tested against 339
genes across 21 samples (for a total of 7119 inferences; Fig. 4B and 3C).
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Figure 4. A - Scatter plot showing good calibration of false positive rate; representing the
linear association between the user defined false positive rate and the false positive rate that
the model identified on a simulated data set with no outliers. The statistics are relative to
a linear interpolation of the data using the lm function in R. B - Scatter plot showing the
decrease of false negative with the increase of false positive aimed. C - The receiver operating
characteristic curve (ROC) of the test analysis. The data points include only inference with
the false positive aimed within a meaningful range for standard applications (from 0.002
0.1).

Although our model is well-calibrated against data generated from a negative binomial pro-
cess, care is needed into making claims about probabilities. In the first discovery step we
quarantine data based on the 95th percentile, although this interval is an estimate, given
that the presence of outliers makes the numerical generative process not strictly negative bi-
nomial by definition. In the second test step, the modeling of the data without quarantined
points allows a much better approximation of the a posteriori probabilities and the false
positive rate. For the approximation of a truncated negative binomial, we observed that
a non-truncated negative binomial under-estimates the over-dispersion for data truncated
at the 95ft percentile to an approximately constant degree. The over-dispersion parameter
(with over-dispersion being e ) has a 74% reduction across all mean/sigma combinations
that are typical of RNA sequencing data (Fig S1).

Application to real data, user interface and generated graphics

The application of our model to a dataset of periprostatic tissue (Mangiola et al., 2019)
including 21 samples revealed that 9.5% of the differentially abundant transcripts estimated
by edgeR had inflated statistics caused by the presence of outliers.. For example, the sec-
ond top differentially abundant transcript CYP1A1 characterised by an apparent increase
in abundance for the neoadjuvant treated group, includes an outlier sample. Its presence
noticeably affects the estimation of differential abundance, providing an apparent change of
194 folds, compared to 2.4 if the outlier is excluded. This aspect is visually represented (Fig.
5) by the difference between the dashed credible intervals (inferred including the potential
outlier; with 5% false positive rate) and the solid credible intervals (inferred on a truncated
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distribution, which omits potential outliers; with 1% false positive rate). Figure 4B shows
that although the hypothesis test for the transcript CYP1A1 must be run without sample
11165PP, the differential abundance could potentially reach significance, with a much lower
fold change. An interesting case is transcript GBP5, for which sample 11184PP is inferred
to be an outlier with a raw transcript abundance outside the upper quantile of its credible
interval, although it is not characterised by the highest abundance across all samples overall.
This inference is mostly driven by the low sequencing depth (proportional to the size of the
dots) of the sample 11184PP, which does not justify the relative high abundance for this
transcript.
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Figure 5. A - Dot-plot representing the number of outliers detected in the top differentially
abundant transcripts inferred by edgeR on a public data set (Robinson et al., 2010; Mangi-
ola et al., 2019). B - Visualisation produced by ppcseq R package of the 6 transcripts from
panel (A) including outliers that inflated the edgeR statistics. The color coding represents
the treatment regime, the error bars represent the credible interval of the theoretical data
distribution, the size of the points is proportional to the inferred sequencing depth factor
(exposure rate). The dashed error bars represent the 95% credible interval of the theoretical
data distributions including outliers (first discovery stage), while the solid error bars repre-
sent the 99% credible interval (user defined parameter) data distribution excluding outliers,
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derived from a truncated (at 95ft percentile) negative binomial distributions. The red error
bars and the triangular data points represent the outlier observations that do not fit the
model.

The centrality of the use of an iterative approach including a truncated, distribution is
supported by attempts to identify outlier data points with only one passage (i.e. discovery
stage) with an approximate false positive rate of 1% . Using this false positive rate no
outliers could be detected, mainly because the presence of deleterious outliers significantly
inflates the change in transcript abundance between the two conditions.

Efficient approximation of posterior probability density and credible
interval provide comparable accuracy to Hamiltonian Monte Carlo

The test runs performed with increasing level of parallelisation (from 2 to 16 physical cores)
show a gradual speedup to 3 times that of the non-approximated model (Hamiltonian Monte
Carlo sampling with calculation of quantiles through posterior draw; Fig. 2S). Compared to
the non-approximated approach, the variational Bayes approximation showed speedup from
2- to 6-folds depending on the level of parallelisation of the alternative Hamiltonial Monte
Carlo sampler (from 16 to 2 physical cores respectively; Fig S2).
As the amount of draws from the posterior probability distribution needed to define extreme
quantiles of a distribution grow exponentially with the number of samples and the false pos-
itive rate, a further approximation of the calculation of the quantiles is needed for practical
purposes (both for Hamiltonian Monte Carlo and Variational Bayes). The accuracy com-
pared to the ground truth is high (Fig. 6A), with a relative error of the distribution mean
(average across all approximation combinations) of 0.10, a relative error of the lower quantile
of 0.04 and of the upper quantile of 0.71. The approximation combinations do not affect
the inference compared with the non-approximated approach (Fig. 6B), and bias in the
under-estimation of the negative binomial variance is not noticeable. Overall, the correction
lets us restore almost exactly the full Bayesian posterior intervals while fitting the model
with the more efficient variational Bayes approach.
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Figure 6. A - Relative error of the mean, lower and upper quantiles across, compared to
simulated data based on a regression model from the real data set (Mangiola et al., 2019).
B - Relative error of the mean, lower and upper quantiles across, compared to the non
approximated modeling. The credible intervals 95% , 99% , 99.5% and 99.9% were tested.
The yellow horizontal line corresponds to the median error, the blue and red lines correspond
to the upper and lower standard deviation.

Conclusions
Differential transcript abundance analyses are key in many areas of biology, and often studies
include a limited number of biological replicates. In these cases, the effect of outlier obser-
vations can have a disproportionate impact on the prioritisation of differentially abundant
transcripts. Therefore, it is important to be able to quarantine transcripts for which the
statistics are driven by observations that do not fit the model assumptions. It is possible
to identify outlier observations by analysing the distribution of residuals; however, in cases
where limited biological replicates are available this analysis tends to be under-powered. The
use of Bayesian inference allows a posterior predictive check, where the theoretical range of
values for each observation is estimated by sharing the uncertainty across transcripts (e.g.
the association of mean and over-dispersion) and samples (the sequencing depth unwanted
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variation).
Here, we propose a robust statistical framework for the detection of transcripts for which
data does not fit the assumption of a negative binomial distribution, including deleterious
outliers that bias the statistical inference toward false positives. This process includes two
steps, where transcripts for which the statistics are biased by potential outliers are flagged
and the likelihood of this event is calculated based on a truncated distribution, which helps
to control false positives. The user is able to control for an arbitrary rate of false positives
at the transcript level, which is a direct and intuitive measure of confidence. This method
can be used to check and visualise results from all differential transcript abundance methods
based on a negative binomial framework (e.g., edgeR and Deseq2) providing a more robust
differentially abundant transcript set.

Online methods and raw data
The code used to conduct the analyses is available at github.com/stemangiola/ppcseq.
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Supplementary Figures

Fig S1 Proportional decrease of over-dispersion of a negative binomial following a truncation
of the distribution at the 2.5% and 97.5% percentiles.
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Fig S2 Benchmark of execution time across runs with diverse user-defined false positive
rates, between full posterior sampling using Hamiltonian Monte Carlo and variational Bayes
approximation (multivariate normal).
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Fig. S3 Association between difference between credible interval estimation using poste-
rior draws (standard procedure) and using analytical approximation against mean before
and after adjustment (see Materials and Methods). This figures shows the absence of bias
of credible interval estimation using the approximation method compared with the pure
calculation based on posterior probability draws.
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